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1 ABSTRACT

2 All four stereoisomers of naturally occurring 

3 6-(2-hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2H-pyran-2-one (1) were synthesized by 

4 employing yeast-reduction products with high optical purity (95%ee–more than 99% 

5 ee), and then their phytotoxicities against lettuce and Italian ryegrass were evaluated.  

6 In the Italian ryegrass seedlings test, (6S,2´R)-1 showed the most potent and 

7 stereospecific activity against the shoots (IC50 = 260 µM) and roots (IC50 = 43.2 µM) 

8 with a significant difference from other stereoisomers.  The highest seed germination 

9 inhibitory activity against Italian ryegrass seed was also observed in (6S,2´R)-1, 

10 showing 53% germination ratio from control at 1000 µM.  This advantageous 

11 (6S,2'R)-stereochemistry was employed in the syntheses of -dihydro, 2´-dehydroxy, 

12 and 2´-methoxy derivatives 13-15.  By the test using these derivatives, the importance 

13 of ,-unsaturated double bond and a hydroxy group bonding to a chiral center on the 

14 6-alkyl chain of 5,6-dihydro--pyrone for phytotoxicity was determined.  In the test 

15 against lettuce, 6S-configuration and (6S,2'S)-configuration were necessary for growth 

16 inhibition (IC50 = ca. 60 µM) and germination inhibition (63% germination ratio at 1000 

17 µM), respectively. 

18

19

20

21 Key words: 5,6-dihydro--pyrone; allelopathy; plant growth regulation; germination 

22 inhibitory activity; phytotoxicity
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23 INTRODUCTION

24 5,6-Dihydro--pyrone is a secondary metabolite biosynthesized by plants.  

25 Antitumor activity and cytotoxicity,1-12 antiproliferative,13-14 antimicrobial,15-17 

26 larvicidal,18 carbonic anhydrase inhibitor,19 spasmolitic,20 antiprotozoal,21,22 

27 antifungal,23,24 and anti-inflammatory11 activity have been reported.  The effect of 

28 stereochemistry and structure-activity relationship have not been discussed in these 

29 experiments.  With regarding to the plant growth regulation, the phytotoxicities of 2-5 

30 have been reported (Figure 1).25-28  We focused on the substituent of the alkyl chain at 

31 6-position of the 5,6-dihydro--pyrone structure in this project on the phytotoxicity.  

32 Although the polyacetate compound, (+)-boronolide (5), showed weak activity in our 

33 previous study,28 the phenyl group and alkenyl substituent seem to be tolerable for the 

34 phytotoxicity.  The purpose of this project is to clarify the effect of the stereochemistry 

35 and hydroxy group in the 6-alkyl group on the phytotoxicity.  To promote this project, 

36 the compound 1,23 which was isolated from Ravensara crassifolia, was selected as a 

37 target compound because of the presence of a hydroxy group bonding to a chiral carbon 

38 on the 6-alkyl chain.  The stereochemistry of the natural compound 1 was revised to 

39 (6S,2'S)-configuration29 after the first report.  After syntheses of all four stereoisomers 

40 of 1, the growth inhibitory and germination inhibitory activities against lettuce and 

41 Italian ryegrass were examined.  The stereospecific phytotoxicity of 

42 5,6-dihydro--pyrone is first described in this article.  

43 The syntheses of (6R,2'S)-130, (6S,2'R)-1,31-38 and both (6R,2'R)-1 and 

44 (6S,2'R)-14 have been achieved.  However, the synthetic report on (6S,2'S)-1 can not be 
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45 found.  We selected (1'R,2'S)-6 and (1'S,2'S)-6,17 which could be prepared from one 

46 racemic compound by yeast-reduction,39 as the staring materials for the syntheses of all 

47 four stereoisomers.  Furthermore, the importance of the ,-unsaturated structure and 

48 the hydroxy group bonding to a chiral center on the 6-alkyl chain for the phytotoxicity 

49 was also determined by the preparations of the derivatives 13-15 and their biological 

50 tests against plants.        

51

52 MATERIALS AND METHODS

53 All test compounds were synthesized by the methods described in the 

54 supporting information.

55 (R)-6-[(R)-2-Hydroxy-6-phenylhex-1-yl]-5,6-dihydro-2H-pyran-2-one 

56 ((6R,2'R)-1).  colorless oil; []20
D +56 (c 0.20, CHCl3); IR vmax (CHCl3) 3434, 2934, 

57 1714, 1256, 1050 cm−1; 1H NMR (400 MHz, CDCl3)  7.29–7.16 (m, 5H), 6.89 (ddd, J 

58 = 9.5, 4.3, 4.3 Hz, 1H), 6.01 (ddd, J = 9.7, 1.8, 1.8 Hz, 1H), 4.74 (m, 1H), 4.00 (m, 1H), 

59 2.62 (t, J = 7.6 Hz, 2H), 2.34 (m, 2H), 2.13 (br, 1H), 1.87 (ddd, J = 14.5, 9.8, 2.2 Hz, 

60 1H), 1.69–1.59 (m, 3H), 1.53–1.46 (m, 3H), 1.37 (m, 1H), 1.49 (m, 2H); 13C NMR (100 

61 MHz, CDCl3)  164.5, 145.5, 142.4, 128.3, 128.2, 125.6, 121.2, 75.0, 66.9, 42.2, 37.8, 

62 35.8, 31.4, 29.9, 25.1; MS (FAB) m/z 275 (M+H)+; HRMS (FAB) m/z calcd for 

63 C17H23O3 275.1647 (M+H)+, found 275.1650; >99% ee (AD-H, 5% iso-PrOH in hexane, 

64 1.0 mL/min, detected at 254 nm, tR30 min).

65 (6R,2'S)-1.  colorless oil; []20
D +84 (c 0.47, CHCl3); IR vmax (CHCl3) 3700, 

66 3018, 1717, 1559 cm−1; 1H NMR (400 MHz, CDCl3)  7.29–7.26 (m, 2H), 7.19-7.16 (m, 
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67 3H), 6.89 (m, 1H), 6.02 (ddd, J = 9.8, 1.9, 1.9 Hz, 1H), 4.65 (m, 1H), 3.85 (m, 1H), 2.63 

68 (t, J = 7.7 Hz, 2H), 2.40 (m, 2H), 2.05 (br, 1H), 1.97 (ddd, J = 14.4, 8.6, 7.5 Hz, 1H), 

69 1.79 (ddd, J = 14.4, 5.6, 3.6 Hz, 1H), 1.66 (m, 2H), 1.57–1.47 (m, 3H), 1.40 (m, 1H); 

70 13C NMR (100 MHz, CDCl3)  164.0, 145.2, 142.4, 128.4, 128.3, 125.7, 121.2, 77.0, 

71 69.1, 41.9, 37.5, 35.8, 31.4, 29.5, 25.1; MS (FAB) m/z 275 (M+H)+; HRMS (FAB) m/z 

72 calcd for C17H23O3 275.1647 (M+H)+, found 275.1647; >99% ee (AD-H, 5% iso-PrOH 

73 in hexane, 1.0 mL/min, detected at 254 nm, tR41 min).

74 (6S,2'S)-1.  colorless oil; []20
D −56 (c 0.57, CHCl3); 95% ee (AD-H, 5% 

75 iso-PrOH in hexane, 1.0 mL/min, detected at 254 nm, tR22 min).

76 (6S,2'R)-1.  colorless oil; []20
D −84 (c 0.19, CHCl3); 95% ee (AD-H, 5% 

77 iso-PrOH in hexane, 1.0 mL/min, detected at 254 nm, tR34 min).

78 (S)-6-[(R)-2-Hydroxy-6-phenylhex-1-yl]-3,4,5-6-tetrahydro-2H-pyran-2- 

79 one (13).  colorless oil; []20
D +28 (c 1.2, CHCl3); 1H NMR (400 MHz, CDCl3)  

80 7.28–7.25 (m, 2H), 7.17–7.15 (m, 3H), 4.50 (m, 1H), 3.80 (m, 1H), 2.64–2.54 

81 (overlapped, 1H), 2.62 (t, J = 7.7 Hz, 2H), 2.43 (ddd, J = 17.7, 8.7, 7.2 Hz, 1H), 2.40 (br, 

82 1H), 2.00–1.79 (m, 4H), 1.72–1.59 (m, 3H), 1.58–1.44 (m, 4H), 1.39 (m, 1H); 13C NMR 

83 (100 MHz, CDCl3)  171.4, 142.4, 128.3, 128.2, 125.6, 79.6, 69.0, 43.0, 37.4, 35.8, 31.3, 

84 29.3, 27.8, 25.0, 18.3; MS (FAB) m/z 277 (M+H)+; HRMS (FAB) m/z calcd for 

85 C17H25O3 277.1796 (M+H)+, found 277.9796.

86 (R)-6-(6-Phenylhex-1-yl)-5,6-dihydro-2H-pyran-2-one (14).  colorless oil; 

87 []20
D −121 (c 0.21, CHCl3); 1H NMR (400 MHz, CDCl3)  7.29–7.25 (m, 2H), 7.18–

88 7.15 (m, 3H), 6.86 (ddd, J = 9.7, 5.0, 3.4 Hz, 1H), 6.01 (ddd, J = 9.9, 1.8, 1.8 Hz, 1H), 
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89 4.40 (m, 1H), 2.60 (t, J = 7.7 Hz, 2H), 2.33–2.29 (m, 2H), 1.79 (m, 1H), 1.67–1.59 (m, 

90 3H), 1.52 (m, 1H), 1.43–1.34 (m, 5H); 13C NMR (100 MHz, CDCl3)  164.5, 145.0, 

91 142.6, 128.3, 128.2, 125.6, 121.4, 77.9, 35.9, 34.8, 31.3, 29.4, 29.2, 29.1, 24.7; MS 

92 (FAB) m/z 259 (M+H)+; HRMS (FAB) m/z calcd for C17H23O2 259.1697 (M+H)+, 

93 found 259.1698.

94 (S)-6-[(R)-2-Methoxy-6-phenylhex-1-yl]-5,6-dihydro-2H-pyran-2-one (15).  

95 Colorless oil; []20
D −93 (c 0.24, CHCl3); 1H NMR (400 MHz, CDCl3)  7.29–7.25 (m, 

96 2H), 7.19–7.16 (m, 3H), 6.88 (m, 1H), 6.03 (ddd, J = 9.7, 1.8, 1.8 Hz, 1H), 4.55 (m, 1H), 

97 3.42 (dddd, J = 5.9, 5.9, 5.9, 5.9 Hz, 1H), 3.30 (s, 3H), 2.62 (t, J = 7.7 Hz, 2H), 2.38 (m, 

98 2H), 2.07 (ddd, J = 14.5, 6.7, 6.7 Hz, 1H), 1.76 (ddd, J = 14.3, 5.9, 5.9 Hz, 1H), 1.69–

99 1.53 (m, 4H), 1.40 (m, 2H); 13C NMR (100 MHz, CDCl3)  164.4, 145.1, 142.4, 128.3, 

100 128.4, 125.7, 121.4, 76.7, 75.3, 56.1, 38.3, 35.9, 32.9, 31.6, 29.5, 24.6.  MS (FAB) m/z 

101 289 (M+H)+; HRMS (FAB) m/z calcd for C18H25O3 289.1804 (M+H)+, found 289.1804.

102 Plant growth regulation activity and seed germination inhibitory activity.  

103 The plant growth regulation activity of our synthesized all stereoisomers of 1 and 13-15 

104 were evaluated using lettuce (Lactuca sativa L. Green-wave (Takii Seed Co. Ltd., 

105 Kyoto, Japan)) and Italian ryegrass (Lolium multiflorum Lam. Wase-fudo (Takii Seed 

106 Co. Ltd.)) seedling.  A sheet of filter paper (diameter = 90 mm) was put in a 90 mm 

107 Petri dish and wetted with 500 μL of test sample solution dissolved in acetone at 

108 concentrations from 6.0 to 0.15 mM or from 6.0×10−5 to 6.0×10−9 M.  After the filter 

109 paper had dried, 3 mL of water was poured into the dish to adjust the final concentration 

110 from 1000 to 25 µM or from 10−5 to 10−9 M.  Thirty seeds of each plant were placed on 
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111 the filter paper, and the Petri dishes were sealed with parafilm.  The Petri dishes were 

112 then incubated in the dark at 20°C.  The lengths of roots and shoots were measured 

113 after 3 days for lettuce seedlings and after 5 days for Italian ryegrass seedlings by using 

114 an ordinary ruler.  The shoot and root lengths of the control were ca. 1 and 2 cm for 

115 lettuce seedlings and 2 and 3 cm for Italian ryegrass seedlings, respectively.  

116 Experiments were performed in triplicate for each sample at 1000 to 25 µM, and 

117 conducted in singlicate for each sample at 10−5 to 10−9 M.  In addition, the seed 

118 germination inhibitory activity of our synthesized all stereoisomers of 1 and 13-15 were 

119 evaluated using Italian ryegrass and lettuce seed.  Preparing the Petri dish including 

120 thirty seeds at 1000 µM by employing the same method, the petri dish was then 

121 incubated in the dark at 20°C.  The germinated seeds were counted after 4 days for 

122 ryegrass and 3 days for lettuce, and the seed germination ratio of each compound 

123 against control were calculated.  The seed germination ratio of the control was ca. 80% 

124 for ryegrass and 100% for lettuce.  Experiments were performed in triplicate for each 

125 sample.  The data are presented as percentage differences from the control, 

126 respectively.

127 Evaluation of biological activity.  Experiments were performed in triplicate 

128 or more for each sample.  Statistical analyses were conducted one-way ANOVA 

129 followed by Tukey’s multiple-comparison test by using PRISM software ver. 5.0 

130 (GraphPad software Inc., San Diego, CA, USA), and the values of p were considered to 

131 be statistically significant.  The value of IC50 (effective concentration for inducing 

132 50% growth inhibitory ratio compared with control) was calculated when the 
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133 concentration was 1000 to 25 µM.  The data are presented as percentage differences 

134 from the control when the concentration was 10−5 to 10−9 M.           

135

136 RESULTS AND DISCUSSION

137 To synthesize the stereoisomers (6R,2'R)- and (6R,2'S)-1, the synthetic 

138 sequence was started from the reported aldehyde (1'R,2'S)-617 (Scheme 1).  The 

139 aldehyde 6 was treated with 4-phenylbutylmagnesium bromide to give alcohols 

140 (2R,1'R,2'S)-7 (40%) and (2S,1'R,2'S)-7 (38%).  These secondary alcohols were 

141 converted to the R- and S--methoxy--(trifluoromethyl)phenylacetic acid esters, 

142 respectively, to determine the absolute configuration at the C2 positions by the modified 

143 Mosher method (Figure 2).40  The S−R values of their 1H-NMR spectra of 

144 (S)-(2R,1'R,2'S)-7 and (R)-(2R,1'R,2'S)-7 were negative at triisopropylsilyl group and the 

145 C2' position, and the value was positive at the C6 position.  On the other hand, the S−

146 R values of their 1H-NMR spectra of (S)-(2S,1'R,2'S)-7 and (R)-(2S,1'R,2'S)-7 were 

147 positive at triisopropylsilyl group and the C2' position, and the value was negative at the 

148 C6 position (Figure 2).  After the protections of the hydroxy groups of (2R,1'R,2'S)- 

149 and (2S,1'R,2'S)-7 as 4-methoxybenzyl ethers by using 4-methoxybenzyl bromide and 

150 NaH, the desilylations with (n-Bu)4NF were performed, respectively.  Pyridinium 

151 chlorochromate oxidations of the resulting cyclopentanol derivatives (1S,2R,2'R)-9 and 

152 (1S,2R,2'S)-9 followed by Baeyer–Villiger oxidations by employing 

153 m-chloroperoxybenzoic acid afforded (6R,2'R)- and (6R,2'S)-11, respectively (Scheme 

154 1).  The introductions of the ,-unsaturated double bonds to these lactones with 
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155 [Ph(SeO)]2O gave (6R,2'R)- and (6R,2'S)-12, respectively.  Finally, the cleavages of 

156 each p-methoxybenzyl ether by using trifluoroacetic acid gave (6R,2'R)- and (6R,2'S)-1.  

157 The stereoisomers (6S,2'S)- and (6S,2'R)-1 were synthesized by the same synthetic 

158 method from (1'S,2'S)-6.17  The enatiomeric excesses of 1–4 were determined as more 

159 than 99%ee for (6R,2'R)- and (6R,2'S)-1.  On the other hand, 95%ee was observed for 

160 (6S,2'S)- and (6S,2'R)-1.  The success of these syntheses enabled us to clarify the 

161 phytotoxicities of stereoisomers of 1.

162 The plant growth inhibitory activities of the synthesized stereoisomers 1 

163 against lettuce and Italian ryegrass were evaluated (Table 1).  Against lettuce, all 

164 stereoisomers showed growth inhibitory activities against both the shoots (IC50 = 227–

165 491 µM) and roots (IC50 = 58.4–95.2 µM).  The activities of (6S,2'R)- and (6S,2'S)-1 

166 were higher than (6R,2'R)-1 with the significant difference, showing IC50 values of 

167 200-300 M against the shoots and around 60 µM against roots.  Although the 

168 difference of activity levels against the shoots and roots was not wide and less than 

169 2-fold, the 6S-absolute configuration would be more important than the 2'-absolute 

170 configuration for the higher activity against lettuce.  Against Italian ryegrass, the 

171 growth inhibitory activity was also shown against both the shoots (IC50 = 260–741 µM) 

172 and roots (IC50 = 43.2–131 µM) in all stereoisomers.  The phytotoxicity of (6S,2'R)-1 

173 was most potent against the shoots (IC50 = 260 µM) and roots (IC50 = 43.2 µM), 

174 showing 2-3-fold more potent than the other stereoisomers with the significant 

175 difference.  The IC50 values against Italian ryegrass was broader than against lettuce.  

176 The chiral centers at both the 6- and 2'-positions would be important.  The tests at 
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177 10-5–10−9 M showed neither the growth inhibition nor promotion against both lettuce 

178 and Italian ryegrass.  

179 To clarify an another phytotoxicities of the test compounds, the seed 

180 germination inhibitory activities of stereoisomers of 1 against lettuce and Italian 

181 ryegrass seeds were examined at 1000 µM (Figure 3).  Against lettuce, only (6S,2'S)-1 

182 showed lower germination ratio (63%) with the significant difference from the other 

183 stereoisomers.  The same stereoisomer (6S,2'S)-1 was effective for the growth 

184 inhibition of lettuce.  On the other hand, all stereoisomers exhibited the germination 

185 inhibitory activity (germination ratio of 53%-70%) with the significant difference from 

186 the control against Italian ryegrass.  The (6S,2'R)-1 was most potent to show the 

187 significant difference from (6R,2'R)-1 and (6S,2'S)-1.  The (6S,2'R)-1 was a most 

188 effective stereoisomer in both the growth and germination inhibitory activity against 

189 Italian ryegrass.  Since the germination inhibitory activities were not observed at 0.6 M, 

190 the growth inhibitions observed in these stereoisomers were not due to the germination 

191 inhibitory activities.              

192 Based on the stereochemistry of the most effective stereoisomer (6S, 2'R)-1, 

193 derivatives 13-15 were synthesized (Scheme 2) to evaluate the importance of the 

194 ,-unsaturated structure and the hydroxy group bonding to a chiral center for the 

195 activity.  The saturated derivative 13 was obtained by hydrogenolysis of (6S,2'R)-11 

196 under H2 gas in the presence of Pd(OH)2/C.  After the Grignard reaction of (1'S,2'S)-6, 

197 the resulting secondary hydroxy group was mesylated.  The treatment of the crude 

198 mesylate with NaBH4 gave the dehydroxy product.  This intermediate was converted 
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199 to 2'-dehydroxy derivative 14 by the same synthetic method described above.  To 

200 prepare the 2'-methoxy derivative 15, the secondary hydroxy group obtained by 

201 Grignard reaction to (1'S,2'S)-6 was methylated by using NaH and CH3I.  The desired 

202 stereochemistry was separated by silica gel column chromatography.  After the 

203 desilylation by n-Bu4NF, the resulting intermediate was converted to 15 by the same 

204 method described above.

205 The plant growth inhibitory activities of derivatives 13-15 against lettuce and 

206 Italian ryegrass were assessed (Table 1).  Even if the stereochemistry was 

207 (6S,2'R)-stereoisomer, the derivative 13 was inactive against both plants to suggest the 

208 important role of the ,-unsaturated carbonyl structure.  Michael acceptor properties 

209 of (R)-5,6-dihydro-2H-pyran-2-one was reported against cancer cell lines.41) We found 

210 this property in the plant growth inhibition.  The allelopathic ,-unsaturated carbonyl 

211 compounds have been reported,42,43) whose ,-unsaturated structures are assumed to 

212 act as Michael accepters.  The absence of the 2'-hydroxy group decreased the activity, 

213 the derivative 14 showing 9-fold less potent than (6S,2'R)-1 against Italian ryegrass 

214 roots.  Against lettuce roots, more than 16-fold less potent activity was observed.  As 

215 for the effect on the growth of shoots, the only less than around 2-fold activity was 

216 shown against lettuce and Italian ryegrass.  Furthermore, the activity of 2'-methoxy 

217 derivative 15 was 3-fold and more than 16-fold less potent than (6S,2'R)-1 against 

218 lettuce shoots and roots, respectively.  Against Italian ryegrass shoots and roots, 3-fold 

219 and 8-fold less potent activities were shown.  Even if the ,-unsaturated structure is 

220 presence, the activities of 14 and 15 decreased.  Both the ,-unsaturated carbonyl 
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221 structure and hydroxy group bonding to a chiral carbon affect the growth inhibition of 

222 roots than shoots.  Comparing with polyacetate compound, (+)-boronolide (5), the 

223 activity of (6S,2'R)-1 was dramatically increased.  This fact suggested that the presence 

224 of 2'-hydroxy group, chiral center, and phenyl group on the 6-alkyl chain was necessary 

225 for the higher activity.  These results suggest the molecular target of 

226 6-(2-hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2H-pyran-2-one 1 in the plant cells.  It 

227 seems that the 6-oxygen, 2'-hydroxy group, and phenyl group would react to an active 

228 site after binding of enone part to a binding site.  The (6S,2'R)-stereochemistry would 

229 be most advantageous for the reaction to an active site of Italian ryegrass.  In the 

230 germination inhibitory activity against Italian ryegrass, all derivatives 13-15 exhibited 

231 lower activity than (6S,2'R)-1 as shown in the growth test, demonstrating the significant 

232 role of ,-unsaturated carbonyl structure, 2'-hydroxy group bonding to the 2'-chiral 

233 center for the higher activity (Figure 3).  These facts also suggest the role of the 

234 binding site of enone part and active site of the chiral positions. 

235 In summary, we synthesized all stereoisomers of 

236 6-(2-hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2H-pyran-2-one with high optical purities 

237 (95%ee–more than 99% ee).  For the growth inhibition against lettuce, the 

238 6S-configuration was important.  As for the germination inhibition against lettuce, 

239 (6S,2'S)-1 was most potent.  Additionally, we clarified that (6S,2´R)-1 was most 

240 effective for the growth inhibitory and the seed germination inhibitory activities against 

241 Italian ryegrass.  The crucial roles of the ,-unsaturated carbonyl structure and the 

242 hydroxy group bonding to 2'-chiral carbon for these activities were revealed.  It was 
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243 suggested that the phytotoxicity of (6S,2´R)-1 is higher than that of phytotoxic natural 

244 lignans.44-47 The stronger stereospecific activity of 5,6-dihydro-2H-pyran-2-one than 

245 that of lignans was also shown.   

246
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435 Table 1. Plant growth inhibitory activity of all stereoisomers and derivatives 13-15 

436 (IC50: µM±SE, n = 3).  In the case of IC50 >1000 µM, % from control is shown. 

437 a-b: p<0.05, a-c: p<0.001

Compounds           Lettuce

    Shoots      Roots       

    Italian Ryegrass

   Shoots      Roots

   491 ± 75a    95.2 ± 7.0a

   363 ± 27ab   73.9 ± 3.8ab

   227 ± 20b    58.4 ± 4.2b

   303 ± 32b    62.3 ± 5.3b

>1000 (-7%)   >1000 (-27%)

   549 ± 11   >1000 (-18%)

>1000 (-34%)  >1000 (-27%)

  625 ± 63a    127 ± 10a

  741 ± 41a    114 ± 6.4a

  548 ± 96a    131 ± 8.8a

  260 ± 20b    43.2 ± 4.1c

>1000 (-12%)  >1000 (-33%)   

   695 ± 98     409 ± 43

   772 ± 12     377 ± 55

438

439

440

441
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442 Figure caption

443 Figure 1. All stereoisomers of 

444 6-(2-hydroxy-6-phenylhexyl)-5,6-dihydro-2H-pyran-2-one 1 and phytotoxic 

445 6-substituted 5,6-dihydro--pyrone 2–4.

446 Scheme 1. Syntheses of all stereoisomers of 

447 6-(2-hydroxy-6-phenylhexyl)-5,6-dihydro-2H-pyran-2-one 1

448 Figure 2. Chemical shift differences (S−R) of (S)- and 

449 (R)--methoxy--(trifluoromethyl)phenylacetic acid esters.

450 Figure 3. Seed germination ratio of lettuce and Italian ryegrass at 1000 M (% ± SE, n 

451 = 3).  Statistically significant differences are represented by different letters above the 

452 bars (on-way ANOVA, Tukey post-test, P<0.05).

453 Scheme 2. Syntheses of 6-substituted 5,6-dihydro--pyrone derivatives 13-15.

454
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481 Scheme 1
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492 Figure 2
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502 Figure 3

503 (A)Germination inhibitory activity of stereoisomers 1 against lettuce

504

control (6S,2′R)-1(6S,2′S)-1(6R,2′R)-1 (6R,2′S)-1

505 (B) Germination inhibitory activity of stereoisomers 1 against Italian ryegrass

506

control (6S,2′R)-1(6S,2′S)-1(6R,2′R)-1 (6R,2′S)-1
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507 (C) Germination inhibitory activity of derivatives 13-15 against Italian ryegrass

508

control 1514(6S,2′R)-1 13
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521 Scheme 2
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