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The PtCl2-catalyzed reaction of 1-(indol-2-yl)-2,3-allenols

occurred smoothly to form carbazoles by connecting the

3-carbon atom of indole with the 4-carbon atom of the allenol

moiety, referring to the carbon atom connected to the

hydroxyl group.

The tricyclic carbazole ring system is the core structure for

a wide range of alkaloids displaying a variety of biological

activities,1 and are important building blocks for the construction

of polymers with special thermal,2 electrical3 and photoelectrical

properties,4 and polymer-blend additives for the fabrication of

photorefractive materials.5 Thus, the development of simple,

mild, efficient and general methods6 to synthesize the carbazole

ring system from easily available starting materials are of current

interest. On the other hand, we recently observed a PtCl4-

catalyzed intermolecular cyclization reaction of b-allenols in

the presence of indoles affording indole derivatives with a

saturated 6-membered cyclic ether group at the 3-position

(Scheme 1).7 Based on these results, we envisioned that

the reaction of 1-(indol-2-yl)-2,3-allenols 1 would afford poly-

cyclic products 2. However, carbazoles 3 were formed conveniently

at room temperature in toluene (Scheme 1). In this communication,

we wish to report these unique observations.

The starting materials, 1a–r, are easily available from

the related 1H-indole-2-carbaldehydes based on known

methods (see the ESI for detailsw).8–10 Our initial investigation

was focused on the reaction of 1-(1-ethyl-1H-indol-2-yl)nona-

2,3-dien-1-ol (1a) in toluene under the catalysis of PtCl4
(5 mol%).7 Instead of forming the 2-type of product,

9-ethyl-4-pentyl-9H-carbazole (3a) was unexpectedly formed

in 65% NMR yield (entry 1, Table 1). When PtCl4 was

replaced with AgBF4 (20 mol%), the reaction was complicated

with 3a being formed in only 13% yield (entry 2, Table 1), and

AuCl(PPh3) was totally inactive (entry 3, Table 1). With the

addition of 10 mol% AgOTf, 1a decomposed quickly, probably

due to the presence of the free hydroxyl group in 1a, and the

yield of 3a was o7%, if any, based on NMR analysis of the

crude reaction mixture (entry 4, Table 1).11 Further study led

to the observation that PtCl2 is a much better catalyst for this

reaction, affording 3a in 83% isolated yield (entry 5,

Table 1).12 Several solvents were tested for the PtCl2-catalyzed

reaction of 1a at room temperature: CH2Cl2 was also effective

affording 3a in 80% NMR yield (entry 6, Table 1); other

solvents, such as CH3CN, xylenes, DCE (1,2-dichloroethane)

and THF provided 3a in 20%, 67%, 82% and 38% yields,

respectively (entries 7–10, Table 1). When 2 mol% PtCl2 was

used, the yield of 3a was lower (compare entry 11 with entry 5,

Table 1). Thus, we defined the standard conditions as follows:

the reaction of 1 was conducted with 5 mol% PtCl2 in toluene

at room temperature (entry 5, Table 1).

This new transformation is quite general. Some typical

results are listed in Table 2. The 1-position of indoles may

be substituted with an alkyl (entries 1–12 and entries 14–19,

Table 2) or phenyl group (entry 13, Table 2). R3 could be H

(entries 1–6 and 19, Table 2), an alkyl (entries 8 and 10,

Table 2) or an aryl group (entries 7, 9, 12 and 13, Table 2).

The reaction of 1k (entry 11, Table 2) is especially noteworthy,

since this reaction shows an interesting exclusive cyclization of

the allene instead of the alkene functionality; in addition, this

reaction tolerates many functional groups such as COOMe,

CONMe2 and CH2OH (entries 14–18, Table 2). In entries

16–18, it should also be noted that the secondary hydroxyl

group was exclusively eliminated. R4 could be H (entries 7–19,

Table 2), an alkyl (entries 1–5, Table 2) or a benzyl group

(entry 6, Table 2). Moreover, differently substituted indoles

can also successfully give the corresponding carbazole deriva-

tives (entries 4, 5, 12, 17 and 18, Table 2). The structures of 3

were further confirmed by the X-ray crystal diffraction study

of 3g (Fig. 1).13

A plausible mechanism involving a metal carbene inter-

mediate 7 is depicted in Scheme 2. The reaction of PtCl2 with

1 would form intermediate 5 from the coordination of the

allene moiety to the platinum atom followed by nucleophilic

attack of indolyl C3 to the metal-activated electrophilic CQC

double bond. Subsequent protonation of the hydroxyl group

followed by elimination of H2O in intermediate 6 affords cyclic

vinylic platinum carbene intermediate 7.14 A 1,2-H shift15 of

intermediate 7 would afford the final product 3, with

regeneration of the catalytically active species PtCl2.

Scheme 1
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In conclusion, we have developed a simple and mild PtCl2-

catalyzed reaction of 1-(indol-2-yl)-2,3-allenols, providing an

efficient route to differently substituted carbazoles in good

isolated yields under very mild conditions. Due to the easy

availability of the starting materials (see the ESI for detailsw)8,9
and the potential of the products,1–5 this method may be useful

in organic synthesis and medicinal chemistry. Further studies

Table 1 Optimization of the reaction conditions for the cyclization
reaction of 1-(1-ethyl-1H-indol-2-yl)nona-2,3-dien-1-ol 1a

Entry Catalyst (mol%) Solvent Time/h Yield of 3a (%)a

1 PtCl4 (5) Toluene 1 65
2 AgBF4 (20) Toluene 3 13
3 AuCl(PPh3) (10) Toluene 10 —b

4 AuCl(PPh3)(10)
c Toluene 4 o7

5 PtCl2 (5) Toluene 2 90 (83d)
6 PtCl2 (5) CH2Cl2 3 80
7 PtCl2 (5) CH3CN 3 20
8 PtCl2 (5) Xylenes 3 67
9 PtCl2 (5) DCE 3 82
10 PtCl2 (5) THF 3 38
11 PtCl2 (2) Toluene 5 79 (74d)

a 1H NMR yield was determined by using CH2Br2 as the internal

standard. b The recovery of 1a was 92%. c AgOTf (10 mol%) was

added. d Isolated yield.

Table 2 PtCl2-catalyzed cyclization reaction of 1-(indol-2-yl)-2,3-allenols

Entry

1

Time/h Yield of 3 (%)R1 R2 R3 R4 R5

1 Et H H n-C5H11 H (1a) 2 83 (3a)
2 Et H H Me H (1b) 2 86 (3b)
3 Et Me H n-C6H13 H (1c) 2 81 (3c)
4 Et H H n-C6H13 5-Me (1d) 2 75 (3d)
5 Et H H n-C6H13 5-OMe (1e) 3 75 (3e)
6 Et H H Bn H (1f) 5 50 (3f)
7 Et H Ph H H (1g) 4 70 (3g)
8 Et H n-C4H9 H H (1h) 3 74 (3h)
9 Me H Ph H H (1i) 4 81 (3i)
10 Me H n-C4H9 H H (1j) 4 71 (3j)
11 Et H allyl H H (1k) 3 74 (3k)
12 Et H Ph H 5-Me (1l) 17 70 (3l)
13 Ph H Ph H H (1m) 19 78 (3m)
14 Et H COOMe H H (1n) 36 67 (3n)
15 Et H CONMe2 H H (1o) 24 83 (3o)
16 Et H CH2OH H H (1p) 23 64 (3p)
17 Et H CH2OH H 4-Me (1q) 20 81 (3q)
18 Et H CH2OH H 7-Me (1r) 21 68 (3r)
19 Et H H H H (1s) 4 70 (3s)

Fig. 1 ORTEP representation of product 3g.

Scheme 2 Proposed mechanism.
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on the mechanism and synthetic applications of this reaction

are being carried out in our laboratory.
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2 M. Häussler, J. Liu, R. Zheng, J. W. Y. Lam, A. Qin and
B. Z. Tang, Macromolecules, 2007, 40, 1914.

3 (a) S. Wakim, J. Bouchard, M. Simard, N. Drolet, Y. Tao and
M. Leclerc, Chem. Mater., 2004, 16, 4386; (b) S. Wakim,
J. Bouchard, N. Blouin, A. Michaud and M. Leclerc, Org.
Lett., 2004, 6, 3413; (c) N. Ozawa, H. Seki, T. Kitamura,
H. Kokado, T. Ishikawa and K. Hoshino, Chem. Mater., 2002,
14, 1067.

4 (a) A. van. Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B.
M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel and
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