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DABCO was found to be an efficient catalyst for the formal [2+2] cycloaddition reaction of allenoates and
trifluoromethylketones (Paterno–Buchi reaction) to give the corresponding 2-alkyleneoxetanes in good
yields with good diastereoselectivities.
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Scheme 1. Synthesis of methyloxetanes via copper-catalyzed intramolecular
coupling reaction of vinyl bromides with alcohols.
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Scheme 2. Synthesis of methyloxenanes via photocycloaddition of allenes and
carbonyl compounds.
Introduction

Substituted oxetanes present important motifs in a number of
natural products and biologically active compounds.1 In contrast
to their homologous heterocycles, such as oxiranes2, tetrahydrofu-
rans3 and tetrahydropyrans4, few methods have been developed
for the construction of the strained four-membered ring. Generally,
there are two approaches, intra- and intermolecular reactions, for
the construction of oxetanes.

The first intramolecular approach, reported by Hudrlik and
Mohtady employed the intramolecular O-alkylation of enolates in
1975.5 Recently, Li and co-worker reported an efficient 4-exo-ring
closure of the copper-catalyzed intramolecular coupling of vinyl
bromides with alcohols to give 2-methyleneoxetanes (Scheme 1).6

The photocycloaddition of allenes and carbonyl compounds is a
straightforward intermolecular approach to 2-alkyleneoxetanes
(Scheme 2).7 However, several disadvantages, such as usage of a
large excess of allenes, side reaction of further cycloadditions,
and poor selectivities, limit its usage in organic synthesis.

Since Lu’s pioneering report of the [3+2] cycloaddition of alleno-
ates with olefins,8 Lewis base-catalyzed [3+2] and [4+2] annulation
reactions of allenoates have emerged as powerful tools for the
synthesis of cyclic or heterocyclic compounds.9 In 2003, Shi and
co-workers reported an unexpected DABCO-catalyzed [2+2] cyclo-
addition of allenoates and imines to give azetidine derivatives.10,11

Recently, we reported the [3+2] and [4+2] annulation of allenoates
ll rights reserved.

x: +86 10 6255 4449.
with trifluoromethyl ketones to give dihydrofurans and dihydropy-
rans.12,13 In this Letter, we wish to report a DABCO-catalyzed [2+2]
cycloaddition of allenoates and trifluoromethyl ketones to give 2-
alkyleneoxetanes. To the best of our knowledge, this is the first
example of the Lewis-base-catalyzed [2+2] cycloaddition of alleno-
ates and carbonyl compounds.14

Results and discussion

Initially, the model reaction of ethyl allenoate 1a and trifluoro-
methyl ketones 2a was investigated (Table 1). We are happy to find
that the [2+2] cycloaddition product of oxetan-2-ylidene 3aa could

http://dx.doi.org/10.1016/j.tetlet.2011.08.057
mailto:songye@iccas.ac.cn
http://dx.doi.org/10.1016/j.tetlet.2011.08.057
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Table 1
Condition screening for the reactions of allenoate 1a and trifluomethylketone 2a
catalyzed by amines

O

EtOOC

Ph CF3

COOEt

Ph CF3

O

2a

+
cat. (20 mol%)

solvent, Temp.
( 2.0 equiv.)

1a 3aa E-isomer (major)

Entry Cat. Solvent Temp Time (h) Yielda (%)

1 DMAP CH2Cl2 rt 32 32
2 DABCO CH2Cl2 rt 32 43
3 Qunidine CH2Cl2 rt 52 NPb

4 Cinchonine CH2Cl2 rt 52 NP
5 Et3N CH2Cl2 rt 52 NP
6 DABCO Toluene rt 48 Trace
7 DABCO CH3CN rt 48 Trace
8 DABCO EtOAc rt 48 29
9 DABCO THF rt 48 61

10 DABCO THF 0 �C 96 78
11 DABCO THF Reflux 48 58 (6)c

a Unless specified, isolated yield of E-3aa with E:Z > 20:1.
b NP = no product.
c Yield of Z-3aa in parenthesis.

Table 2
Formal [2+2] cycloaddition reaction catalyzed by DABCO

O

ROOC

Ar CF3

COOR

Ar CF3

O

2

+
DABCO (20 mol%)

THF, 0 oC
( 2.0 equiv.)

31 E-isomer (E:Z > 20:1)

Entry 1 (R) 2 (Ar) Time (d) 3 Yielda (%)

1 1a (Et) 2a (Ph) 4 3aa 78
2 1a (Et) 2b (4-MeC6H4) 3 3ab 74
3 1a (Et) 2c (4-MeOC6H4) 3.5 3ac 57
4 1a (Et) 2d (4-ClC6H4) 2.5 3ad 85
5 1a (Et) 2e (3-MeC6H4) 2.5 3ae 73
6 1a (Et) 2f (2-Thienyl) 3.5 3af 47
7 1b (Cy) 2a (Ph) 3 3ba 79
8 1c (tBu) 2a (Ph) 3 3ca 60

a Isolated yield of E-isomer with E:Z > 20:1. Figure 1. X-ray structure of cycloadduct 3ba.
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Figure 2. Proposed catalytic cycle.
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be isolated in reasonable yield with E:Z > 20:1, when DABCO or
DMAP was used as the catalyst for the reaction after 32 h (entries
1 and 2). It is noteworthy that there is no [3+2] cycloaddition or
Baylis–Hillmam adduct was observed. Lewis bases screening re-
vealed that qunidine, cinchonine and triethylamine could not cat-
alyze this reaction (entries 3–5). Solvent screening showed that the
reaction in THF gave the best yield, while only a trace or low yield
was resulted in toluene, acetonitrile or ethyl acetate (entries 6–9).
The yield was increased to 78% when the reaction was carried out
in 0 �C with prolonged reaction time (entry 10). The reaction in re-
flux THF gave the E-isomer of the cycloadduct in 58% yield along
with 6% yield of Z-isomer (entry 11).

With the optimized reaction conditions in hand, the reaction
scope was then briefly investigated (Table 2). Aryltrifluoromethyl
ketones with an electron-withdrawing substituent (Ar = 4-ClC6H4)
worked better than those with electron-donating substituents
(Ar = 4-Me, 4-MeOC6H4) (entries 2–4). Ketone 2e with a m-methyl-
phenyl group worked to give the corresponding cycloadduct 3ae in
73% yield (entry 5). Ketone 2f with a 2-thienyl group also worked
well but with low yield (entry 6). When the ethyl group was chan-
ged to cyclohexyl or t-butyl in substrate 1, the corresponding [2+2]
cycloaddition product could also be isolated in 79% or 60% yield,
respectively, (entries 7–8). Unfortunately, no reaction occurred
when a-methyl or c-benzyl allenoate was used, and the reaction
with ethyl 3,3,3-trifluoro-2-oxopropanoate gave no desired cyc-
loadduct but a complex.

The structure of the cycloadduct 3ba was unambiguously estab-
lished by the X-ray analysis of its crystal (Fig. 1).

The mechanism for this reaction is believed to go with a similar
catalytic cycle as the reaction with imines proposed by Shi and co-
workers (Fig. 2).10 The nucleophilic addition of DABCO to allenoate
1 produces the enolate intermediate A, which is in resonance with
the allylic carbanion A0. The c-addition of A0 to trifluoromethyl ke-
tone gives the a,b-unsaturated ester B, which undergoes an intra-
molecular Michael addition to give the ring-closed zwitterion C.
The elimination of catalyst from C affords the product and regener-
ates DABCO.
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In conclusion, the DABCO-catalyzed [2+2] cycloaddition of
allenoates with trifluoromethylketones was reported, which pro-
vides a new catalytic approach to 2-alkyleneoxetanes in good
yields with high diastereoselectivities.

Experimental section

Typical procedure for the [2+2] cycloaddition of allenoates with
trifluoromethylketones

To a stirred solution of allenoate 1a (0.5 mmol) and trifluometh-
ylketone 2a (1.0 mmol) in THF (5 mL) was added DABCO
(0.1 mmol). The solution was stirred at 0 �C until the full consump-
tion of the allenoate (2.5–4 days). The reaction mixture was con-
centrated under reduced pressure, and the residue was purified
by column chromatography on silica gel (petroleum ether/ethyl
acetate, typically 50:1–20:1) to furnish the corresponding cyclo-
addtion product 3aa in 78% yield. White solid, m.p. 53–54 �C;
Rf = 0.3 (petroleum ether/ethyl acetate = 20:1); 1H NMR (CDCl3,
300 MHz): d 7.33 (m, 5H), 5.30 (s, 1H), 4.06–4.00 (m, 3H), 3.71–
3.65 (m, 1H), 1.14 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, 75 MHz): d
172.6, 166.8, 133.3, 129.7, 128.6, 126.0, 123.5 (q, J = 282 Hz),
93.5, 86.5 (q, J = 33 Hz), 60.0, 39.2 (q, J = 1.5 Hz), 14.3; IR (KBr): m
2939, 1720, 1677, 1373, 1273, 1177, 1039, 821, 761, 697 cm�1;
HRMS (EI) calcd for C14H13F3O3 [M]+ 286.0817, found 286.0821.
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