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Cyclic amino acids are of increasing interest in the life-science Scheme 1. Strategy for Asymmetric Cyclization
industry?! Incorporation of these compounds into peptides induces R R R10,C
conformational constraint, and it provides an important tool for HO G~ H R10,C% H base Reve
studying the relationships between peptide conformation and C”( - ;L/ BM"* 2N
biological activity and for probing biological processes including Nrz R R

protein folding? Cyclic amino acids are useful building blocks for  7apje 7. Asymmetric Cyclization of 1
natural product synthesisand are also key structural units of

catalysts for enantioselective synthesiSyclic amino acids with OEt e PI_/\l/COgEt PR CO,Et
a quaternary stereocenter constitute a new class of nonnatural aminoP et ! B _Table1 l
acids with an even more constrained conformation. The lack of NH3 Cl Boc™ ?/\/ Boc/2
avallab!llty of these unusual amino _auds from natural 'sources () 3-bromo-1-propanol, K,COs, DMF, (b) (Boc),0, HPr,NEL,
necessitates the development of efficient methods for their synthe- () cgr,, PPhs (63% overall)
sis® The simplest and ideal access to these molecules seems to - : — —
involve direct intramolecular alkylation @f-amino acid derivatives ™ base solvent emp. time 2, yield (%6) 2 eet()
as shown in Scheme 1. However, such a route has rarely been % ﬁ:mggg :"T'F —;g"g' g%m'” gg 257’
; -~ ; ; oluene —78°C,
examined, probably because_ of f[he anF|C|pated pro_duc_tlon of racemic 3 KHMDS! DMF ~60°C. 30 min 94 98
p_roduct_s due to a_loss pf c_hlrallty during the enollz_atlon step. Ina 4 LHMDS: DMF —60°C. 30 min 60 77
pioneering work in this field by Stoodley, the intramolecular 5 LTMPf DMF —60°C, 30 min ~0

reaction of an axially chiral enolate with an electrophilic diazo group _ _ _ _

gave 1,4,5-triazabicyclo-3-nonenes with retention of configurdtion. 1.2 equiv of base was usetiThe (§-isomer was obtained in every

R | . lectival hesis has b d entry. See the Supporting InformaticiDetermined by HPLC analysis.
ecent y' enantioselectiyglactam synt . es_'s as been reporte .On d Potassium hexamethyldisilazidd.ithium hexamethyldisilazidé. Lithium

the basis of the memory effect of chirality of the parent amino 2 2,6,6-tetramethylpiperidide.

acids, albeit with a moderate enantiomeric excdéA& report here

a simple and efficient method for asymmetric cyclization of amino

acid derivatives according to the strategy in Scheme 1. This provides

Table 2. Enantioselective Synthesis of Aza-cyclic Amino Acid
Derivatives with a Quaternary Stereocenter?

a novel access to a variety of aza-cyclic amino acids with a COEL
. . . ) O,Et KHMDS R
quaternary stereocenter of high enantiomeric purity.
To preserve chirality during enolate formation and subsequent N DMF (CHy)n
C—C bond formation, the choice of the protecting group on the Boc™ ™ (CHo)e B _60 °C, 30 min Boc N/

nitrogen ofo-amino acids is criticat? According to our previous

. . . . L. entry  substrate n R product  yield (%)  ee (%)°
results on the intermolecular alkylation@famino acid derivatives,
. . 1 1¢ 3  PhCH 2 94 98 8
where theN-tert-butoxycarbonyl (Boc) group is essential for the 5 3 3 4-EtO-GHsCH, 1 95 97
generation of a chiral nonracemic enolate intermedidgeBoc- 3 5 3 MeSCHCH, 6 92 97
N-(3-bromopropyl)-phenylalanine derivatidewas designed as a 4 7 3  MeCH 8 78 94
substrate for asymmetric cyclization. Substrdtewas readily 5 9 3 Chs 10 91 95 R
prepared from §-phenylalanine ethyl ester throudialkylation g ﬂc i Eﬂgg ii g}l g?
with 3-bromo-1-propanol, introduction of a Boc group to the 4 15 5 PhCH 16 31¢ 83(9
nitrogen, and conversion of the hydroxy group into bromine in 63%  od 15 5 PhCH 16 61f 7209

overall yield without loss of enantiomeric purity 09% ee). _ _
The conditions for enantioselective cyclization &f were 2 A solution of substrate (0.25 mmol) in dry DMF (2.4 mL) was treated

- - . with 1.2 mol equiv of KHMDS (0.50 M in THF) for 30 min at60 °C,
examined (Table 1). Treatment dfwith potassium hexamethyl- unless otherwise mentione®tiThe ee was determined by HPLC analysis.

disilazide (KHMDS) in THF at-78 °C gavea-benzylproline2 in The letter in the parentheses indicates the absolute configuration. See the
89% ee and 92% yield. Whereas the corresponding reaction in Supporting Information¢ >99% ee. The reaction was run for 2 .15
toluene gave in 47% ee, the reaction dfin DMF gave2 in 98% (70% ee) was recovered in 52% yield.5 (54% ee) was recovered in 17%

. . ' . . . . ield.
ee and 94% yield with retention of configuration (entries 2 and 3). .
Lithium amide bases such as lithium hexamethyldisilazide or lithium proline derivatived in 97% ee and 95% yield (entry 2). Methionine
2,2,6,6-tetramethylpiperidide gave worse results (entries 4 and 5).and valine derivativés and7 gavea-substituted proline§ and8

Asymmetric cyclization via enantioselective intramolecular@ in 97% and 94% ee, respectively, by the same treatment (entries 3
bond formation was examined with various amino acid derivatives and 4). Cyclization of alanine derivatives via intramolecular
(Table 2). Treatment of tyrosine derivati8esimply with KHMDS alkylation also proceeded in a highly enantioselective manner (95%
in DMF at —60 °C for 30 min gavea-(4-ethoxyphenyl)methyl- ee, entry 5). This is in contrast to the corresponding intermolecular
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Scheme 2. A Possible Mechanism for Asymmetric Cyclization In conclusion, we have shown asymmetric cyclizatioMNeBoc-
N-w-bromoalkyle-amino acid derivatives, where the chirality of
o c{},o_ O OBu om COft the parent amino acids is preserved to a high extent during enolate
3 KHMDS  Ph—ge==%0K Ph—., formation and the subsequent-C bond formation. Because of
\ Boc™ the simplicity of the operation and wide applicability, this method
A Br c —Br (9-2 could provide useful access to nonnatural aza-cyclic amino acids
“ B with a quaternary stereocenter from natuxedmino acids.
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B~ N~ _Br B _~_N Chem. Res1983 16, 177-184.
17 18 JA0378299

J. AM. CHEM. SOC. = VOL. 125, NO. 43, 2003 13013



