

Article

Subscriber access provided by KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI (UniNet)

# Condition-determined multicomponent reactions of 1,3-dicarbonyl compounds and formaldehyde

Changhui Liu, Meng Shen, Bingbing Lai, Amir Taheri, and Yanlong Gu

ACS Comb. Sci., Just Accepted Manuscript • DOI: 10.1021/co5001019 • Publication Date (Web): 15 Oct 2014

Downloaded from http://pubs.acs.org on October 19, 2014

## Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



ACS Combinatorial Science is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

## For Table of Contents Use Only

# Condition-determined multicomponent reactions of 1,3-dicarbonyl compounds and formaldehyde

Changhui Liu, Meng Shen, Bingbing Lai, Amir Taheri, and Yanlong Gu\*

## **Graphic Abstract**



## Condition-determined multicomponent reactions of

## 1,3-dicarbonyl compounds and formaldehyde

Changhui Liu,<sup>a,c</sup> Meng Shen,<sup>a,c</sup> Bingbing Lai,<sup>a</sup> Amir Taheri<sup>a</sup> and Yanlong Gu<sup>a,b\*</sup>

<sup>a</sup> Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China. Phone: (0)86-(0)27-87 54 37 32, Fax: (0)86-(0)27-87 54 45 32, E-mail: klgyl@hust.edu.cn

<sup>b</sup> State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou, 730000 (P.R. China)

<sup>c</sup> Changhui Liu and Meng Shen contributed equally to this work.

Abstract: By means of changing the reaction parameters, different products could be generated selectively starting from the same combination of substrates involving 1,3-dicarbonyl compound and formaldehyde. This strategy enabled us to access diverse molecules without changing both starting material and reactor, maximizing thus the multi-functionality of the synthetic system. For example, starting from 1,3-dicarbonyl compound, formaldehyde and 1,1-diphenylethylene, two kinds of products could be selectively formed including (i) a densely substituted dihydropyran, and (ii) an C2-cinnamyl substituted 1,3-dicarbonyl compound. A one-pot three-component reaction of phenacylpyridinium salt, 1,3-dicarbonyl compound and formaldehyde was also investigated, which produced either 2,4-diacyl-2,3-dihydrofuran or 2,4-diacyl-2-hydroxylmethyl-2,3-dihydrofuran in good to excellent yield.

**Keywords**: Multicomponent reactions, diversity-oriented synthesis, condition-determined MCR, combinatorial chemistry

## Introduction

Multicomponent reactions (MCRs) are convergent reactions of three or more starting materials, which have emerged as an efficient method for rapidly generating complex molecules with diverse functional substituents.<sup>1</sup> MCRs have often been used to establish expedient and eco-friendly chemical methods for the discovery of new chemical entities required by pharmaceutical and agrochemical industries.<sup>2</sup> The most of MCRs were established by a reaction sequence involving (i) generation of an active intermediate through a reaction of the first two or three components, and (ii) trapping of the intermediate with the same or another component. The generated intermediates generally have a very high reactivity, which enabled us to construct new molecular scaffolds sometimes. Therefore, most of the research interests are focusing on either the exploration of a suitable trapping reagent or derivatization of the intermediate with the hope of establishing a new reaction sequence.<sup>3</sup> However, there is a perceived challenge in the face of the ever increasing demand for novel medicinally active compounds. This forced us to think how to maximize the efficiency of establishing molecule libraries for biological screening.

Control of the reaction selectivity, for example, chemo-, stereo-, and region-selectivity, is one of the most important objectives of organic chemistry.<sup>4</sup> Many different reaction parameters such as temperature, pressure, solvent, as well as catalyst type, and other factors can be utilized to modulate the selectivity of organic reactions. Because three or more substrates were involved in a MCR, it is conceivable that by carefully manipulating the reaction parameters, it might be possible to establish two or more MCRs with the same combination of substrates. This strategy can increase the number of MCRs without increasing the number of substrates. Previously, a few reports have disclosed some individual examples on the synthesis of different products from the same substrates.<sup>5</sup> It offered an effective means to us for enriching the diversity of the MCR product libraries, which in turn facilitates biological screening.

We are attracted by the unique advantages of this strategy and started a research

program on this topic some time ago. To utilize this strategy, we have to find a suitable intermediate, which not only has a high reactivity but also is amenable to diversified reaction modes, allowing us to trap it in different reaction pathways. Recently, Knoevenagel reaction of 1,3-dicarbonyl compound and formaldehyde has been used to create MCRs.<sup>6</sup> The generated 2-methylene-1,3-dicarbonyl intermediate not only acts as a *oxo*-diene in Diels-Alder reaction but also serves as Michael acceptor in conjunction with some Michael donors, favoring thus construction of many MCRs.<sup>7</sup> We are attracted by the multifunctionality of this intermediate, and started our MCR investigation with a combination of 1,3-dicarbonyl compound and formaldehyde.

## **Results and discussion**

Initially, a three-component reaction of 1,1-diphenylethylene 1a, acetoacetone 2a and formaldehyde was investigated. As shown in Scheme 1, when formalin was used as HCHO source, a dihydropyran 3a was obtained in 75 % of yield after 5 hours of reaction at 80 °C in acetonitrile. The reaction is very clean, and the unreacted 1,1-diphenylethylene can be fully recovered. Interestingly, when paraformaldehyde was used as the HCHO source, a different compound, 4a was obtained in 80 % of yield in the presence of toluenesulfonic acid (PTSA) at 60 °C. These results imply that the source of HCHO and the reaction conditions played key role in controlling the reaction selectivity.



Scheme 1. Three-component reaction of 1a, 2a and formaldehyde.

These results gave us also impetus to investigate the reaction mechanism. It is well

Page 5 of 22

#### **ACS Combinatorial Science**

known that **3a** was formed through a tandem Knoevenagel/oxo Diels-Alder reaction pathway, in which **1a** acted as a dienophile to trap the generated 3-methylene-2,4-pantadione (intermediate I, Figure 1).<sup>8</sup> In order to shed light on the mechanism for the formation of 4a, several control experiments were then carried out. Firstly, although the Prins cyclization product of **1a** and paraformaldehyde, **5a** could be formed with the aid of PTSA catalyst, it cannot be converted into 4a under the reaction conditions (Scheme 2). Because 3a could be also detected during the reaction of forming 4a (Figure 2), we therefore treated 3a with PTSA in acetonitrile. After 5 hours of reaction at 80 °C, 4a was formed in 80 % of yield. However, this result is insufficient to lead us to draw a conclusion for the formation of 4a because kinetic investigation of the reaction between 1a, 2a and paraformaldehyde revealed that no significant accumulation of 3a was observed during the reaction (Figure S2). In addition, monitoring of the reaction progress by means of <sup>1</sup>H NMR manifested that (i) intermediate I was generated quickly in the first 30 minutes of the reaction; then, it's concentration gradually decreased; and (ii) the formation of 4a occurred in the beginning of the reaction, and it lasted all 12 hours as the concentration of 4a increased gradually during the reaction. All these results led us to deduce that 4a might be formed through a direct Michael reaction of the intermediate I and 1a. Because the isolation of pure intermediate I is not possible, methyl vinyl ketone 6a was therefore used as a Michael acceptor, which has a relatively low reactivity than the intermediate I. As shown in Scheme 2, the expected product 7a was obtained in 80 % of yield. This result implies that 4a might be formed through a tandem Knoevenagel/Michael reaction pathway. Incidentally, as Knoevenagel/oxo Diels-Alder reaction is a non-catalytic reaction sequence, formation of 3a is therefore inevitable during the synthesis of **4a**. A Knoevenagel/oxo Diels-Alder/ring-opening reaction sequence may be also operative for the formation of 4a (Figure 1). The ring-opening reaction pathway is able to convert **3a** into **4a**, ensuring thus a good selectivity of **4a**.



Scheme 2. Control experiments for understanding the mechanism of 4a formation.



Figure 1. Proposed mechanism for the formations of 3a and 4a.



**Figure 2**. Progress of a PTSA-catalyzed reaction of **1a**, **2a** and paraformaldehyde monitored by <sup>1</sup>H NMR.

The PTSA/acetonitrile system was successfully used to establish the three-component reactions of a wide range of 1,3-dicarbonyl compounds, (HCHO)<sub>n</sub>, and 1,1-diarylethylenes, and the results are shown in Figure 3. Many linear β-ketoesters or 1,3-diketones reacted readily with **1a** and paraformaldehyde, affording the corresponding products in generally excellent yields. Cyclopropyl and methoxy groups are tolerable in this system (4g). A secondary  $\beta$ -ketoamide can also be used uneventfully (4i). Some other 1,1-diphenylethylene derivatives could also be used. Particularly, a diarylethylene with thienyl group participated readily in this reaction as well (41). It is significant to note that 1a could be replaced by 1,1-diphenylethanol, which is less-expensive as compared with 1a, in this reaction. This offered a cost-effective alternative route to access 4a-type product (Scheme 3). It should be noted also that, although the same products in **Figure 3** could be synthesized by many reported methods, most of which involve the use of harsh conditions, expensive reagents and suffer from the lack of simplicity and also the yields and selectivities reported are sometimes far from satisfactory.<sup>9</sup> Therefore, the present three-component reaction opened a simple and effective route to access these compounds. However, attempts to use normal 1-arylethylenes, such as

4-methylstyrene and  $\alpha$ -methylstyrene, as substrates in PTSA/acetonitrile system were in vain. The reactions suffered from the lack of selectivity as messy mixtures were formed in these cases. By the same token, formaldehyde cannot be replaced by other aliphatic or aromatic aldehyde in this reaction.



**Figure 3**. PTSA-catalyzed three-component reaction of 1,1-diarylethylene, 1,3-dicarbonyl compound and  $(HCHO)_n$ .



Scheme 3. PTSA-catalyzed three-component reaction of 1,1-diphenylethanol, 2a and paraformaldehyde.

The above-mentioned results demonstrated that the development of condition-determined MCRs based on a combination of 1,3-dicarbonyl compound and formaldehyde is indeed possible. Encouraged by these results, we then investigated condensation the reaction of N-phenacylpyridinium bromide 7a, 1,3-cyclohexanedione 2b and formaldehyde, which can hopefully produce a 2,4-diacyl-2,3-dihydrofuran derivative, 8a through a cascade Knoevenagel / [4+1] annulation reaction under appropriate conditions.<sup>10</sup> The reaction was also triggered by a Knoevenagel condensation of 2b with formaldehyde, which generated a 2-methylene-1,3-cyclohexanedione intermediate (II) that can be trapped by phenacylpyridinium salt through [4+1] annulation reaction (**Figure 4**). As shown in Table 1, a product was indeed formed in the presence of an inorganic base,  $K_2$ HPO<sub>4</sub>'3H<sub>2</sub>O, in DMSO, however, it was the hydroxymethylation product of the expected one, 8a'. Because compound 8a was also detected at the end of the reaction, we therefore deduced that **8a'** might be formed through a cascade Knoevenagel / [4+1]annulation / hydroxymethylation reaction (Figure 4). Indeed, treatment of 8a in DMSO in the presence of paraformaldehyde resulted in an evident formation of 8a' (Scheme 4). To our great delight, the quasi four-component reaction was found to be very efficient, and the yield of 8a' reached 83 % after 4 hours of reaction at 80 °C (entry 1). This observation encouraged us to scrutinize the effects of reaction parameters including base, solvent and reaction temperature. No or only trace amount of product was obtained with inorganic bases, such as K<sub>3</sub>PO<sub>4</sub>3H<sub>2</sub>O and K<sub>2</sub>CO<sub>3</sub> (entries 2 and 3). Organic bases like  $NEt_3$  and DBU were also ineffective for this reaction (entries 4 and 5). Among different solvents tested in the reaction, DMSO clearly stood out, producing 8a' with the highest yield, with DMF and acetonitrile in a distant second place (ca. 40 % yields). PEG400, ionic liquid [BMIm]BF<sub>4</sub>, and water resulted in significantly lower efficiency of the reaction (entries 8 to 10). Ratio of 7a/2b/HCHO can also significantly affect the yield of 8a', and the best is 7a/2b/HCHO = 1.0/2.0/2.5. Poor yields were obtained with much excess amount of **2b** or HCHO, which might result from an extensive formation of a by-product through Knoevenagel / Michael reaction of **2b** and HCHO (entries 11 and 12). Interestingly, when ratio of 7a/2b/HCHO was changed to 1.0/1.5/2.0, 8a was produced as a major product, and 8a' was formed only in tiny amount (entry 13). These results imply that substrate ratio has a subtle influence on the reaction selectivity, and amounts of **2b** and formaldehyde are both important to determine the reaction selectivity. It offered us a possible means to control the reaction selectivity by tuning the reaction parameters. It should be noted that, in all the previous reports on Knoevenagel / [4+1] annulation sequential reaction of phenacylpyridinium salt, the use of aromatic aldehyde is mandatory in order to facilitate controlling of the reaction selectivity.<sup>11</sup>

The present synthesis of **8a**-like 2,3-dihydrofuran represents the first example of using non-aromatic aldehyde as substrate. Additionally, the reaction was also affected by temperature and reaction time, and the maximum yield of **8a'** was obtained at 80 °C after 4 hours of reaction (entries 14 to 16). It is worthwhile to note that, under the optimal conditions, effort to replace paraformaldehyde with either formalin (37 wt %) or trioxymethylene was in vain (entries 17 and 18).

 Table 1. Three-component reaction of N-phenacylpyridinium bromide, acetylacetone and formaldehyde under different conditions.<sup>a</sup>



| entry           | base                                                           | solvent               | ratio of    |            | yield (%)  |     |  |
|-----------------|----------------------------------------------------------------|-----------------------|-------------|------------|------------|-----|--|
|                 |                                                                |                       | 7a/2b/HCHO  | temp. (°C) | <b>8</b> a | 8a' |  |
| 1               | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/2.0/2.5 | 80         | <5         | 83  |  |
| 2               | K <sub>3</sub> PO <sub>4</sub> <sup>3</sup> H <sub>2</sub> O   | DMSO                  | 1.0/2.0/2.5 | 80         | <5         | <5  |  |
| 3               | K <sub>2</sub> CO <sub>3</sub>                                 | DMSO                  | 1.0/2.0/2.5 | 80         | 0          | 0   |  |
| 4               | Et <sub>3</sub> N                                              | DMSO                  | 1.0/2.0/2.5 | 80         | 8          | 5   |  |
| 5               | DBU                                                            | DMSO                  | 1.0/2.0/2.5 | 80         | 0          | 0   |  |
| 6               | K <sub>2</sub> HPO <sub>4</sub> 3H <sub>2</sub> O              | DMF                   | 1.0/2.0/2.5 | 80         | <5         | 36  |  |
| 7               | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | CH <sub>3</sub> CN    | 1.0/2.0/2.5 | 80         | <5         | 39  |  |
| 8               | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | PEG400                | 1.0/2.0/2.5 | 80         | <5         | <5  |  |
| 9               | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | [BMIm]BF <sub>4</sub> | 1.0/2.0/2.5 | 80         | 9          | <5  |  |
| 10              | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | $H_2O$                | 1.0/2.0/2.5 | 80         | 8          | <5  |  |
| 11              | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/1.0/2.0 | 80         | <5         | 67  |  |
| 12              | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/2.5/3.0 | 80         | 9          | 22  |  |
| 13              | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/1.5/2.0 | 80         | 80         | <5  |  |
| 14              | K <sub>2</sub> HPO <sub>4</sub> ·3H <sub>2</sub> O             | DMSO                  | 1.0/2.0/2.5 | 50         | 0          | 5   |  |
| 15              | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/2.0/2.5 | 100        | 5          | 10  |  |
| 16 <sup>b</sup> | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/2.0/2.5 | 80         | 24         | 51  |  |
| 17 <sup>c</sup> | K <sub>2</sub> HPO <sub>4</sub> <sup>-</sup> 3H <sub>2</sub> O | DMSO                  | 1.0/2.0/2.5 | 80         | < 5        | 11  |  |
| 18 <sup>d</sup> | K <sub>2</sub> HPO <sub>4</sub> 3H <sub>2</sub> O              | DMSO                  | 1.0/2.0/2.5 | 80         | 0          | 0   |  |

<sup>a</sup>: **1a**: 1.0 mmol, paraformaldehdye was used as HCHO source, solvent: 1.0 ml, reaction time: 4 h.

<sup>b</sup>: reaction time: 2 h.

<sup>c</sup>: aqueous solution of formaldehyde was used as HCHO source.

<sup>d</sup>: trioxymethylene was used as HCHO source.





Figure 4. Proposed mechanism for the formations of 8a and 8a'.



Scheme 4. Hydroxymethylation of 8a to 8a'.

We also probed the scope of the reaction with respect to both the pyridinium bromide and the 1,3-dicarbonyl compounds. As evidenced by the results in **Table 2**, N-phenacylpyridinium bromides with both electron-donating and moderately electron-withdrawing groups smoothly reacted with 2b, producing 2-hydroxymethylated 2,3-dihydrofurans derivatives in generally good yields (entries 1 to 5). By means of decreasing the ratio of 7/2/HCHO, we are able to suppress the hydroxymethylation. Particularly, when N-(4-methoxyphenacyl)pyridinium bromide was used, yield of the tandem Knoevenagel/[4+1] annulation product, 8e, reached 95 % with the ratio of 7/2/HCHO = 1.0/1.5/2.0. However, increasing the ratio to 1.0/2.0/2.5 was in vain to obtain its hydroxymethylated counterpart, 8e'. In this case, much excess amount of paraformaldehyde has to be used in order to get a good yield of 8e' (entry 4). Acetoacetone 2a reacted readily with 7a and formaldehyde, however, extra effort has to be paid to control the reaction selectivity because change of the substrate ratio cannot alter significantly the product distribution. Addition of solvent amount of xylene, which constructed a biphasic system along with DMSO, was proved to be an effective way to suppress the hydroxymethylation reaction of 8g (entry 6). In order to get 8g', the reaction has to be performed at 30 °C. Fortunately, when the other N-phenacylpyridinium bromide derivatives were used to react with 2a,

#### **ACS Combinatorial Science**

it is quite easy to control the reaction selectivity. In the presence of a large excess amount of paraformaldehyde, the hydroxymethylated product will be preferentially formed as usual. Whereas, the major products are the non-hydroxymethylated 2,3-dihydrofurans when the ratio of 7/2b/HCHO is 1.0/2.0/2.5 (entries 7 to 14). This strategy is particularly effective for tuning the selectivity of condensation between N-(4-phenylphenacyl)pyridinium bromide. 2a and formaldehyde. Both hydroxymethylated and non-hydroxymethylated products could be obtained in more than 90 % of yields in this case (entry 10). 1-(2-Naphthoylmethyl)pyridinium bromide was also proved to be an eligible substrate that reacted smoothly with either **2b** or **2a**, providing both hydroxymethylated and non-hydroxymethylated products in good yields (entries 5 and 11). It should be noted that OH group in the phenacylpyridinium salt can be delivered uneventfully (entry 12). This facilitates further conversions of the obtained 2,3-dihydrofurans. Heterocyclic group, such as thienyl, is also tolerable in the present reaction (entry 13). Reactions with  $\beta$ -ketoesters proceeded also very well, and the products succeeded the ester moieties without any damage (entries 14 to 17). Ether fragment in 2-methoxyethyl acetoacetate is also tolerable. Due to an insusceptibility of the reaction toward the change of the substrate ratio, DMSO/xylene biphasic system was employed when methyl isobutyrylacetate and 2-methoxyethyl acetoacetate were used to react with 7a (entries 16 and 17). It should be noted that when an aqueous solution of acetaldehyde was used instead of paraformaldehyde, no expected substituted dihydrofuran derivative was formed.

**Table 2.** Substrate scope of three-component reaction of N-phenacylpyridinium bromides,1,3-dicarbonyl compounds and paraformaldehyde.<sup>a</sup>





**ACS Paragon Plus Environment** 

Page 13 of 22

59 60

## **ACS Combinatorial Science**

| 1                |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
|------------------|----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| 2                |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                     |
| 3                |    |             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             | > o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                     |
| 4                | 2  | 1.0/1.5/2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8c         | 62 (9)                     | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8c'  | 68 (13)             |
| 5                |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             | o Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                     |
| 0                |    |             | C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                            |             | C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                     |
| /<br>0           |    |             | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | =0 (0)                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | =0 (10)             |
| 0                | 3  | 1.0/1.5/2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8d         | 70 (8)                     | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8d'  | 70 (10)             |
| 9                |    |             | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             | ο̈́ζό~~<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                     |
| 10               |    |             | MeQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | MeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                     |
| 11               | 4  | 1 0/1 5/2 0 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80         | 05 (< 1)                   | 1 0/2 0/7 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.01 | 71 (10)             |
| 12               | 4  | 1.0/1.5/2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0C         | <i>y</i> <sub>2</sub> (<1) | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86   | /1(1))              |
| 13               |    |             | o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 14               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 10               | 5  | 1.0/1.5/2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8f         | 86 (7)                     | 1.0/2.0/7.0 | V ~Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8f'  | 76(14)              |
| 10               |    |             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                            |             | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                     |
| 10               |    |             | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 10               |    |             | > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | ି ବ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                     |
| 19               | 6  | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8g         | $82^{c}(6)$                | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8g'  | 85 <sup>d</sup> (7) |
| 20               |    |             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | ο ζό<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                     |
| 21               |    |             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             | F,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 22               |    |             | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                            |             | è là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                     |
| 23               | 7  | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8h         | 69 (16)                    | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8h'  | 70 (11)             |
| 24               |    |             | o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | о́ ́ ́ `ó́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                     |
| 20               |    |             | cı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                            |             | cı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 20               | 0  | 1.0/2.0/2.5 | ې د 🔪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:         | 72 (0)                     | 1.0/2.0/7.0 | A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:1  | 51 (0)              |
| 27               | 8  | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81         | /3 (8)                     | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81   | 51 (9)              |
| 28               |    |             | o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | ОСОС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                     |
| 29               |    |             | C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                            |             | C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                     |
| 30               | 9  | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8i         | 94 (< 5)                   | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8i'  | 93 (< 5)            |
| 31               |    |             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •]         | , ( )                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۰J   | , ( )               |
| 32               |    |             | 0 0- \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                            |             | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| <b>১</b> ১<br>০4 |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 34<br>25         | 10 | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8k         | 72 (12)                    | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8k'  | 57 (18)             |
| 30<br>26         |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 30<br>27         |    |             | MaQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | ОН<br>MeQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                     |
| 37<br>20         |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             | è là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                     |
| 30<br>20         | 11 | 1.0/2.0/2.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81         | 65 (17)                    | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81'  | 62 (15)             |
| 39<br>40         |    |             | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             | о́́ (`ó́́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                     |
| 40               |    |             | но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                            |             | но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 41               | 12 | 1 0/2 0/2 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>9</b> m | 75 (11)                    | 1 0/2 0/7 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8m!  | 50(12)              |
| 42               | 12 | 1.0/2.0/2.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ош         | 75(11)                     | 1.0/2.0/7.0 | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0111 | 50(15)              |
| 45<br>44         |    |             | ő ò́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                            |             | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 45               |    |             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             | n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                     |
| 46               | 13 | 1.0/2.0/2.5 | s J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8n         | 81 (10)                    | 1.0/2.0/7.0 | s-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8n'  | 61 (16)             |
| 40               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             | of ( of the office of the offi |      |                     |
| 48               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 40               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
|                  | 14 | 1.0/2.0/2.5 | Sector S | 80         | 49 (8)                     | 1.0/2.0/7.0 | OMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80'  | 54 (< 5)            |
| 51               |    |             | o″`ó́́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                            |             | 0 ( 0 <sup>-</sup> \<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                     |
| 52               |    |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 53               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ~                   |
| 54               | 15 | 1.0/2.0/2.5 | OEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8p         | 60 (14)                    | 1.0/2.0/7.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8p'  | 71 (7)              |
| 55               |    |             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            |             | он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                     |
| 56               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 57               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
| 58               |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |
|                  |    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                     |

**ACS Paragon Plus Environment** 



<sup>a</sup>: N-phenacylpyridinium bromide: 0.5 mmol, DMSO: 1.0 ml; K<sub>2</sub>HPO<sub>4</sub>·3H<sub>2</sub>O: 1.0 mmol; 80 °C, 4 h.

<sup>b</sup>: value in parentheses is the yield of the minor product.

<sup>c</sup>: xylene was added.

<sup>d</sup>: 30 °C.

Because the hydroxymethylated products contain some reactive groups, we therefore suspected that these molecules might be susceptible under acidic conditions. As we expected, treatment of **8g'** in ethanol in the presence of  $Sc(OTf)_3$  resulted in selective formation of diphenyl derivative **9a** (Scheme 5). The existence of hydroxyl group in **8g'** was proved to be crucial for rendering this reaction possible because no reaction was observed when **8g** was used as substrate under the identical conditions. Initial step of the reaction might be an intramolecular ring-opening and ring-closing reaction of **8g'** with the aid of acid catalyst, which generated an epoxide intermediate (**IV**). The following ring-opening of (**IV**) with ethanol produced an intermediate (**V**) that underwent an intramolecular aldol reaction<sup>12</sup> and subsequent retro-Claisen condensation<sup>13</sup> to form the final product **9a**. This reaction not only displayed an interesting reaction sequence but also offered us the first example that can get aromatic ether from five-member ring heterocycles without oxidation.<sup>14</sup>



Scheme 5. Conversion of 8g' to 9a.

## Conclusion

Some condition-determined MCRs of 1,3-dicarbonyl compound and formaldehyde were reported. Reaction of 1,3-dicarbonyl compound, formaldehyde and 1,1-diphenylethylene produced either a densely substituted 3,4-dihydropyran or a C2-cinnamyl substituted 1,3-dicarbonyl compound. A pseudo four-component reaction of N-phenacylpyridinium bromide, 1,3-dicarbonyl compound and formaldehyde was also developed, which involved a hitherto unreported Knoevenagel/[4+1] annulation/hydroxymethylation reaction sequence. All these examples demonstrated that the concept of condition-determined MCR is indeed useful for divergence-oriented organic synthesis.

### **Experimental Section**

## General

Melting points were determined by microscopic melting pointmeter and were uncorrected. IR spectra were recorded on a FT-IR Bruker (EQUINOX 55) using KBr pellets or neat liquid technology. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker AV-400. Chemical shifts are expressed in ppm relative to Me<sub>4</sub>Si in solvent. All chemicals used were of reagent grade and were used as received without further purification. All reactions were conducted in a 10 mL of V-type flask equipped with triangle magnetic stirring.

## Reaction of 1,1-diarylethylene, 1,3-dicarbonyl compound and (HCHO)<sub>n</sub>

In a typical reaction, 1,3-dicarbonyl compound (0.2 mmol) was mixed with paraformaldehyde (0.2 mmol), 1,1-diarylethylene (0.25 mmol) and PTSA (0.02 mmol, 3.8 mg, 10 % mol) in acetonitrile (1.0 mL), The mixture was then stirred at 60 °C for 12 hours. After reaction, the mixture was cooled to room temperature, and the product was obtained by isolation with preparative TLC (eluting solution: petroleum ether / ethyl acetate = 5 / 1 (v/v)). Tests for substrate scope were all performed with an analogous procedure.

## Three-component reaction of N-phenacylpyridinium bromides, 1,3-dicarbonyl

## compounds and (HCHO)<sub>n</sub>

N-Phenacylpyridinium bromide (0.25 mmol) was mixed with 1,3-dicarbonyl compound (0.375 mmol), and paraformaldehyde (0.5 mmol), The mixture was then stirred at 80 °C for 4 hours. After reaction, the mixture was cooled to room temperature, and the product 2,4-diacyl-2,3-dihydrofuran derivative was obtained by isolation with preparative TLC (eluting solution: petroleum ether / ethyl acetate = 10 / 1 (v/v)). Tests for substrate scope were all performed with an analogous procedure. The hydroxymethylation product was obtained only change the ratio of N-phenacylpyridinium bromide, 1,3-dicarbonyl compound and paraformaldehyde to 1.0/2.0/2.5.

## Synthesis of 9a from 8g'

**8g**' (52 mg, 0.2 mmol) and Sc(OTf)<sub>3</sub> (10 mg, 10 % mol) was added to ethanol (1 mL), and the mixture was then stirred at 80 °C for 4 hours. After reaction, the product **9a** was obtained by isolation with preparative TLC (eluting solution: petroleum ether / ethyl acetate = 20 / 1 (v/v)) with yield 61 %.

### Acknowledgements

The authors thank for National Natural Science Foundation of China for the financial support (21173089 and 21373093) and also for the Analytical and Testing Center of HUST. Chutian Scholar Program of the Hubei Provincial Government and the Cooperative Innovation Center of Hubei Province are also acknowledged. This work is also supported by the Fundamental Research Funds for the Central Universities of China (2014ZZGH019).

#### References

 <sup>(</sup>a) Toure, B. B.; Hall, D. G., Natural product synthesis using multicomponent reaction strategies. *Chem. Rev.* 2009, *109* (9), 4439-4486. (b) Sunderhaus, J. D.; Martin, S. F., Applications of multicomponent reactions to the synthesis of

diverse heterocyclic scaffolds. *Chem-Eur. J.* **2009**, *15* (6), 1300-1308. (c) Ganem, B., Strategies for innovation in multicomponent reaction design. *Acc. Chem. Res.* **2009**, *42* (3), 463-472. (d) Jiang, B.; Rajale, T.; Wever, W.; Tu, S. –J.; Li, G, Multicomponent reactions for the synthesis of heterocycles. *Chem. Asian J.* **2010**, *5* (11), 2318-2335. (e) Yu, J.; Shi, F.; Gong, L. –Z., Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. *Acc. Chem. Res.* **2011**, *44* (11), 1156-1171. (f) de Graaff, C.; Ruijter, E.; Orru, R. V. A., Recent developments in asymmetric multicomponent reactions, *Chem. Soc. Rev.* **2012**, *41* (10), 3969-4009.

- 2 (a) Ramazani, A.; Kazemizadeh, A. R., Preparation of stabilized phosphorus ylides via multicomponent reactions and their synthetic applications, *Curr. Org. Chem.* 2011, *15* (23), 3986-4020. (b) Bonne, D.; Coquerel, Y.; Constantieux, T.; Rodriguez, J., 1,3-Dicarbonyl compounds in stereoselective domino and multicomponent reactions, *Tetrahedron: Asymmetry*, 2010, *21*(9-10), 1085-1109. (c) Willy, B.; Mueller, T. J. J., Multicomponent heterocycle syntheses via catalytic generation of alkynones, *Curr. Org. Chem.* 2009, *13* (18), 1777-1790. (d) Isambert, N.; Lavila, R., Heterocycles as key substrates in multicomponent reactions: the fast lane towards molecular complexity, *Chem. Eur. J.* 2008, *14* (28), 8444-8454. (e) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent reactions: advanced tools for sustainable organic synthesis, *Green Chem.* 2014, *16* (6), 2958-2975.
- [3] (a) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A., Multicomponent reaction design in the quest for molecular complexity and diversity, *Angew. Chem. Int. Ed.* 2011, 50, 6234-6246. (b) Bhunia, A.; Biju, A. T., Employing arynes in transition-metal-free, N-heterocycle-initiated multicomponent reactions, *Synlett*, 2014, 25 (5), 608-614. (c) See also the *Chemical Society Reviews* issue on the Rapid formation of molecular complexity in organic synthesis: *Chem. Soc. Rev.* 2009, 38, 2969-3276.
- [4] See some examples: (a) Bocokić, V.; Kalkan, A.; Lutz, M.; Spek, A. L.; Gryko, D. T.; Reek, J. N. H., Capsule-controlled selectivity of a rhodium hydroformylation catalyst, *Nat. Commun.* 2013, 4, 2670; (b) Xu, X.; Zhou, J.; Yang, L.; Hu, W., Selectivity control in enantioselective four-component reactions of aryl

diazoacetates with alcohols, aldehydes and amines: an efficient approach to synthesizing chiral  $\beta$ -amino- $\alpha$ -hydroxyesters, *Chem. Commun.* **2008**, 6564-6566; (c) Shawali, A. S. Chemoselectivity in 1,3-Dipolar Cycloaddition Reactions of Nitrilimines with Multifunctionalized Dipolarophiles, *Curr. Org. Chem.* **2014**, *18*, 598-614.; (d) Ji, J.; Zhang, X.; Zhu, Y.; Qian, Y.; Zhou, J.; Yang, L.; Hu, W., Diastereoselectivity switch in cooperatively catalyzed three-component reactions of an aryldiazoacetate, an alcohol, and a  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester, *J. Org. Chem.* **2011**, *76*, 5821-5824; (e) Shawali, A. S.; Abdelhamid, A. O., Synthesis of spiro-heterocycles via 1,3-dipolar cycloadditions of nitrilimines to exoheterocyclic enones. site-, regio- and stereo-selectivities overview, *Curr. Org. Chem.* **2012**, *16*, 2673-2689.

[5] See some recent examples: (a) Gao, H.; Sun, J.; Yan, C. –G., Selective synthesis of functionalized spiro[indoline-3,2'-pyridines] and spiro[indoline-3,4'-pyridines] by lewis acid catalyzed reactions of acetylenedicarboxylate, arylamines, and isatins, J. Org. Chem. 2014, 79, 4131-4136; (b) Zhou, F.; Liu, X.; Zhang, N.; Liang, Y.; Zhang, R.; Xin, X.; Dong, D., Copper-catalyzed three-component reaction: solvent-controlled regioselective synthesis of 4-amino- and 6-amino-2-iminopyridines, Org. Lett. 2013, 15, 5786-5789; (c) Jaegli, S.; Dufour, J.; Wei, H. -L.; Piou, T.; Duan, X. -H.; Vors, J. -P.; Neuville, L.; Zhu, J., Palladium-catalyzed carbo-heterofunctionalization of alkenes for the synthesis of oxindoles and spirooxindoles, Org. Lett. 2010, 12, 4498-4501; (d) Li, J.; Wang, N.; Li, C.; Jia, X., Multicomponent reaction to construct spirocyclic oxindoles with a Michael (triple Michael)/cyclization cascade sequence as the key step, Chem. Eur. J. 2012, 18, 9645-9650; (f) Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.; Chernenko, V. N.; Knyazeva, I. V.; Groth, U.; Glasnov, T. N.; Kappe, C. O., Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes, J. Org. Chem. 2008, 73, 5110-5118; (g) Elders, N.; Ruijter, E.; de Kanter, F. J. J.; Groen, M. B.; Orru, R. V. A., Selective formation of 2-imidazolines and 2-substituted oxazoles by using a three-component reaction, Chem. Eur. J. 2008, 14, 4961-4973; (h) Karapetyan, G.; Dang, T. T.; Sher, M.; Ghochikyan, T. V.; Saghyan, A.; Langer, P., Diversity-oriented synthesis of functionalized phenols by regioselective [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with

3-alkoxy-2-en-1-ones and related substrates, Curr. Org. Chem. 2012, 16, 557-565. (i) He, H.; Sharif, M.; Neumann, H.; Beller, M.; Wu, X. -F., A convenient palladium-catalyzed carbonylative synthesis of 4(3H)-quinazolinones from 2-bromoformanilides and organo nitros with Mo(CO)<sub>6</sub> as a multiple promoter, Green Chem. 2014, 16, 3763-3767; (j) Chen, J.; Neumann, H.; Beller, M.; Wu, X. –F., Palladium-catalyzed synthesis of isoindologuinazolinones via dicarbonylation of 1,2-dibromoarenes, Org. Biomol. Chem., 2014, 12, 5835-5838; (k) Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Beller, M.; Wu X. -F., Efficient palladium-catalyzed double carbonylation of o-dibromobenzenes: synthesis of thalidomide, Org. Biomol. Chem., 2014, 12, 5578-5581. (1) Li, H.-Q; Li,W.-F; Spannenberg, A.; Baumann, W.; Neumann, H.; Beller, M.; Wu, X.-F., A Novel Domino Synthesis of Ouinazolinediones by Palladium-Catalyzed Double Carbonylation, Chem. Eur. J. 2014, 20, 8541-8544; (m) Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X-F., Base-Controlled Selectivity in the Synthesis of Linear and Angular Fused Quinazolinones by a Palladium-Catalyzed Carbonylation/Nucleophilic Aromatic Substitution Sequence, Angew. Chem. Int. Ed. 2014, 53, 7579-7583; (n) He, L; Li, H.-Q; Neumann, H; Beller, M; Wu, X.-F, Highly Efficient Four-Component Synthesis of 4(3H)-Quinazolinones: Palladium-Catalyzed Carbonylative Coupling Reactions, Angew. Chem. Int. Ed. 2014, 53, 1420-1424.

[6] (a) Gu, Y.; de Sousa, R.; Frapper, G.; Bachmann, C.; Barrault, J.; Jérôme, F., Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives, *Green Chem.* 2009, *11*, 1968-1972; (b) Gu, Y.; Barrault, J.; Jérôme, F., Trapping of active methylene intermediates with alkenes, indoles or thiols: towards highly selective multicomponent reactions, *Adv. Synth. Catal.* 2009, *351*, 3269-3278; (c) Tan, J. –N.; Li, H.; Gu, Y., Water mediated trapping of active methylene intermediates generated by IBX-induced oxidation of Baylis–Hillman adducts with nucleophiles, *Green Chem.* 2010, *12*, 1772-1782; (d) Li, M.; Chen, C.; He, F.; Gu, Y., Multicomponent reactions of 1,3-cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate, *Adv. Synth. Catal.* 2010, *352*, 519-530; (e) Tan, J. –N.; Li, M.; Gu, Y., Multicomponent reactions of 1,3-disubstituted 5-pyrazolones and formaldehyde

in environmentally benign solvent systems and their variations with more fundamental substrates, *Green Chem.* **2010**, *12*, 908-914.

- [7] (a) Kumar, A.; Kumar, M.; Gupta, M. K., An efficient organocatalyzed multicomponent synthesis of diarylmethanes via Mannich type Friedel–Crafts reaction, *Tetrahedron Lett.* 2009, *50*, 7024-7027; (b) Kumar, A.; Sharma, S.; Maurya, R. A., A novel multi-component reaction of indole, formaldehyde, and tertiary aromatic amines, *Tetrahedron Lett.* 2009, *50*, 5937-5940; (c) Ferreira, S. B.; Gonzaga, D. T. G.; de Carvalho da Silva, F.; de Lima Araújo, K. G.; Ferreira, V. F., Synthesis of new *o*-quinone methides from β-lapachone analogues, *Synlett*, 2011, 1623-1625; (d) Massa, A., Recent advances in the chemistry of active methylene compounds, *Curr. Org. Chem.* 2012, *16*, 2159-2159; (e) Di Mola, A.; Palombi, L.; Massa, A., Active methylene compounds in the synthesis of 3-substituted isobenzofuranones, isoindolinones and related compounds, *Curr. Org. Chem.* 2012, *16*, 2302-2320.
- [8] Frapper, G.; Bachmann, C.; Gu, Y.; de Sousa, R. C.; Jérôme, F., Mechanisms of the Knoevenagel hetero Diels–Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water, *Phys. Chem. Chem. Phys.* 2011, 13, 628-636.
- [9] (a) Safi, M.; Sinou, D., Palladium(0)-catalyzed substitution of allylic substrates in a two-phase aqueous-organic medium, *Tetrahedron Lett.* 1991, *32*, 2025-2028;
  (b) Maity, A. K.; Chatterjee, P. N.; Roy, S., Multimetallic Ir Sn<sub>3</sub>-catalyzed substitution reaction of π -activated alcohols with carbon and heteroatom nucleophiles, *Tetrahedron*, 2013, *69*, 924-956; (c) Wahl, B.; Giboulot, S.; Mortreux, A.; Castanet, Y.; Sauthier, M.; Liron, F.; Poli, G., Straightforward synthesis of allylated keto esters: the Palladium-catalysed haloketone alkoxycarbonylation/allylation domino reaction, *Adv. Synth. Catal.* 2012, *354*, 1077-1083; (d) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A., Efficient metal-catalyzed direct benzylation and allylic alkylation of 2,4-pentanediones, *Org, Lett.* 2007, *9*, 825-828.
- [10] (a) Chuang, C. –P.; Chen, K. –P.; Hsu, Y. –L.; Tsai, A. -I.; Liu, S. –T., α-Nitro carbonyl compounds in the synthesis of 2,3-dihydrofurans, *Tetrahedron*, 2008, 64, 7511-7516; (b) Arai, S.; Nakayama, K.; Suzuki, Y.; Hatano, K. –I.; Shioiri, T., Stereoselective synthesis of dihydrofurans under phase-transfer catalyzed

conditions, Tetrahedron Lett. 1998, 39, 9739-9742; (c) Chuang, C. P.; Tsai, A. -I., Pyridinium ylides in the synthesis of 2,3-dihydrofurans, Synthesis, 2006, 675-679; (d) Indumathi, S.; Perumal, S.; Anbananthan, N., A facile eco-friendly three-component protocol for the regio- and stereoselective synthesis of functionalized *trans*-dihydrofuro[3,2-c]-quinolin-4(2H)-ones, Green Chem. 2012, 14, 3361-3367; (e) Gunasekaran, P.; Balamurugan, K.; Sivakumar, S.; Perumal, S.; Menéndez, J. C.; Almansour, A. I., Domino reactions in water: diastereoselective synthesis of densely functionalized indolyldihydrofuran derivatives, Green Chem. 2012, 14, 750-757; (f) Chuang, C. -P.; Chen, K. -P., *N*-Phenacylpyridinium bromides in the one-pot synthesis of 2,3-dihydrofurans, Tetrahedron, 2012, 68, 1401-1406; (g) Wang, Q. -F.; Hou, H.; Hui, L.; Yan, C. -G., Diastereoselective synthesis of trans-2,3-dihydrofurans with pyridinium ylide assisted tandem reaction, J. Org. Chem. 2009, 74, 7403-7406; (h) Yang, Z.; Fan, M.; Mu, R.; Liu, W.; Liang, Y., A facile synthesis of highly functionalized dihydrofurans based on 1,4-diazabicyclo[2.2.2]octane (DABCO) catalyzed reaction of halides with enones, *Tetrahedron*, **2005**, *61*, 9140-9146; (i) Vitale, P.; Scilimati, A., Five-membered ring heterocycles by reacting enolates with dipoles, Curr. Org. Chem. 2013, 17, 1986-2000.

- [11] Literature survey stated that while sulfonium ylide and imidazolium ylide enabled the use of aliphatic aldehyde, the reactions with pyridium ylide are still not amenable to aliphatic aldehyde: (a) Jiang, Y.; Ma, D., Synthesis of enantiopure substituted dihydrofurans via the reaction of (S)-glyceraldehyde acetonide- or Garner aldehyde acetonide-derived enones with sulfonium ylides. *Tetrahedron: Asymmetry*, **2002**, *13*, 1033-1038; (b) Kumar, A.; Srivastava, S.; Gupta, G., Cascade [4 + 1] annulation *via* more environmentally friendly nitrogen ylides in water: synthesis of bicyclic and tricyclic fused dihydrofurans, *Green Chem.* **2012**, *14*, 3269-3272.
- [12] (a) Chen, L.; Luo, S.; Li, J.; Li, X.; Cheng, J. –P., Organocatalytic kinetic resolution *via* intramolecular aldol reactions: Enantioselective synthesis of both enantiomers of chiral cyclohexenones, *Org. Biomol. Chem.* 2010, *8*, 2627-2632; (b) Jin, T.; Yamamoto, Y., Gold-catalyzed intramolecular carbocyclization of alkynyl ketones leading to highly substituted cyclic enones, *Org. Lett.* 2007, *9*, 5259-5262.

- [13] Biswas, S.; Maiti, S.; Jana, U., An efficient iron-catalyzed carbon-carbon single-bond ceavage via Retro-Claisen Condensation: a mild and convenient approach to synthesize a variety of esters or ketones, *Eur. J. Org. Chem.* 2010, 2861-2866.
- [14] Synthesis of aromatic ether from non-aromatic precursor has just been established by means of oxidative condensation of alcohol and 2-cyclohexenone: Simon, M. –O.; Girard, S. A.; Li, C. –J., Catalytic aerobic synthesis of aromatic ethers from non-aromatic precursors, *Angew. Chem. Int. Ed.* 2012, *51*, 7537-7540.