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Abstract: A series of chiral oxazolidines derived from (1R, 2S)-cis-1-amino-2-indanol was found to be effective in 

promoting the asymmetric addition of diethylzinc to aldehydes. Among the ligands developed, it was found that ligand 1b 

in the presence of Ti(OiPr)4 yielded the highest enantioselectivities when it was applied in the catalytic asymmetric addi-

tion of diethylzinc to aldehydes (up to 91% ee).  
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INTRODUCTION 

Chiral sec-alcohols are important and versatile building 
blocks for many natural products and drugs [1-3]. One of the 
most useful methods for the asymmetric preparation of sec-
alcohols is the enantioselective addition of dialkylzinc rea-
gent to aldehydes in the presence of chiral ligands [4]. A 
wide variety of chiral catalysts, such as amino alcohols [5-
10], diamines [11-14], disulfonamides [15-19] and diols [20-
27] have been reported. Although so many chiral ligands 
have been used to catalyze the reaction with good to excel-
lent selectivity, it is still desirable to develop new chiral 
ligands which are greatly needed to probe how the chiral 
catalysts act on the reaction and how to design new types of 
chiral ligands more successfully. (1R, 2S)-cis-1-amino-2-
indanol has a special structure which has attracted much 
attention. However, among the ligands developed, only a 
few chiral ligands derived from (1R, 2S)-cis-1-amino-2-
indanol were found to be effective in promoting the 
asymmetric addition of diethylzinc to aldehydes [28]. In the 
long run, we aim to synthesize the ligands which are easily 
prepared in short pathway from readily available starting 
materials and to apply them in asymmetric transition proc-
esses [29-31]. With the interest in oxazolidine catalysts, we 
have designed and synthesized chiral ligands derived from 
(1R, 2S)-cis-1-amino-2-indanol and applied them in the 
asymmetric alkynylzinc addition reactions [29]. Herein, we 
reported the enantioselective addition of dialkylzinc reagents 
to aldehydes in the presence of those ligands. 

RESULTS AND DISCUSSION 

Ligands 1a-1g were synthesized via the reaction of (1R, 
2S)-cis-1-amino-2-indanol and the aldehydes in one step 
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with quantitative yields. With ligands 1a-1g (Fig. 1) in hand, 
we examined the use of each in the ethylation of benzalde-
hyde. As the results shown in Figure 2, we found that ligand 
1b gave the best result with 70% yield and 55% ee, respec-
tively. Although ligand 1g gave the highest ee, which may be 
due to the presence of the chelating group of CN of the 
ligand, it is not suitable to choose it as the ligand to catalyze 
the reaction because the product is hard to separate from the 
ligand. In this case, we chose ligand 1b for our further stud-
ies. 

Then the effects of the reaction conditions, such as the 
choice of solvents, the amount of ligand 1b, the reaction 
temperature and the amount of Ti(OiPr)4 were investigated. 
The results are shown in Table 1. At room temperature, the 
best ee was obtained in hexane with 10 mmol % ligand (Ta-
ble 1, entry 5). Decreasing the amount of the ligand 1b to 5 
mmol % gave only 52 % ee of the product (Table 1, entry 6) 
and increasing the amount of ligand to 30 mol % improved 
the selectivity only slightly (Table 1, entry 8). Lowering re-
action temperatures did not improve the enantioselectivities 
(Table 1, entries 9-10). Addition of appropriate Ti(OiPr)4 to 
the reaction provided a better effective catalytic system. 
When the reaction was carried out in hexane at room tem-
perature with a reagent ratio of Et2Zn– benzaldehyde–
ligand–Ti(OiPr)4 = 4 : 1 : 0.1 : 0.25, the highest ee of the 
product was obtained (Table 1, entry 12). 

Under the optimized conditions (Table 1, entry 12), the 
scope of the reactions catalyzed by 1b was investigated 
(Scheme 1). As shown by the results summarized in Table 2, 
moderate to good enantioselectivities were obtained for most 
of the active aromatic aldehydes. Substituents of the alde-
hydes have important effects on the enantioselectivity. Those 
containing electron-withdrawing groups at the para positions 
gave better ees than those containing electron-donating ones 
(Table 2, entries 1-9). Substituents at the ortho- position of 
aldehydes gave poorer ee than benzaldehyde (Table 2, en-
tries 6-8 and 10). The cyano derivative gave the highest ee 
(91%)  in this series which may be due to the presence of the  

1875-6255/12 $58.00+.00 © 2012 Bentham Science Publishers 



Enantioselective Addition of Diethylzinc to Aldehydes by Chiral Letters in Organic Chemistry, 2012, Vol. 9, No. 9      645 

HN

O

HN

O

HN

O

HN

O

HN

O

Me

F

CN

F
HN

O

Cl

1a 1b 1c 1d

1g1f1e

HN

O

NO2

 

Fig. (1). Ligands evaluated in this paper. 

 

Fig. (2). Screening of ligands. 

Table 1. Screening of the Reaction Conditions
a
. 

Entry Ligand (mol%) Ti(O
i
Pr)4/Ligand Solvent Yield (%)

b ee (%)
c 

1 10  - Et2O 52 24 

2 10  - DCM 16 29 

3 10  - THF 64 31 

4 10  - DMF 18 0 

5 10  - Hexane 60 58 

6 5  - Hexane 38 52 

7 20 - Hexane 51 55 

8 30 - Hexane 52 61 
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Table 1. contd…. 

Entry Ligand (mol%) Ti(O
i
Pr)4/Ligand Solvent Yield (%)

b ee (%)
c 

9
d 30 - Hexane 27 37 

 30 - Hexane 18 41 

11 10 0.125 Hexane 57 59 

12 10 0.25 Hexane 63 62 

13 10 1.0 Hexane 58 59 

14 10 2.0 Hexane 60 31 

15 10 3.0 Hexane 62 11 

16 10 4.0 Hexane 54 6 

17 10 5.0 Hexane 74 6 

18 10 6.0 Hexane 59 4 

a The reaction conditions: benzaldehyde (0.5 mmol), Et2Zn (2.0 ml), 1b (0.05 mmol), Solvent (1.0 ml), room temperature, 24 h. 
b Isolated yield. 
c The ee was determined by Chiral HPLC: Daicel CHIRALPAD OD-H column (IPA : hexane = 3 : 97), flow: 0.5 mL/min, 30 oC, Retention time: tmajor = 24.90 min, tminor = 21.35 min 
and the absolute configuration of the product is R [32]. 
d The reaction was carried out at 0 oC. 
e The reaction was carried out at -25 oC. 

 
chelating group of CN (Table 2, entry 5). Moderate ee (60%) 
can also be obtained with aliphatic aldehyde (Table 2, entry 
12).  

R

OHTi(OiPr)4/1b (10 mol%)

Et2Zn, DCM, r.t

R CHO

 

Scheme 1. Scopes of the reaction. 

In summary, ligand 1b which is readily prepared in one 
step from commercially available starting materials, showed 

good catalytic activities (63-95%) and enantioselectivities 
(up to 91%) in the asymmetric addition reactions of dieth-
ylzinc to various aldehydes in the presence of Ti(OiPr)4. The 
results of this paper would help to reveal the relationship 
between ligand structure and ee values of the products. Fur-
ther investigation on the applications of these ligands for 
other asymmetric reactions is underway. 

EXPERIMENTAL 

All manipulations were carried out under an argon at-
mosphere in dried and degassed solvents. Diethylzinc was 

Table 2. Scopes of the Reaction
a. 

Entry R Yield (%)b Ee (%)c 

1 4-Cl-C6H4 78 63  

2 4-Br-C6H4 75 67  

3 4-I-C6H4 71 73 

4 4-OMe-C6H4 72 17 

5 4-CN-C6H4 87 91 

6 2-Me-3-Me-C6H3 75 31 

7 2-OMe-3-OMe-C6H3 77 27 

8 2-OMe-C6H4 72 28 

9 3-F-C6H4 65 60 

10 C6H5 63 62 

11 2-naphthyl 95 67 

12 Ph-CH2-CH2 64 60 

a The reaction conditions: aldehydes (0.5 mmol), Et2Zn (2.0 ml), 1b (0.05 mmol), Solvent (1.0 ml), Ti(OiPr)4 (0.0125 mmol), room temperature, 24 h. 
b Isolated yield after column chromatography. 
c Determinated by Chiral HPLC: Daicel CHIRALPAD AD-H or OD-H; the absolute configuration of the product is R by comparing with the literatures or based on comparison of 
the elution order of HPLC analysis with those reported analogs [32, 33]. 
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purchased from Aldrich (St. Louis, MO). The reactions were 
monitored by thin layer chromatography (TLC). NMR spec-
tra were measured in CDCl3 on a Varian-Inova-400 NMR 
spectrometer with TMS as an internal reference. Optical ro-
tations were measured with a HORIBA SEPA-200 high sen-
sitivity polarimeter. Chiral HPLC analyses were carried out 
on an Agilent 1100 instrument. Enantiomeric excess (ee) 
determination was carried out using a chiral AD-H column 
(4.6 250 mm) or OD-H column (4.6 250 mm) (Solvent, 
hexane/isopropanol) at 25 oC. UV detection, 254 nm. MS 
were recorded on a Bruker Micro-TOF-QII spectrometer 
using the ESI method. Melting points were determined using 
a standard melting point apparatus (XT-5 Type) and uncor-
rected. 

General Experimental Procedure 

A solution of ligand 1b (0.05 mmol) was dissolved in dry 
hexane (2 ml) under Ar in a schlenk tube. Then diethylzinc 
(2 mL, 1 M in hexane, 2.0 mmol) and Ti(OiPr)4 (0.0125 
mmol) was added separately via a syringe. The reaction was 
stirred at room temperature for 2 h. Then the aldehyde (0.5 
mmol) was added and the reaction mixture was stirred for 24 
h. The reaction was quenched with 1 M HCl (5 mL). The 
mixture was extracted with ethyl acetate (EtOAc) (3  15 
ml). The organic layer was dried over Na2SO4 and concen-
trated under vacuum. The residue was purified by flash col-
umn chromatography (silica gel H, EtOAc: Petroleum ether 
= 1: 6) to give the pure product. 

SPECTRAL DATA 

Synthesis and the X-Ray crystal structure of ligand 1a 
have been reported by us [29]. The other ligands are new 
compounds. All of the chiral propanol derivatives are known 
compounds. 

Ligand 1a: White crystal. mp. 69–70 oC; [ ]D
25 = + 82.8 

(c 1.02, abs. EtOH); dr. 2.89:1 (determined by 1H NMR); 1H 
NMR (400 MHz, CDCl3)  8.58–7.07 (m, 9H), 5.12–5.07 
(m, 2H), 4.81 (d, J = 4.4 Hz, 1H), 3.24–3.17 (m, 2H), 2.53 
(s, 1H); IR (cm–1) : 3280, 1026, 895, 756; MS [ESI] [M+] 
found (expected): 237.1165 (237.1154).  

Ligand 1b: White crystal. mp. 95–97 oC; [ ]D
25 = + 127.5 

(c 0.51, acetone); dr. 2.44:1 (determined by 1H NMR); 1H 
NMR (400 MHz, CDCl3)  7.50–7.49 (m, 1H), 7.48–7.42 
(m, 2H), 7.31–7.27 (m, 2H), 7.25–7.24 (m, 1H), 7.03 (t, J = 
8.4 Hz, 2H), 5.10–5.08 (m, 2H), 4.95–4.92 (m, 1H), 3.32–
3.16 (m, 2H), 2.50 (1s, 1H); IR (cm–1) : 3300, 1604, 1509, 
1439, 1221; MS [ESI] [M+] found (expected): 278.0972 
(278.0957). 

Ligand 1c: White crystal. mp. 118–120 oC; [ ]D
25 = + 

89.4 (c 2.11, acetone); dr. 3.03:1 (determined by 1H NMR); 
1H NMR (400 MHz, CDCl3)  7.49 (t, J = 8.4 Hz, 1H), 7.41–
7.38 (m, 2H), 7.35–7.28 (m, 4H), 7.23–7.21 (m, 1H), 5.08–
5.07 (m, 2H), 4.93–4.90 (m, 1H), 3.29–3.20 (m, 2H), 2.51 (s, 
1H); IR (cm–1) : 3290, 1598, 1436, 1088, 1014; MS [ESI] 
[M+Na] found (expected): 294.0707 (294.0662). 

Ligand 1d: White solid. mp. 38–40 oC; [ ]D
25 = + 84.3 (c 

0.58, acetone); dr. 2.93:1 (determined by 1H NMR); 1H 
NMR (400 MHz, CDCl3)  7.49 (t, J = 7.8 Hz, 1H), 7.39–

7.29 (m, 3H), 7.24–7.12 (m, 3H), 7.03–6.95 (m, 1H), 5.11(s, 
1H), 5.08 (d, J = 5.6 Hz, 1H), 4.93–4.90 (m, 1H), 3.32–3.20 
(m, 2H), 2.53 (s, 1H); IR (cm–1) : 3293, 1689, 1592, 1456, 
1384, 1167, 1049; MS [ESI] [M+H] found (expected): 
256.2619 (256.1138). 

Ligand 1e: White crystal. mp. 78–80 oC; [ ]D
25 = + 69.5 

(c 1.83, acetone); dr. 3.0:1 (determined by 1H NMR); 1H 
NMR (400 MHz, CDCl3)  7.49 (t, J = 8.4 Hz, 1H), 7.40 (d, 
J = 8.0 Hz, 2H), 7.30–7.27 (m, 2H), 7.24–7.20 (m, 1H), 7.15 
(d, J = 8.0 Hz, 2H), 5.09–5.08 (m, 2H), 4.93–4.90 (m, 1H), 
3.27–3.24 (m, 2H), 2.40 (s, 1H), 2.33 (s, 3H); IR (cm–1) : 
3290, 2946, 2897, 1458, 1447, 1102, 1021; MS [ESI] [M+] 
found (expected): 252.1349 (252.1388). 

Ligand 1f: Yellow crystal. mp. 120–122 oC; [ ]D
25 = + 

91.3 (c 0.79, acetone); dr. 2.75 : 1 (determined by 1H NMR); 
1H NMR (400 MHz, CDCl3)  8.21 (d, J = 8.4 Hz, 2H), 7.66 
(d, J = 8.4 Hz, 2H), 7.50 (t, J = 8.4 Hz,1H), 7.33–7.29 (m, 
2H), 7.21–7.14 (m, 1H), 5.20 (s,1H), 5.10 (d, J = 5.6 Hz, 
1H), 4.98–4.96(m, 1H), 3.34–3.21 (m, 2H), 2.51 (s, 1H); MS 
[ESI] [M+H] found (expected): 283.1117 (283.1083). 

Ligand 1g: White solid. 119–121 oC; [ ]D
25 = + 91.3 (c 

0.71, acetone); dr. 2.78:1 (determined by 1H NMR); 1H 
NMR (400 MHz, CDCl3)  7.65 (d, J = 8.4 Hz, 2H), 7.60 (d, 
J = 8.4 Hz, 2H), 7.51–7.48 (m, 2H), 7.31–7.29 (m, 2H), 5.16 
(s, 1H), 5.08 (d, J = 5.6 Hz, 1H), 4.97–4.90 (m, 1H), 3.29–
3.20 (m, 2H), 2.49 (s, 1H); IR (cm–1) : 3273, 2229, 1554, 
1044; MS [ESI] [M+] found (expected): 263.1275 
(263.1184). 

1-(4-chlorophenyl)propan-1-ol [35-38] 

Colorless oil, 78% yield. 63% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 1 : 99). 
Flow: 1.0 mL/min, 25oC, Retention time: tmajor = 12.27 min, 
tminor = 14.13 min. H1 NMR (CDCl3, TMS):  7.29 (q, J = 8.4 
Hz, 4H), 4.58 (t, J = 6.4 Hz, 1H), 1.90 (s, 1H), 1.83–1.68 (m, 
2H), 0.90 (t, J = 7.2 Hz, 3H). 

1-(4-bromophenyl)propan-1-ol [35, 37] 

Colorless oil, 75% yield. 67% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 3 : 97). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 21.96 min, 
tminor = 24.13 min. H1 NMR (CDCl3, TMS):  7.37 (d, J = 8.4 
Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.46 (t, J = 6.4 Hz, 1H), 
2.00 (s, 1H), 1.73–1.58 (m, 2H), 0.81 (t, J = 7.6 Hz, 3H). 

1-(4-iodophenyl)propan-1-ol [32, 38]  

Colorless oil, 71% yield. 73% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 3 : 97). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 26.97 min. 
H1 NMR (CDCl3, TMS):  7.67 (d, J = 8.0 Hz, 2H), 7.09 (d, 
J = 8.0Hz, 2H), 4.57 (t, J = 6.4Hz, 1H), 1.80–1.68 (m, 3H), 
0.91 (t, J = 7.2 Hz, 3H). 

1-(4-methoxyphenyl)propan-1-ol [35, 36] 

Colorless oil, 72% yield. 17% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 5 : 95). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 21.87 min, 
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tminor = 20.64 min. H1 NMR (CDCl3, TMS):  7.18 (d, J = 8.4 
Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 4.47 (t, J = 6.4 Hz,1H), 
3.73 (s, 3H), 1.80–1.52 (m, 3H), 0.82 (t, J = 7.2 Hz, 3H). 

4-(1-hydroxypropyl)benzonitrile [37]
 

Colorless oil, 87% yield. 91% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 15 : 85). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 12.11 min, 
tminor = 15.62 min. H1 NMR (CDCl3, TMS):  7.63 (d, J = 8.0 
Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 4.69 (t, J = 6.4 Hz,1H), 
2.13 (s, 1H), 1.83–1.71 (m, 2H), 0.93 (t, J = 7.6 Hz,1H). 

1-(2,3-dimethylphenyl)propan-1-ol [32] 

Colorless oil, 75% yield. 31% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 1 : 99). 
Flow: 1.0 mL/min, 25oC, Retention time: tmajor = 13.63 min, 
tminor = 20.19 min. H1 NMR (CDCl3, TMS):  7.32 (d, J = 7.6 
Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.07(d, J = 7.6 Hz, 1H), 
4.91 (t, J = 6.4 Hz), 2.29 (s, 3H), 2.22 (s, 3H), 1.78–1.71(m, 
3H), 1.26(s, 3H), 0.98 (t, J = 7.2 Hz). 

1-(2,3-dimethoxyphenyl)propan-1-ol [32] 

Colorless oil, 77% yield. 27% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 5 : 95). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 26.09 min, 
tminor = 32.57 min. H1 NMR (CDCl3, TMS):  7.04 (t, J = 8.0 
Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 
4.84 (t, J = 6.8 Hz,1H), 3.86 (s, 3H), 3.85 (s, 3H), 2.41 (s, 
1H), 1.85–1.72 (m, 2H), 0.95 (t, J = 7.6 Hz, 3H). 

1-(2-methoxyphenyl)propan-1-ol [32]  

Colorless oil, 72% yield. 28% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 5 : 95). 
Flow: 0.5 ml/min, 25oC, Retention time: tmajor = 18.66 min, 
tminor = 20.63 min. 1H NMR ( 400 MHz, CDCl3)  7.21 (d, J 

= 7.6 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 6.87 (t, J = 7.4 Hz, 
1H), 6.79 (d, J = 8.0 Hz, 1H), 4.71 (t, J = 6.6 Hz, 1H), 3.76 
(s, 3H), 2.54 (s, 1H), 1.75–1.71 (m, 2H), 0.87 (t, J = 7.4 Hz, 
3H). 

1-(3-fluorophenyl)propan-1-ol [32, 39] 

Colorless oil, 65% yield. 60% ee determined by HPLC 
analysis (Chiralcel AD-H column, IPA: hexane = 3 : 97). 
Flow: 1.0 mL/min, 25oC, Retention time: tmajor = 11.69 min, 
tminor = 10.93 min. H1 NMR (CDCl3, TMS):  7.32–7.27 (m, 
1H), 7.10–7.05 (m, 2H), 6.95 (dt, J = 2.4 Hz, 8.5 Hz, 1H), 
4.60 (t, J = 6.4 Hz,1H), 1.91 (s, 1H), 1.81–1.72 (m, 2H), 0.92 
(t, J = 7.2 Hz, 3H). 

1-phenylpropan-1-ol [35-37]
 

Colorless oil, 63% yield. 62% ee determined by HPLC 
analysis (Chiralcel OD-H column, IPA: hexane = 3 : 97). 
Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 24.90 min, 
tminor = 21.35 min. H1 NMR (CDCl3, TMS):  7.35–7.27 (m, 
5H), 4.59 (t, J = 6.8 Hz,1H), 1.87 (s, 1H), 1.86–1.71 (m, 
2H), 0.91 (t, J = 7.2 Hz, 3H). 

1-(naphthalen-2-yl)propan-1-ol [35, 36] 

White solid, mp 33-35oC, 56% yield. 63% ee determined 
by HPLC analysis (Chiralcel OD-H column, IPA: hexane = 
10 : 90). Flow: 0.5 mL/min, 25oC, Retention time: tmajor = 
18.49 min, tminor = 21.55 min. H1 NMR (CDCl3, TMS):  

7.84–7.82 (m,3H ),7.67 (s,1H), 7.48–7.45 (m,3H), 4.76 (t, J 
= 6.4 Hz,1H), 1.99 (s,1H), 1.94–1.81 (m,2H), 0.94 (t, J = 7.6 
Hz, 3H). 

1-phenylpentan-3-ol [32, 39] 

Colorless oil, 64% yield. 60% ee determined by HPLC 
analysis (Chiralcel AD-H column, IPA: hexane = 3 : 97). 
Flow: 1.0 mL/min, 25oC, Retention time: tmajor = 11.69 min, 
tminor = 10.93 min. H1 NMR (CDCl3, TMS):  7.30–7.25 (m, 
2H), 7.21–7.16 (m, 3H), 3.55 (ddd, J = 12.2 Hz, 8.0 Hz, 4.5 
Hz, 1H), 2.80 (ddd, J = 14.1 Hz, 9.8 Hz, 5.8 Hz, 1H), 2.67 
(ddd, J = 13.8 Hz, 9.7 Hz, 6.7 Hz, 1H), 1.84–1.76 (m, 2H), 
1.56–1.41 (m, 3H), 0.94 (t, J = 7.2 Hz, 3H). 
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