Michael Addition—Elimination Reactions of Chiral Enolates with Ethyl 3-Halopropenoates

Jorge Esteban, Anna M. Costa, Alex Gómez, and Jaume Vilarrasa*

Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain

jvilarrasa@ub.edu

Received October 30, 2007

65-68

Key dienoic or dienal substructures of cytotoxic macrolides amphidinolide E and dictyostatin have been prepared via a Michael addition (followed by elimination of X⁻) of chiral enolates on β -halo derivatives of ethyl acrylate, with full retention of the initial *E* or *Z* configuration. Evans oxazolidin-2-ones and our related thiazolidin-2-ones, as well as a fine-tuning of the reaction conditions, have been essential. Many chiral building blocks are accessible from these adducts.

In connection with a total synthesis of amphidinolide E,¹ we analyzed several strategies to reach the fragment tagged in Scheme 1 (C1–C7).^{1e} Similar moieties are found in other interesting molecules, such as in the microtubule-stabilizing anticancer agent dictyostatin (fragment C1–C7).² These and related fragments can be prepared by a suitable manipulation of methyl (*R*)-3-hydroxy-2-methylpropanoate (the Roche ester) or by a Pd-catalyzed cross-coupling of appropriate synthons, but our interest in asymmetric Michael reactions³ prompted us to evaluate also the disconnections shown in Scheme 1.

Michael additions of Ti enolates from chiral propanoyl derivatives (Aux*COEt) to activated double bonds (such as

(2) Reviews on total syntheses of dictyostatin (and other marine macrolides): (a) Yeung, K.-S.; Paterson, I. *Chem. Rev.* **2005**, *105*, 4237. (b) Nicholas, G. M.; Phillips, A. J. *Nat. Prod. Rep.* **2006**, *23*, 79. (c) Morris, J. C.; Nicholas, G. M.; Phillips, J. *Nat. Prod. Rep.* **2007**, *24*, 87.

(3) For example: (a) Mas, G.; González, L.; Vilarrasa, J. *Tetrahedron Lett.* **2003**, *44*, 8805. (b) Rodríguez-Escrich, C.; Olivella, A.; Urpí, F.; Vilarrasa, J. *Org. Lett.* **2007**, *9*, 989.

10.1021/ol702632m CCC: \$40.75 © 2008 American Chemical Society Published on Web 12/11/2007

H₂C=CH-COOMe), to afford 1,5-difunctional synthons of type **1**, have been reported;⁴ it is known that alkaline metal enolates do not undergo such a reaction (Scheme 2).^{3,4} Conversion of C-trisubstituted enolates to compounds with

Structure: (a) Kubota, T.; Tsuda, M.; Kobayashi, J. J. Org. Chem.
 2002, 67, 1651. Total syntheses: (b) Va, P.; Roush, W. R. J. Am. Chem.
 Soc. **2006**, 128, 15960. (c) Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.;
 Woo, S. K.; Jung, S. K.; Lee, E. Angew. Chem., Int. Ed. **2006**, 45, 8019.
 (d) Va, P.; Roush, W. R. Tetrahedron **2007**, 63, 5768 and references therein.
 (e) Esteban, J. Ph.D. unpublished results.

quaternary carbons (e.g., 2 and 3), often in the presence of chiral phase-transfer catalysts (PTC), has also been developed.^{5,6} While molecules of type 2 and 3 cannot epimerize, our challenge was to obtain structures of type 4, which can show a higher tendency to epimerize than 1 due to the higher acidity of H_{α} (as the deprotonation of 4 gives rise to a very delocalized enolate); control of the double bond configuration was also essential. Thus, proton exchanges between 4 and the base excess or between 4 and the enolate had to be reduced to a minimum; in principle, catalytic processes and heating seemed counter-indicated.

We report here how we obtained enantiopure compounds of type **4** in excellent yields by using haloacrylates (e.g., **5a** and **5b**). The resulting products could be easily converted to a plethora of C1-C5 chiral fragments.

We carried out the first trial experiments with B, Ti, and Li enolates of the Evans most common auxiliary⁷ and the ethyl ester of (*E*)-3-iodopropenoic acid (iodoacrylate **5a**). No reaction occurred in the first two cases, in CH₂Cl₂, even at room temperature (rt). With the Li enolate and **5b** in THF at -78 °C, the reaction was too slow, while at -40 °C for several hours, 40–60% of conversion was observed, but unfortunately, we obtained a mixture of diastereomers (the diastereomeric ratios, dr, were ca. 85:15 *R/S* and 20:80 *E/Z*). This outcome was not useful but indicated that a suitable

(5) For a very recent review, see: (a) Maruoka, K.; Ooi, T. Angew. Chem., Int. Ed. 2007, 46, 4222 (section 4). For other excellent reviews, see: (b) Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171. (c) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033 (section 8). For very recent, related works, see: (d) Linton, B. R.; Reutershan, M. H.; Aderman, C. M.; Richardson, E. A.; Brownell, K. R.; Ashley, C. W.; Evans, C. A.; Miller, S. J. Tetrahedron Lett. 2007, 48, 1993 and references therein. (e) Hamashima, Y.; Hotta, D.; Umebayashi, N.; Tsuchiya, Y.; Suzuki, T.; Sodeoka, M. Adv. Synth. Catal. 2005, 347, 1576 and references therein. (6) (a) Bell, M.; Poulsen, T. B.; Jörgensen, K. A. J. Org. Chem. 2007,

(6) (a) Bell, M.; Polisen, T. B.; Jorgensen, K. A. J. Org. Chem. 2007, 72, 3053. (b) Wang, X.; Kitamura, M.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 1038. (c) Poulsen, T. B.; Bernardi, L.; Bell, M.; Jörgensen, K A. Angew. Chem., Int. Ed. 2006, 45, 6551 and references therein. Pioneering reactions with 3-haloacrylates: (d) Smith, A. B., III; Kilenyi, S. N. Tetrahedron Lett. 1985, 26, 4419 (1,3-diketones). (e) Bruncko, M.; Crich, D. J. Org. Chem. 1994, 59, 7921 (dioxanone enolates). (f) Ma, D.; Ma, Z.; Jiang, J.; Yang, Z.; Zheng, C. Tetrahedron: Asymmetry 1997, 8, 889 (oxazolidin-5-ones).

(7) According to standard procedures. See for example: (a) Evans, D. A.; Bartrolí, X.; Shi, T. L. J. Am. Chem. Soc. 1981, 103, 2127 (B enolates).
(b) Evans, D. A.; Urpí, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215 (Ti enolates). (c) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737 (Li and Na enolates).

 Table 1. Reaction of Various Alkaline Enolates with Ethyl
 3-Iodopropenoates^a

entry	Aux*	м	<i>E</i> or <i>Z</i> , 5a or 5b	conditions	yield (%)	R/S^b	E/Z, 4a/4b
1	Evans	Na	E (5a)	THF	81	78:22	>99:1
2	Evans	Na	E	CH ₂ Cl ₂ -THF ^c	95^d	$> 97:3^{d}$	>99:1
3	Evans	Κ	E	CH_2Cl_2 -tol	92	95:5	>99:1
4	Evans	Na	$Z(\mathbf{5b})$	THF	81	75:25	<1:99
5	Evans	Na	Z	THF, −100 °C	70	87:13	<1:99
6	Evans	Na	Z	tol-THF	85	88:12	<1:99
7	Evans	Na	Z	CH ₂ Cl ₂ -THF ^c	95^d	$>97:3^{d}$	<1:99
8	Nagao-I	Na	E (5a)	CH_2Cl_2 -THF	0^e		
9	Nagao-II	Na	E	CH_2Cl_2 -THF	0^e		
10	Oppolzer	Na	E	CH_2Cl_2 -THF	73	>97:3	>99:1
11	Oppolzer	Li	$Z(\mathbf{5b})$	THF, −30 °C	\mathbf{NR}		
12	Oppolzer	Na	Z	CH_2Cl_2 -THF	22	83:17	28:72
13	Oppolzer	Κ	Z	CH_2Cl_2 -tol	0^e		
14	ours	Na	E (5a)	CH_2Cl_2 -THF	95^d	$>97:3^{d}$	>99:1
15	ours	Na	$Z\left(\mathbf{5b} ight)$	CH_2Cl_2-THF	93^d	$>97:3^{d}$	<1:99

^{*a*} The commercially available THF solution of the base (1.0-1.1 equiv), but not more) was added at -78 °C (unless otherwise indicated), with a syringe, to solutions of the acylated auxiliary in the solvent indicated first; a few min later, 1.1-1.2 equiv of **5a** or **5b** in THF, CH₂Cl₂, or toluene (tol) was added (e.g., this meant a final 9:1 CH₂Cl₂-THF mixture). Within 10-15 min, full conversions were noted in most cases. ^{*b*} Ratio *R/S* for the major isomer (*Z* or *E*) by ¹H NMR and HPLC. ^{*c*} Under these conditions, the reaction works identically with achiral, nonsubstituted oxazolidin-2-one. ^{*d*} Ratios of 97.5 \pm 0.3 to 2.5 \pm 0.3 were determined by HPLC, comparing the crudes with authentic samples of the diastereomers. ^{*e*} Decomposition of the acylated auxiliary.

optimization could provide the desired results. Table 1 summarizes the most significant results among more than 60 experiments.

It is worth noting that the use of a 9:1 CH₂Cl₂–THF mixture (that is, CH₂Cl₂ with the small volume of THF arising from the base solution) is key to get a full stereocontrol (entries 2 and 7); THF alone favors the exchange of protons H_{α}. The Evans auxiliary performed perfectly under these conditions, with both **5a** and **5b**. These reactions were scaled up with the same outcome (see Supporting Information). On the other hand, the alkaline enolates of acylated oxazolidine-2-thione and thiazolidine-2-thione derivatives (see entries 8 and 9 for representative trials), related to those developed by Nagao et al.⁸ in the 1980s and popularized more recently by Crimmins et al.,⁹ are too unstable. The Oppolzer camphorsultam¹⁰ failed when we allowed it to react

⁽⁴⁾ Evans, D. A.; Bilodeau, M. T.; Somers, T. C.; Clardy, J.; Cherry, D.; Kato, Y. J. Org. Chem. **1991**, *56*, 5750.

^{(8) (}a) Nagao, Y.; Yamada, S.; Kumagai, T.; Ochiai, M.; Fujita, E. J. Chem. Soc., Chem. Commun. **1985**, 1418. (b) Nagao, Y.; Kumagai, T.; Yamada, S.; Fujita, E.; Inoue, Y.; Nagase, Y.; Aoyagi, S.; Abe, T. J. Chem. Soc., Perkin Trans. 1 **1985**, 2361. (c) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. **1986**, 51, 2391.

with the *Z* isomer **5b** (entries 11-13). Finally, our auxiliary¹¹ (entries 14 and 15) was as efficient as that of the Evans group.

In general, provided that the temperature was kept at -78 °C, the presence of 10 mol % of NaN(SiMe₃)₂ in excess did not cause any epimerization at C_{α} in CH₂Cl₂-THF.

To confirm the absolute configurations of **4a** and **4b**, a sample of each was hydrogenated in MeOH, affording quickly and quantitatively the same unsaturated, known pentanedioic acid derivative (Scheme 3, top).^{3,4} Compound

4a, treated with Me₃SiO⁻K⁺ in 1:1 CH₂Cl₂–THF at -40 °C for 14 h, followed by neutralization, gave **6a**.¹² The equilibrium mixture shown in Scheme 3 (bottom) was established, so that the thermodynamically more stable compound **(6a)** eventually predominated.

(11) (a) We prepared the N-propanoyl derivative of our thiazolidin-2one by oxidation of the N-propanoyl-Nagao-II auxiliary with DDQ. More details and other applications of this chiral auxiliary will be reported in a future full paper. (b) Spectral data of the addition-elimination product 4a' (isomer *E*): ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, *J* = 7.0 Hz, 3H), 1.34 (d, J = 6.8 Hz, 3H), 2.95 (m, 2H), 3.11 (dd, J = 12.8 Hz, J = 3.6 Hz, 1H), 3.35 (dd, J = 12.8 Hz, J = 7.2 Hz, 1H), 4.20 (m, 1H), 5.93 (dd, J = 15.6 Hz, J = 1.2 Hz, 1H), 7.08 (dd, J = 15.6 Hz, J = 7.2 Hz, 1H), 7.25–7.45 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2, 16.9, 28.5, 37.4, 41.4, 59.7, 60.5, 122.6, 127.2, 128.9, 129.4, 136.4, 146.0, 166.1, 172.2, 172.3. Spectral data of the adduct 4b' (isomer Z), under the same conditions: ¹H NMR δ 1.28 (t, J = 7.2 Hz, 3H), 1.35 (d, J = 6.8 Hz, 3H), 2.95 (m, 2H), 3.21 (br d, J = 13.2 Hz, 1H), 3.30-3.35 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 4.90 (m, 1H), 5.44 (m, 1H), 5.90 (dd, J = 11.6 Hz, J = 1.2 Hz, 1H), 6.37 (dd, J = 11.6 Hz, J = 8.6 Hz, 1H), 7.25–7.45 (m, 5H); ¹³C NMR δ 14.2, 16.7, 28.6, 37.4, 39.4, 60.0, 60.3, 121.2, 127.1, 128.8, 129.4, 136.5, 146.7, 165.2, 171.5, 174.2.

(12) The reactions were followed by NMR: during the first hours, an equilibration with 4a-S was noted (2:1) but eventually only 6a was obtained. Isomer **4b** isomerized much more slowly, to yield 4a + 4a-S, but after 48 h, all the isomers had also been converted to 6a (whereas 4b-S and the Z isomer of 6a were not detected).

The relevance of the halogen atom was also investigated. Reactions of the Na enolates of the Evans auxiliary under the optimum conditions of entries 2 and 7 of Table 1, with the available (*E*)- and (*Z*)-3-chloropropenoate derivatives, gave in \geq 95% yields only one stereoisomer in each case, with full retention of the configuration of the double bond, and which were respectively identical to the products arising from the (*E*)- and (*Z*)-3-iodoacrylates. We also checked the analogous *Z* isomer of the ethyl 3-bromopropenoate, with the same result. In short, the three halo derivatives can be used with similar efficiency.

This is reasonable for a mechanism^{13a} in which the Michael addition is followed by the quick elimination of NaX from the intermediate, at -78 °C. In other words, retention of configuration at the double bond can be accounted for (see Scheme 4) by the quick departure of the leaving group with

a minimum rotation around the $CHX-C(sp^2)$ single bond^{13b} (the Newman projection of which is not drawn to save space).

Reaction of the Na enolate of Aux*COEt (Aux* = Evans auxiliary drawn in Table 1) with methyl propynoate (methyl propargylate), a synthetic equivalent of **5a/5b**, also proceeded in good yield and >97:3 dr at C_{α} but gave a 77:23 *Z/E* mixture under our standard conditions (Scheme 4, bottom) and similar mixtures under other conditions. Thus, the auxiliary controls the α stereocenter, but as 23% of the more stable *E* isomer is obtained rather than the anticipated *Z* isomer alone (arising from a *trans* addition), a ketene enolate is assumed to be the intermediate.

Standard transformations of the characteristic groups of the adducts can provide a series of chiral fragments of C-substituted five-carbon chains. Examples of these building blocks are shown in Scheme 5. Removal of the chiral auxiliary of **4a** (Aux* = Evans auxiliary shown in Table 1) with NaBH₄ in THF-H₂O at rt¹⁴ gave **7a** in excellent

^{(9) (}a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc.
1997, 119, 7883. (b) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2,
775. (c) Crimmins, M. T.; Caussanel, F. J. Am. Chem. Soc. 2006, 128,
3128 and references therein.

^{(10) (}a) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. *Helv. Chim. Acta* **1984**, 67, 1397. (b) Oppolzer, W.; Moretti, R.; Thomi, S. *Tetrahedron Lett.* **1989**, 30, 5603. (c) Oppolzer, W.; Blagg, J.; Rodríguez, I.; Whalter, E. J. *Am. Chem. Soc.* **1990**, 112, 27667.

^{(13) (}a) Classical review of $S_N(Ad_N-E)$ mechanisms in conjugate alkenes: Rappoport, Z. Acc. Chem. Res. **1992**, 25, 474. (b) That is, before the equilibration among the three rotamers could take place.

⁽¹⁴⁾ Prassad, M.; Har, D.; Kim, H.-Y.; Repic, O. *Tetrahedron Lett.* **1998**, *39*, 7067.

yields,¹⁵ operating under the following milder conditions: 140 mol % of NaBH₄ and 110 mol % of Na₂HPO₄ in water at 0 °C were added dropwise to **4a** in THF at 0 °C, the bath was removed, and stirring was continued for 2–3 h; otherwise, the saturated hydroxyester was obtained as a byproduct in 20–30% yields (by concomitant reduction of the conjugate double bond). On the other hand, the reduction of **4a** with an excess of DIBALH in CH₂Cl₂–hexane at –78 °C afforded **8a** selectively.¹⁶ Oxidation of **8a** with DMP gave the desired **9a** (our true goal, as mentioned in Scheme 1), in nearly quantitative yields.

Reduction of 4b with NaBH₄ under the above-mentioned conditions gave a mixture of 7b and 10.¹⁷ Addition of a

catalytic amount of NaH to the mixture in THF at rt converted completely **7b** into **10** within a few hours. Moreover, when the reaction of **4b** with an excess of DIBALH at -78 °C was quenched with EtOAc, allowed to warm up, and isolated, only **11**¹⁸ and Aux*H were obtained, in \geq 90% yields.

In principle, a plethora of related chiral blocks from other alkaline enolates (not only Aux*-containing enolates) and diversely substituted conjugate esters, nitriles, or ketones (X-CR=CH-COOR, X-CH=CR-CN, or $X_2C=CH-COR$) may be accessible by similar protocols.

In summary, we have uncovered a simple procedure to which, surprisingly, nobody had paid attention before: the Na enolates of the *N*-propanoyl derivatives of the most common auxiliary (and of our new thiazolidin-2-one auxiliary) react with ethyl 3-halopropenoates in 9:1 CH₂Cl₂-THF at -78 °C within a few minutes, to afford excellent yields of adduct **4a** or **4b** with an extraordinary stereocontrol; this is not the case when alkyl propynoates are used instead. The adducts can be manipulated appropriately to obtain a range of C1-C5 chiral building blocks (chiroblocks).

Acknowledgment. Financial support from the Spanish Ministerio de Educación y Ciencia, through the grants SAF-2002-02728 and CTQ-2006-15393, and a Ramón y Cajal Research Contract to A.M.C. are acknowledged. J.E. holds a UB studentship (Jan. 2004 to Dec. 2007) and thanks Ph.D. student Mireia Sidera, of our department, for an additional batch of **4a**. The Generalitat de Catalunya contributed partially by means of the grant 2001SGR065 (2001–2005, Grup de Síntesi Estereoselectiva d'Antibiòtics i Antivírics).

Supporting Information Available: Experimental data and copies of the ¹H and ¹³C NMR spectra of the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL702632M

⁽¹⁵⁾ Enantiopure **7a** had been obtained from D-mannitol by a sequence that includes an epoxide opening, with AlMe₃, in the last step: Miyazawa, M.; Ishibashi, N.; Ohnuma, S.; Miyashita, M. *Tetrahedron Lett.* **1997**, *38*, 3419.

⁽¹⁶⁾ We could not stop the reduction at the aldehyde stage, but to a mixture of alcohol and aldehyde, using low amounts of DIBALH and other solvents, as well as operating even at -100 °C.

⁽¹⁷⁾ The racemic form of **10** is a known compound: (a) Dieter, R. K.; Guo, F. *Org. Lett.* **2006**, *8*, 4779 and references therein. (b) We have measured an $[\alpha]_D$ value of -6.0 (c 0.60, CHCl₃) for our sample.

⁽¹⁸⁾ Known in its racemic form: (a) Andreana, P. R.; McLellan, J. S.; Chen, Y.; Wang, P. G. *Org. Lett.* **2002**, *4*, 3875 and references therein. (b) We have measured an $[\alpha]_D$ value of -52.7 (*c* 0.80, CHCl₃) for **11**.