LETTERS

Enantioselective Total Synthesis of (–)-Walsucochin B

Shiyan Xu,[†] Jixiang Gu,[†] Huilin Li,[†] Donghui Ma,[†] Xingang Xie,^{*,†} and Xuegong She^{*,†,‡}

[†]State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China

[‡]State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Supporting Information

ABSTRACT: The first enantioselective total synthesis of the structurally unique nortriterpenoid (-)-walsucochin B has been accomplished through the cationic polyolefin cyclization initiated by chiral epoxide. The core framework and the stereocenters in the natural product were all constructed in this step. A site-selective, late-stage free-radical halogenation and Seyferth–Gilbert homologation was adopted to install the acetylene moiety to synthesize the phenylacetylene. The absolute configuration of walsucochin B was confirmed through enantioselective total synthesis.

Walsucochins A and B (Figure 1, 1 and 2) are the first examples of C_{24} nortriterpenoids featuring a phenyl-

Figure 1. Structures of (+)-walsucochin A (1) and (-)-walsucochin B (2).

acetylene moiety fused onto a contracted five-membered ring. They were isolated from the leaves and twigs of *Walsura cochinchinensis* by Yue and co-workers in 2007.¹ The fused tetracyclic ABCD frameworks of the walsucochins not only include a common A/B ring but also a C/D ring system typical of the apotirucallane-type triterpenoids. The B/C ring is also trans-fused, which makes the whole molecules more torsionally inflexible and difficult to synthesize. Walsucochin B also has a 6/5/6/6 fused ring system with four continuous stereocenters (including two quaternary carbon centers) and a chiral hydroxyl group. The CD exciton chirality method was applied to determine the absolute configuration of walsucochin A, but the CD spectrum of walsucochin B did not provide convincing evidence that allowed assignment of its absolute configuration.

Biogenetically, walsucochin A and B coexist in the same plant and are probably produced via the same plausible biosynthetic pathway. The absolute configuration of walsucochin B is proposed to be the same as walsucochin A for biogenetic reasons. The two novel C_{24} nortriterpenoids exhibit significant cell protecting activity against H_2O_2 -induced PC12 cell damage. Due to the unique structure and interesting biological properties of these molecules, we investigated these synthesis by a strategy that uses a cationic polyolefin cyclization initiated by chiral epoxide. This has led to the first enantioselective total synthesis of (-)-walsucochin B (2).

Our retrosynthetic analysis of (-)-walsucochin B (2) is outlined in Scheme 1. It was envisaged that the target molecule 2 could be obtained from the tetracyclic precursor 3 via oxidation and deprotection. Aldehyde 4 would be converted to 3 through a Seyferth–Gilbert homologation reaction. Aldehyde 4 could be obtained by site-selective bromination and oxidation of the methyl group in the tetracyclic precursor 5. Considering the potential of cationic polyolefin cyclization in the assembly of polycyclic ring systems,² we envisaged that the unique 6/5/6/6 tetracyclic skeleton with a carbonyl group in the sixmembered C ring could be constructed by a cation-initiated polyolefin cyclization. To our knowledge, the application of cationic polyolefin cyclization to synthesize such a 6/5/6/6 tetracyclic skeleton has been seldom reported previously.³ The BCD rings would thus be produced in only one step in an efficient and concise way. The key polyolefin precursor epoxide 6 could be formed from compound 7, which could be prepared from 8 and 9 by an allylation reaction in a convergent pathway.

Our synthesis began with the stepwise preparation of dithiane 8 and allylic bromide 9 (Scheme 2). Bromination⁴ of the commercially available 2,3-dimethylanisole (10) afforded the aryl bromide 11 in 98% yield, which was subsequently treated with *n*-BuLi and reacted with ethylene oxide in THF at -78 °C to give the desired phenylethanol 12 in 82% yield.⁵

Received:February 20, 2014Published:March 26, 2014

Scheme 1. Retrosynthetic Analysis of (-)-Walsucochin B (2)

Oxidation of the primary hydroxy in **12** with Dess–Marin periodinane (DMP) followed by a Wittig olefination with methyl propionate ylide **13** delivered the $\alpha_{,\beta}$ -unsaturated methyl ester **14** with high stereoselectivity $(E/Z > 99:1)^6$ in 88% yield over two steps. The $\alpha_{,\beta}$ -unsaturated ester **14** was reduced with DIBAL-H, and the allylic alcohol **15** was obtained in high yield. Oxidation of the allylic alcohol **14** with DMP produced an unstable $\alpha_{,\beta}$ -unsaturated aldehyde, which was used in the next step without further purification. The aldehyde was immediately treated with 1,3-propanedithiol in the presence of BF₃·Et₂O at 0 °C, which led to dithiane **8**⁷ in 83% yield over two steps.

Protection of geraniol (16) with *p*-nitrobenzoyl chloride (p-NO₂BzCl) gave the ester 17, and a subsequent Shi asymmetric epoxidation⁸ using the sugar-derived catalyst 18⁹ afforded the epoxide 19 in 84% yield with 91% ee. Saponification of ester 19

gave (R)-6,7-epoxynerol (**20**), which was then converted to the desired allylic bromide **9** via the corresponding mesylate. This allylic bromide **9** was also used in the next step without further purification.

Having efficiently synthesized the necessary fragments, we turned our efforts toward the coupling of allylic bromide 9 with the organolithium reagent derived from treatment of dithiane 8 with *n*-BuLi and afforded the desired polyolefin epoxide 7 in 86% yield (Scheme 3).¹⁰ Subsequent dedithianation of 7 with I_2

and CaCO₃ at 0 °C gave the α , β -unsaturated ketone **21** in 82% yield, and the epoxy group survived. Asymmetric reduction of the ketone **21** with the *R*-CBS reagent afforded the alcohol **22** in 71% yield.¹¹ ¹H NMR analysis indicated that **22** was an inseparable diastereomeric mixture (*R*/*S* = 1:4). Alcohol **22** was protected with an acetyl group to give the desired key cyclization precursor **6** as an inseparable mixture (*R*/*S* = 1:4) in 98% yield.¹²

With the stage set for our key cascade reaction, a variety of Lewis acids were used to probe the cationic polyolefin cyclization.¹³ Pleasingly, the inseparable diastereomeric mixture of 6a and 6b could be converted to the corresponding core tetracyclic framework 5 as a single diastereomer via cationic polyolefin cyclization in the presence of Et₂AlCl in dichloromethane for 10 h at -78 °C in 62% yield (Scheme 4).¹⁴ The proposed cyclization proceeds via a favored chair conformation. Notably, the cascade cyclization of 6a gave the tetracycle skeleton as a single diastereomer, while the minor diastereomer 6b could not undergo the cascade cyclization to give the corresponding product. This cascade reaction formed three C-C bonds, the 5/6/6 tricycle, and four contiguous stereocenters (two of which are all-carbon quaternary centers) established in one step. The tetracyclic alcohol 5 was subsequently reacted with 4-bromobenzoyl chloride $(p-BrC_6H_4COCl)$ to give tetracyclic ester 23 in 93% yield. The structure and the relative configuration were confirmed by single-crystal X-ray diffraction analysis.15

Since we had constructed the core skeleton, only functional group interconversions remained to complete the synthesis of (-)-1 (Scheme 5). Alcohol 5 was protected with TBSOTf, and ether 24 was obtained in 96% yield.¹⁶ An initial attempt to directly transform 24 to aldehyde 4 by site-selective oxidation¹⁷ of the requisite methyl group on the aromatic ring (CuSO₄,

Scheme 4. Synthesis of the Core Tetracyclic Framework 5 via Cationic Polyolefin Cyclization

Scheme 5. Completion of the Synthesis of (-)-Walsucochin B (2)

K₂S₂O₄, CH₃CN/H₂O, reflux) proved unsuccessful, causing decomposition of the substrate. Therefore, a two-step protocol was examined that involved the site-selective radical bromination¹⁸ of the C(20) methyl in 24, with NBS and AIBN in CCl_4 at reflux, followed by oxidation with DMSO to give 4^{19} in 73% yield over two steps. Corey-Fuchs homologation²⁰ could not be applied to our substrate because it led to deprotection of the TBS group. Alternatively, K₂CO₃ and (MeO)₂P(O)CN₂C(O)-CH₃ 25 in MeOH converted aldehyde 4 to the phenylacetylene, and the acetyl group was also removed to give secondary alcohol 3 in 76% yield through a one-pot Seyferth-Gilbert homologation²¹/hydrolysis sequence. Finally, IBX oxidation of secondary alcohol 3 to the corresponding ketone and desilylation with tetrabutylammonium fluoride (TBAF) completed the first enantioselective total synthesis of (-)-walsucochin B (2). The spectroscopic data (¹H NMR, ¹³C NMR, and HRMS) of the synthetic material were in full agreement with those reported for the natural product. The sign of rotation for our synthetic 2 $[[\alpha]^{21.7}_{D} = -42.0$ (c 0.1, MeOH)] was consistent with that reported for natural walsucochin B [[α]^{24.5}_D = -45.0 (*c* 0.1, MeOH)]. Therefore, we could confirm the absolute configuration of walsucochin B.

In summary, we have accomplished the first enantioselective total synthesis of the (-)-walsucochin B (2) and confirmed its absolute configuration. A convergent pathway was used to arrive at the cyclization precursor. The cationic polyolefin cyclization constructed the core architecture **3** as a single diastereomer. Site-selective, late-stage free-radical halogenation and oxidation were utilized to accomplish oxidation of one of the two methyl groups on the aromatic ring. A Seyferth–Gilbert homologation installed the acetylene moiety to construct the phenylacetylene. Additional efforts to apply the strategy to (+)-walsucochin A (1) along with other related natural products are currently being pursued in our laboratory and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

Descriptions of experimental procedures for compounds and analytical characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: xiexg@lzu.edu.cn.

*E-mail: shexg@lzu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the NSFC (21125207, 21102062, and 21372103), the MOST (2010CB833203), PCSIRT (IRT1138), the FRFCU (lzujbky-2013-49 and lzujbky-2013-ct02), and Program 111.

REFERENCES

(1) Zhou, Z. W.; Yin, S.; Zhang, H. Y.; Fu, Y.; Yang, S. P.; Wang, X. N.; Wu, Y.; Tang, X. C.; Yue, J. M. Org. Lett. **2008**, 10, 465–468.

(2) For recent reviews, see: (a) Corey, E. J.; Kürti, L. Enantioselective Chemical Synthesis; Direct Book Publishing: http://directbookpublishing.com/, 2010; pp 276-311. (b) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730-4756.

(3) Meimetis, L. G.; Nodwell, M.; Yang, L.; Wang, X. X.; Wu, J.; Harwig, C.; Stenton, G. R.; Mackenzie, L. F.; MacRury, T.; Patrick, B. O.; Ming-Lum, A. C. J.; Ong, C. J.; Krystal, G.; Mui, A. L. F.; Andersen, R. J. *Eur. J. Org. Chem.* **2012**, 5195–5207.

(4) Carreiio, M. C.; Garcia Ruano, J. L.; Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem. **1995**, 60, 5328–6331.

(5) (a) Cesati, R. R., III; Armas, J. D.; Hoveyda, A. H. Org. Lett. 2002, 4, 395–398. (b) Gudla, V.; Balamurugan, R. J. Org. Chem. 2011, 76, 9919–9933.

(6) (a) Henrot, M.; Richter, M. E. A.; Maddaluno, J.; Hertweck, C.; De Paolis, M. Angew. Chem. 2012, 124, 9725–9729; Angew. Chem., Int. Ed. 2012, 51, 9587–9591. (b) Clinch, K.; Marquez, C. J.; Parrott, M.; Ramage, J. R. Tetrahedron 1989, 45, 239–258. (c) Eey, S. T. C.; Lear, M. J. Org. Lett. 2010, 12, 5510–5513.

(7) (a) Hanessian, S.; Focken, T.; Oza, R. Org. Lett. 2010, 12, 3172–3175. (b) Kim, M. B.; Shaw, J. T. Org. Lett. 2010, 12, 4030–4033.
(c) Hanessian, S.; Focken, T.; Oza, R. Tetrahedron 2011, 67, 9870–884.

(8) (a) Neighbors, J. D.; Mente, N. R.; Boss, K. D.; Zehnder, D. W.; Wiemer, D. F. *Tetrahedron Lett.* **2008**, *49*, 516–519. (b) Neighbors, J. D.; Topczewski, J. J.; Swenson, D. C.; Wiemer, D. F. *Tetrahedron Lett.* **2009**, *50*, 3881–3884.

(9) Zhao, M. X.; Shi, Y. A. J. Org. Chem. 2006, 71, 5377-5379.

(10) (a) Padwa, A.; Rodriguez, A.; Tohidi, M.; Fukunaga, T. J. Am. Chem. Soc. 1983, 105, 933–943. (b) Nishizawa, M.; Yamada, H.; Hayashi, Y. Tetrahedron Lett. 1986, 27, 3255–3256. (c) Nishizawa, M.; Yamada, H.; Hayashi, Y. J. Org. Chem. 1987, 52, 4878–4884.
(d) Snyder, S. A.; Treitler, D. S. Angew. Chem. 2009, 121, 8039– 8943; Angew. Chem., Int. Ed. 2009, 48, 7899–7903. (e) Mann, S. E.; Aliev, A. E.; Tizzard, G. J.; Sheppard, T. D. Organometallics 2011, 30, 1772–1775.

(11) (a) Lagasse, F.; Tsukamoto, M.; Welch, C. J.; Kagan, H. B. J. Am. Chem. Soc. 2003, 125, 7490-7491. (b) Smith, A. B.; Kim, D. S.; Xian, M. Org. Lett. 2007, 9, 3307-3309. (c) Yamaoka, M.; Fukatsu, Y.; Nakazaki, A.; Kobayashi, S. Tetrahedron Lett. 2009, 50, 3849-3852. (d) Takamura, H.; Kadonaga, Y.; Yamano, Y.; Han, C. G.; Kadota, I.; Uemura, D. Tetrahedron. 2009, 65, 7449-7456.

(12) Yamaoka, M.; Nakazaki, A.; Kobayashi, S. *Tetrahedron Lett.* 2009, 50, 6764–6768.

(13) (a) Morimoto, Y.; Iwai, T.; Kinoshita, T. J. Am. Chem. Soc. 2000, 122, 7124–7125. (b) Mente, N. R.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. 2008, 73, 7963–7970. (c) Topczewski, J. J.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. 2009, 74, 6965–6972.

(14) (a) Goldsmith, D. J.; Phillips, C. F. J. Am. Chem. Soc. 1969, 91, 5862-5870. (b) Corey, E. J.; Reid, J. G.; Myers, A. G.; Hahl, R. W. J. Am. Chem. Soc. 1987, 109, 918-919. (c) Ceruti, M.; Balliano, G.; Viola, F.; Grosa, G.; Rocco, F.; Cattel, L. J. Med. Chem. 1992, 35, 3050-3058. (d) Corey, E. J.; Wood, H. B. J. Am. Chem. Soc. 1996, 118, 11982-11983. (e) Corey, E. J.; Luo, G. L.; Lin, L. S. J. Am. Chem. Soc. 1997, 119, 9927-9928. (f) Corey, E. J.; Liu, K. J. Am. Chem. Soc. 1997, 119, 9929-9930. (g) Johnson, W. S.; Bartlett, W. R.; Czeskis, B. A.; Gautier, A.; Lee, C. H.; Lemoine, R.; Leopold, E. J.; Luedtke, G. R.; Bancroft, K. J. J. Org. Chem. 1999, 64, 9587-9595. (h) Huang, A. X.; Xiong, Z. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 9999-10003. (i) Bogenstätter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L. J. Am. Chem. Soc. 1999, 121, 12202-12207. (j) Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 1872-1877. (k) Radetich, B.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 2430-2431. (1) Behenna, D. C.; Corey, E. J. J. Am. Chem. Soc. 2008, 130, 6720-6721. (m) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2008, 130, 8865-8869. (n) Zhao, J. F.; Zhao, Y. J.; Loh, T. P. Chem. Commun. 2008, 1353-1355. (o) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2009, 131, 13928-13929. (p) Zhao, Y. J.; Tan, L. J. S.; Li, B.; Li, S. M.; Loh, T. P. Chem. Commun. 2009, 3738-3740. (q) Surendra, K.; Qiu, W. W.; Corey, E. J. J. Am. Chem. Soc. 2011, 133, 9724-9726. (r) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992-11994. (s) Surendra, K.; Rajendar, G.; Corey, E. J. J. Am. Chem. Soc. 2014, 136, 642-645.

(15) CCDC 969553 (23) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data request/cif.

(16) (a) Corey, E. J.; Cho, H.; Rucker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455–3458. (b) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953–5956. (c) Kocieński, P. J.; Love, C. J.; Richard, W.; Costello, G.; Roberts, D. A. Tetrahedron. 1989, 45, 3839–3848.
(d) Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O. J. Org. Chem. 1990, 55, 7–9.

(17) (a) Bhatt, M. V.; Perumal, P. T. Tetrahedron Lett. **1981**, 27, 2605–2608. (b) Hauser, F. M.; Ellenberger, S. R. Synthesis **1987**, 8, 723–724. (c) Pauloehrl, T.; Delaittre, G.; Winkler, V.; Welle, A.; Bruns, M.; Bçrner, H. G.; Greiner, A. M.; Bastmeyer, M.; Barner-Kowollik, C. Angew. Chem. **2012**, 124, 1096–1099; Angew. Chem., Int. Ed. **2012**, 51, 1071–1074.

(18) (a) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G.; Mathison, C. J. J. Am. Chem. Soc. 2005, 127, 8872–8888.
(b) Senthilmurugan, A.; Aidhen, I. S. Eur. J. Org. Chem. 2010, 555– 564.

(19) (a) Liau, B. B.; Milgram, B. C.; Shair, M. D. J. Am. Chem. Soc.
2012, 134, 16765-16772. (b) Gudla, V.; Balamurugan, R. J. Org. Chem. 2011, 76, 9919-9933.

(20) (a) Feldman, K. S. J. Org. Chem. 1997, 62, 4983–4990.
(b) Borst, M. L.; Bulo, R. E.; Gibney, D. J.; Alem, Y.; de Kanter, F. J.;

Ehlers, A. W.; Schakel, M.; Lutz, M.; Spek, A. L.; Lammertsa, K. J. Am. Chem. Soc. 2005, 127, 16985–16990. (c) Kadoya, N.; Murai, M.; Ishiguro, M.; Uenishi, J.; Uemura, M. Tetrahedron Lett. 2013, 54, 512–514.

(21) (a) Breiner, M. M.; Chavez, D. E.; Parrish, D. A. Synlett **1996**, 4, 519–521. (b) Sastraruji, K.; Sastraruji, T.; Ung, A. T.; Griffith, R.; Jatisatienr, A.; Pyne, S. G. *Tetrahedron* **2012**, *68*, 7103–7115.