Synlett

S. Sano et al.

Letter

Synthesis of Allenyl Esters by Horner–Wadsworth–Emmons Reactions of Ketenes Mediated by Isopropylmagnesium Bromide

Shigeki Sano* Tomoya Matsumoto Teppei Yano Munehisa Toguchi Michiyasu Nakao

Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan ssano@tokushima-u.ac.jp

Received: 03.06.2015 Accepted after revision: 17.06.2015 Published online: 10.08.2015 DOI: 10.1055/s-0034-1378803; Art ID: st-2015-u0413-I

Abstract The synthesis of conjugated allenyl esters (tri-substituted allenes) was achieved by magnesium(II)-mediated Horner–Wadsworth–Emmons reaction of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate with disubstituted ketenes. In addition, a novel access to α -fluorinated allenyl carboxamides (tetrasubstituted allenes) is presented.

Key words Horner–Wadsworth–Emmons reaction, allenes, ketenes, Grignard reagents, fluorine

Since the first synthesis of glutinic acid (allene-1,3-dicarboxylic acid) in 1887,1 allenes have attracted considerable attention as chemical curiosities.² Furthermore, allene derivatives have recently been established as versatile building blocks in organic synthesis, including asymmetric synthesis.³ Allenic structures are also found in natural products and pharmaceutical agents.⁴ We have already established a characteristic method of synthesizing conjugated allenyl esters from diethyl α -alkynyl- α -methoxy malonates through a cascade reaction,⁵ and suggested the possibility of developing novel inhibitors of cysteine protease based on several biomimetic reactions by using conjugated allenyl compounds and their precursors.⁶ On the other hand, the Horner-Wadsworth-Emmons (HWE) reaction of phosphonoacetates with aldehydes (or ketones) is one of the most useful methods of synthesizing α,β -unsaturated esters.⁷ There are, however, only a limited number of reports concerning the HWE reaction of ketene for the preparation of allenyl esters.^{8,9} We now describe a facile one-pot synthesis of allenyl esters (tri- or tetra-substituted allenes) by HWE reactions of ketenes using *i*-PrMgBr as base.

We first investigated HWE reactions of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (Still–Gennari reagent, 1)^{10,11} with a di-substituted ketene, which was prepared in

situ from 2-phenylpropionyl chloride (**5a**) and triethylamine, ^{9gj} as shown in Table 1. Phosphonoacetate **1** is a typical *Z*-selective HWE reagent due to the electron-withdrawing effect of the two trifluoroethoxy groups on its phosphorus atom. As expected, the desired conjugated allenyl ester **6a** (tri-substituted allene) was obtained by the HWE reaction of **1** in good to excellent yields by using bases such as *n*-BuLi, NaH, and *i*-PrMgBr (entries 1–3). Among these, *i*-

Entry	HWE reagent	Base	Yield (%)ª
1	1	n-BuLi	68 (6a)
2	1	NaH	5 (6a)
3	1	<i>i</i> -PrMgBr	98 (6a)
4	2	i-PrMgBr	96 (6a ')
5	3	i-PrMgBr	81 (6a)
6	4	<i>i</i> -PrMgBr	72 (6a)
^a Isolated vie	eld.		

S. Sano et al.

PrMgBr afforded allenyl ester **6a** in almost quantitative yield (98%).^{12,13} We have reported the use of stereoselective HWE reactions for the preparation of α ,β-unsaturated esters by using *i*-PrMgBr.¹⁴ Thus, HWE reagents **2–4** were investigated in the HWE reaction mediated by *i*-PrMgBr for the preparation of conjugated allenyl esters **6a** and **6a'** (entries 4–6). As a result, *Z*-selective HWE reagent **2** (Ando reagent)^{15,16} also furnished **6a'** in excellent yield (96%). It appears that increasing the *Z*-selectivity of HWE reagents in the reaction with aldehydes and ketones tends to increase the chemical yield of allenyl ester **6a** (entries 3, 5, and 6).

To explore the substrate scope of the HWE reaction, a range of ketenes generated in situ from the corresponding acyl chlorides **5a**-**h** were subjected to reaction with HWE reagent **1** as shown in Table 2. In all cases investigated, HWE reactions of di-substituted ketenes derived from acyl chlorides **5b**-**e** proceeded smoothly to afford 90–100% yields of the desired allenyl esters **6b**-**e** (tri-substituted allenes) (entries 1–4). On the other hand, the HWE reaction of mono-substituted ketenes derived from acyl chlorides **5f**-**h** resulted in the formation of allenyl esters **6f**-**h** (di-substituted allenes) in low yields (entries 5–7). It is interesting to note that a similar HWE reaction of ketenes derived from **5f**-**h** with α -methylated Still–Gennari reagent (**7**)¹⁷ afforded

Table 2 HWE Reactions of Phosphonoacetates 1 and 7 with Ketenes					
Prepared In Situ from Acid Chlorides 5a-h					
Et _a N (2 equiv)					

		-		
		R ¹	COCI	
		<i>i</i> -PrMgBr	 R ² 5a−h	
CF ₃ CH	1 ₂ 0 0	(1.1 equiv) (2	equiv)	R ¹ R
CF₃C⊦	I ₂ O R CO ₂ Me	THF	THF	R ² CO ₂ Me
	1 R = H 7 R = Me	0 °C, 1 h	0 °C, 1 h	6b–hR=H 8a,f–hR=Me
Entry	HWE reagent	R ¹	R ²	Yield (%) ^a
1	1 (R = H)	Ph	Et	100 (6b)
2	1 (R = H)	Ph	Ph	100 (6c)
3	1 (R = H)	$4-O_2NC_6H_4$	Me	90 (6d)
4	1 (R = H)	4-MeOC ₆ H ₄	Me	97 (6e)
5	1 (R = H)	Ph	Н	29 (6f)
6	1 (R = H)	Bn	Н	38 (6g)
7	1 (R = H)	<i>n</i> -C ₆ H ₁₃	Н	22 (6h)
8	7 (R = Me)	Ph	Н	40 (8f)
9	7 (R = Me)	Bn	Н	69 (8g)
10	7 (R = Me)	<i>n</i> -C ₆ H ₁₃	Н	65 (8h)
11 ^b	7 (R = Me)	Ph	Me	89 (8a)
	1 * 1 1			

^a Isolated yield.

^b Reaction mixture was stirred for 3 h.

the corresponding allenyl esters **8f-h** (tri-substituted allenes) in higher yields than those of **6f-h** (entries 8–10). The HWE reaction of **7** with phenyl methyl ketene derived from acyl chloride **5a** furnished allenyl ester **8a** (tetra-substituted allene) in 89% yield (entry 11).

We next investigated the use of ethyl 2-fluoro-2-diethylphosphonoacetate (**9**)^{18,19} in place of **1** as the HWE reagent to obtain a fluorinated allenyl ester. There are very few examples of the synthesis of α -fluorinated allenyl esters.²⁰ As a result, the desired product **12a** (tetra-substituted allene) was obtained in moderate yield (Table 3, entry 1). However, the HWE reaction of phosphonoacetic acid **10** using 2.1 equivalent of *i*-PrMgBr did not proceed (entry 2). Nevertheless, the HWE reaction of Weinreb amide **11**²¹ with di-substituted ketenes derived from acyl chlorides **5ac** afforded fluorinated allenyl carboxamides **14a**-**c** (tetrasubstituted allenes) in 71–100% yields (entries 3–8).²² Unfortunately, poor yields of fluorinated allenyl carboxamides

Table 3 HWE Reactions of α -Fluorophosphonoacetates **9–11** with Ketenes Prepared In Situ from Acid Chlorides **5a–c** and **5f–h**

9: X = OEt, 10: X = OH, 11: X = N(OMe)Me

Entry	HWE reagent	R ¹	R ²	Yield (%)ª
1	9 (X = OEt)	Ph	Me	ca. 57 (12a) ^b
2 ^c	10 (X = OH)	Ph	Me	0 (13a)
3	11 [X = N(OMe)Me]	Ph	Me	71 (14a)
4 ^d	11 [X = N(OMe)Me]	Ph	Me	90 (14a)
5 ^e	11 [X = N(OMe)Me]	Ph	Me	100 (14a)
6	11 [X = N(OMe)Me]	Ph	Et	71 (14b)
7 ^e	11 [X = N(OMe)Me]	Ph	Et	94 (14b)
8	11 [X = N(OMe)Me]	Ph	Ph	92 (14c)
9	11 [X = N(OMe)Me]	Ph	Н	0 (14f) ^f
10	11 [X = N(OMe)Me]	Bn	Н	0 (14g) ^g
11 ^e	11 [X = N(OMe)Me]	Bn	Н	ca. 14 (14g) ^{b,h}
12	11 [X = N(OMe)Me]	<i>n</i> -C ₆ H ₁₃	Н	0 (14h) ⁱ

^a Isolated yield.

^b Containing small amounts of impurities.

i-PrMgBr (2.1 equiv) was used.

^d Reaction mixture was stirred for 3 h.

Reaction mixture was stirred for 18 h.

^f HWE reagent **11** was recovered (ca. 54%).

⁹ HWE reagent **11** was recovered (ca. 40%). ^h HWE reagent **11** was recovered (ca. 20%).

ⁱ HWE reagent **11** was not recovered.

S. Sano et al.

14f–**h** (tri-substituted allenes) were obtained in the HWE reaction of Weinreb amide **11** with mono-substituted ketenes derived from acyl chlorides **5f**–**h** (entries 9–12).

In conclusion, we have developed a facile method of synthesizing conjugated allenyl esters **6** and **8** through the magnesium(II)-mediated HWE reaction of **1** and **7** with disubstituted ketenes, which were prepared in situ from the corresponding acid chlorides. For the first time, α -fluorinated allenyl carboxamides **14** have also been prepared by using the magnesium(II)-mediated HWE reaction of **11** with di-substituted ketenes. We believe that the proposed method of synthesizing conjugated allenyl carboxylic acid derivatives is a valuable addition to the chemistry of allenes.

Acknowledgment

This work was supported in part by a JSPS KAKENHI Grant (Number 2359007) and by a Grant for the Regional Innovation Cluster Program (Global Type) promoted by MEXT.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378803.

References

- (a) Burton, B. S.; von Pechmann, H. Ber. Dtsch. Chem. Ges. 1887, 20, 145. (b) Jones, E. R. H.; Mansfield, G. H.; Whiting, M. C. J. Chem. Soc. 1954, 3208.
- (2) (a) Staudinger, H.; Ruzicka, L. *Helv. Chim. Acta* **1924**, *7*, 177.
 (b) Maitland, P.; Mills, W. H. *Nature* **1935**, *135*, 994. (c) Taylor, D. R. *Chem. Rev.* **1967**, *67*, 317.
- (3) (a) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 795.
 (b) Kim, H.; Williams, L. J. Curr. Opin. Drug Discovery Dev. 2008, 11, 870. (c) Pinho e Melo, T. M. V. D. Monatsh. Chem. 2011, 142, 681. (d) Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384. (e) Yu, S.; Ma, S. Angew. Chem. Int. Ed. 2012, 51, 3074. (f) Alcaide, B.; Almendros, P. Chem. Soc. Rev. 2014, 43, 2886.
- (4) Hoffmann-Röder, A.; Krause, N. Angew. Chem. Int. Ed. 2004, 43, 1196.
- (5) (a) Nagao, Y.; Kim, K.; Sano, S.; Kakegawa, H.; Lee, W. S.; Shimizu, H.; Shiro, M.; Katunuma, N. *Tetrahedron Lett.* **1996**, *37*, 861. (b) Sano, S.; Shimizu, H.; Nagao, Y. *Tetrahedron Lett.* **2005**, *46*, 2883. (c) Sano, S.; Shimizu, H.; Kim, K.; Lee, W. S.; Shiro, M.; Nagao, Y. *Chem. Pharm. Bull.* **2006**, *54*, 196.
- (6) (a) Nagao, Y.; Sano, S.; Morimoto, K.; Kakegawa, H.; Takatani, T.; Shiro, M.; Katunuma, N. *Tetrahedron Lett.* **2000**, *41*, 2419.
 (b) Takeuchi, Y.; Fujiwara, T.; Shimone, Y.; Miyataka, H.; Satoh, T.; Kirk, K. L.; Hori, H. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 6202.
- (7) (a) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2499. (b) Wadsworth, W. S. Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (d) Bisceglia, J. A.; Orelli, L. R. Curr. Org. Chem. 2012, 16, 2206. (e) Al Jasem, Y.; El-Esawi, R.; Thiemann, T. J. Chem. Res. 2014, 38, 453.
- (8) For examples of HWE reactions, see: (a) Runge, W.; Kresze, G. Justus Liebigs Ann. Chem. 1975, 1361. (b) Tanaka, K.; Otsubo, K.; Fuji, K. Tetrahedron Lett. 1996, 37, 3735. (c) Yamazaki, J.;

Letter

Watanabe, T.; Tanaka, K. *Tetrahedron: Asymmetry* **2001**, *12*, 669. (d) Nagaoka, Y.; Inoue, H.; Tomioka, K. *Phosphorus, Sulfur Silicon Relat. Elem.* **2002**, *177*, 1843. (e) Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. *Tetrahedron* **2002**, *58*, 83. (f) Huang, X.; Xiong, Z.-C. *Chem. Commun.* **2003**, 1714. (g) Plunkett, S.; Dahms, K.; Senge, M. O. *Eur. J. Org. Chem.* **2013**, 1566.

- (9) For examples of Wittig reactions, see: (a) Kresze, G.; Runge, W.; Ruch, E. Justus Liebigs Ann. Chem. 1972, 756, 112. (b) Bestmann, H.-J.; Hartung, H. Chem. Ber. 1966, 99, 1198. (c) Aksnes, G.; Frøyen, P. Acta Chem. Scand. 1968, 22, 2347. (d) Lang, R. W.; Hansen, H.-J. Helv. Chim. Acta 1979, 62, 1025. (e) Lang, R. W.; Hansen, H.-J. Helv. Chim. Acta 1980, 63, 438. (f) Himbert, G.; Fink, D. J. Prakt. Chem. 1997, 339, 233. (g) Pinho e Melo, T. M. V. D.; Cardoso, A. L.; d'A. Rocha Gonsalves, A. M.; Costa Pessoa, J.; Paixão, J. A.; Beja, A. M. Eur. J. Org. Chem. 2004, 4830. (h) Li, C.-Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980. (i) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, J.-C.; Xu, Z.-H.; Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc. 2007, 129, 1494. (j) Li, C.-Y.; Zhu, B.-H.; Ye, L.-W.; Jing, Q.; Sun, X.-L.; Tang, Y.; Shen, Q. Tetrahedron 2007, 63, 8046. (k) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Chem. Eur. J. 2010, 16, 7376.
- (10) DeHoff, B.; Roy, M.-N. Methyl bis(2,2,2-trifluoroethoxy)phosphinylacetate, In e-EROS Encyclopedia of Reagents for Organic Synthesis; Wiley: New York, 2012.
- (11) (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
 (b) Messik, F.; Oberthür, M. Synthesis 2013, 45, 167.
- (12) **Typical Procedure:** To a solution of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (**1**; 40 μ L, 0.188 mmol) in anhydrous THF (1.9 mL) was added *i*-PrMgBr (0.77 mol/L in THF, 269 μ L, 0.207 mmol), and the solution was stirred at 0 °C for 1 h under argon. After adding triethylamine (53 μ L, 0.377 mmol) and 2phenylpropionyl chloride (**5a**; 56 μ L, 0.377 mmol), the mixture was stirred at 0 °C for 1 h under argon. The reaction mixture was treated with sat. aq NH₄Cl (2 mL) and then extracted with CHCl₃ (3 × 20 mL). The extract was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The oily residue was purified by silica gel column chromatography (*n*-hexane–EtOAc, 12.5:1 to 11:1) to afford allenyl ester **6a** (34.7 mg, 98%).
- (13) Data for **Ga**: Pale-yellow oil; IR (neat): 2951, 1948, 1722, 1495, 1437, 1392, 1263, 1209, 1151 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 2.21 (d, *J* = 2.9 Hz, 3 H), 3.75 (s, 3 H), 5.90 (q, *J* = 2.9 Hz, 1 H), 7.27–7.28 (m, 1 H), 7.33–7.40 (m, 4 H). ¹³C NMR (125 MHz, CDCl₃): δ = 16.2, 52.1, 89.5, 105.5, 126.2, 127.9, 128.6, 134.3, 166.1, 214.0. MS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₂H₁₂NaO₂: 211.0735; found: 211.0732. Anal. Calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43. Found: C, 76.27; H, 6.54.
- (14) (a) Sano, S.; Ando, T.; Yokoyama, K.; Nagao, Y. Synlett 1998, 777.
 (b) Sano, S.; Teranishi, R.; Nagao, Y. Tetrahedron Lett. 2002, 43, 9183. (c) Sano, S.; Takemoto, Y.; Nagao, Y. ARKIVOC 2003, (viii), 93. (d) Sano, S.; Takemoto, Y.; Nagao, Y. Tetrahedron Lett. 2003, 44, 8853. (e) Sano, S.; Matsumoto, T.; Nanataki, H.; Tempaku, S.; Nakao, M. Tetrahedron Lett. 2014, 55, 6248.
- (15) Roy, M.-N. Ethyl 2-(diphenoxyphosphinyl)acetate, In e-EROS Encyclopedia of Reagents for Organic Synthesis; Wiley: New York, 2013.
- (16) (a) Ando, K. *Tetrahedron Lett.* **1995**, *36*, 4105. (b) Ando, K. *J. Org. Chem.* **1997**, *62*, 1934. (c) Ando, K. *J. Org. Chem.* **1998**, *63*, 8411. (d) Ando, K. *J. Org. Chem.* **1999**, *64*, 8406. (e) Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. *J. Org. Chem.* **2000**, *65*, 4745. (f) Ando, K. *Synlett* **2001**, 1272.
- (17) (a) Sano, S.; Takehisa, T.; Ogawa, S.; Yokoyama, K.; Nagao, Y. *Chem. Pharm. Bull.* **2002**, *50*, 1300. (b) Sano, S.; Abe, S.; Azetsu, T.; Nakao, M.; Shiro, M.; Nagao, Y. *Lett. Org. Chem.* **2006**, *3*, 798.

S. Sano et al.

- (18) Jiang, J. Triethyl 2-fluoro-2-phosphonoacetate, In e-EROS Encyclopedia of Reagents for Organic Synthesis; Wiley: New York, **2006**.
- (19) (a) Machleidt, H.; Wessendorf, R. Justus Liebigs Ann. Chem. 1964, 674, 1. (b) Burton, D. J.; Yang, Z.-Y.; Qui, W. Chem. Rev. 1996, 96, 1641.
- (20) Xu, B.; Hammond, G. B. Angew. Chem. Int. Ed. 2008, 47, 689.
- (21) Boumendjel, A.; Nuzillard, J.-M.; Massiot, G. Tetrahedron Lett. **1999**, 40, 9033.
- (22) Data for 14a: Yield: 37.6 mg (quant.); yellow oil. IR (neat): 2937, 1954, 1652, 1462, 1444, 1417, 1386, 1155 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 2.35 (d, ⁵J_{C-F} = 8.3 Hz, 3 H), 3.26 (s, 3 H), 3.51 (s,

3 H), 7.31–7.40 (m, 3 H), 7.49–7.53 (m, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ = 18.3, 33.7, 61.6, 118.9 (d, ³J_{C-F} = 12.0 Hz), 126.8 (d, ⁵J_{C-F} = 2.7 Hz), 128.7, 129.1 (d, ⁶J_{C-F} = 1.7 Hz), 129.6 (d, ¹J_{C-F} = 234.8 Hz), 134.4 (d, ⁴J_{C-F} = 1.7 Hz), 162.0 (d, ²J_{C-F} = 40.1 Hz), 193.2 (d, ²J_{C-F} = 18.7 Hz). MS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₃H₁₄FNNaO₂: 258.0906; found: 258.0896. Anal. Calcd for C₁₃H₁₄FNO₂: C, 66.37; H, 6.00; N, 5.95. Found: C, 66.08; H, 6.02; N, 5.89.