# *N*-Substituted imines of methyl trifluoropyruvate in the synthesis of 5-amino-5-trifluoromethylhydantoins

A. Yu. Aksinenko,\* T. V. Goreva, T. A. Epishina, A. N. Pushin, and V. B. Sokolov

Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (495) 921 2113. E-mail: alaks@ipac.ac.ru

Cyclocondensation of *N*-substituted imines of methyl trifluoropyruvate with monosubstituted ureas afforded novel 5-amino-5-trifluoromethylhydantoins.

**Key words:** hydantoins, imidazolidine-2,4-diones, *N*-substituted imines, methyl trifluoropyruvate, fluoro-containing ureas, cyclocondensation.

Hydantoins (imidazolidine-2,4-diones) are nitrogencontaining heterocycles, which are widely used in medicinal (anticonvulsants<sup>1</sup> and anticancer drugs<sup>2</sup>) and agrochemical practice (fungicides<sup>3</sup> and herbicides<sup>4</sup>). The biological activities of many various hydantoins have been studied to date.<sup>5</sup>

General methods for the synthesis of these compounds involve reactions of  $\alpha$ -amino acids with alkyl or aryl isocyanates, as well as reactions of *N*-substituted ureas with alkyl  $\alpha$ -halo carboxylates; these transformations have been studied with a sufficiently great number of acids, ureas, and isocyanates.<sup>6</sup> At the same time, the problem of the applicability of the known methods to the synthesis of 5-aminohydantoins, which are cyclic derivatives of  $\alpha$ -amino acids and are of interest as potential biologically active substances, remains open.

Here we report on the synthesis of novel 5-amino-5trifluoromethylhydantoins from *N*-substituted imines of methyl trifluoropyruvate **1** and monosubstituted ureas **2**. This investigation was motivated by data on the cyclocondensation of acylimines of methyl trifluoropyruvate with C,N-binucleophiles of the enamine type<sup>7</sup> and with N,N-binucleophiles of the amidine type.<sup>8</sup>

The starting *N*-substituted imines of methyl trifluoropyruvate **1a**—**e** were prepared in 69—76% yields by suc-





cessive addition of equimolar amounts of quinoline, methyl trifluoropyruvate, and  $POCl_3$  to a suspension of an appropriate amide in benzene (Scheme 1).

Imines 1a-e reacted with ureas 2a-h to give adducts 3 (Scheme 2), the reaction conditions being varied with the imine nature. For instance, the reactions of imines 1a-d with ureas 2a-h were exothermic, while for the



Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1014-1017, June, 2006.

1066-5285/06/5506-1052 © 2006 Springer Science+Business Media, Inc.

reactions of imine **1e** with ureas **2c,d,g,h** to be completed, heating at 60–80 °C for ~10–20 min was required. Hydantoins **4a,b,e–l** were obtained in 82–96% yields without isolation of intermediate adducts **3a,b,e–l**. Adducts **3c,d** were isolated; their high-yielding cyclization into hydantoins **4c,d** through elimination of MeOH occurred in boiling benzene in the presence of catalytic amounts of Et<sub>3</sub>N for 3–4 h or on heating in DMF at 90 °C.

Hydantoins **4** are crystalline substances; their compositions and structures were confirmed by elemental analysis and NMR spectroscopy. The <sup>1</sup>H NMR spectra of hydantoins **4** show signals for the NH protons at  $\delta$  9–10, the signal for the exocyclic NH proton is shifted downfield by ~0.2 ppm compared to adducts **3**. In the <sup>19</sup>F NMR spectra of hydantoins **4**, the signals for the CF<sub>3</sub> group are shifted upfield ( $\delta$  0.5––0.9) compared to adducts **3**.

When refluxed in DMF in the presence of 1 M KOH, adducts 3 underwent decarbomethoxylation to ureas 5a,b (Scheme 3). Under analogous conditions, hydantoins 4c,d were also converted into products 5a,b.

### Scheme 3



**5:** R = Bz, R<sup>-</sup> = Me (**a**); R = Bz, R<sup>-</sup> = Bn (**b**)

In the <sup>1</sup>H NMR spectra of ureas **5**, the signal for the proton of the CH–CF<sub>3</sub> fragment appears as a characteristic sextet at  $\delta 6.3$  ( $J_{\rm H,H} = J_{\rm H,F} = 7$  Hz). The signals for the CF<sub>3</sub> group at  $\delta \sim 2.5$  (d,  $J_{\rm H,F} = 7$  Hz) in the <sup>19</sup>F NMR spectra of these compounds confirmed the proposed structure.

Thus, the cyclocondensation of *N*-substituted imines of methyl trifluoropyruvate with monosubstituted ureas opens up broad possibilities for the synthesis of novel 5-amino-5-trifluoromethylimidazolidine-2,4-diones and various aminals of trifluoroacetaldehyde.

## Experimental

<sup>1</sup>H and <sup>19</sup>F NMR spectra were recorded on a Bruker DPX 200 spectrometer. Melting points were determined in glass capillaries. Commercial monosubstituted ureas **2** (Aldrich, Lancaster) were used.

Methyl 2-acetylimino-3,3,3-trifluoropropionate (1a). Quinoline (25.8 g, 0.2 mol), methyl trifluoropyruvate (15.6 g, 0.1 mol), and POCl<sub>3</sub> (15.4 g, 0.1 mol) were successively added to a suspension of acetamide (5.9 g, 0.1 mol) in benzene (50 mL). The reaction mixture was stirred for 1 h and filtered. The solvent was removed and the residue was fractionated. The yield of imine **1a**  was 14.5 g (74%), b.p. 77–78 °C (20 Torr). Found (%): C, 36.32; H, 3.35.  $C_6H_6F_3NO_3$ . Calculated (%): C, 36.56; H, 3.07. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 2.35 (s, 3 H, Ac); 4.00 (s, 3 H, MeO). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$ : 7.60 (s).

**Methyl 2-benzoylimino-3,3,3-trifluoropropionate (1b)** was obtained analogously from benzamide (12.1 g, 0.1 mol). The yield was 18.6 g (72%), b.p. 102–103 °C (2 Torr). Found (%): C, 51.22; H, 2.85.  $C_{11}H_8F_3NO_3$ . Calculated (%): C, 50.98; H, 3.11. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 4.10 (s, 3 H, MeO); 7.40 (m, 3 H, CH<sub>Ar</sub>); 7.90 (m, 2 H, CH<sub>Ar</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$ : 7.20 (s).

**Methyl 3,3,3-trifluoro-2-(4-fluorobenzoylimino)propionate** (1c) was obtained analogously from 4-fluorobenzamide (13.9 g, 0.1 mol). The yield was 19.1 g (69%), b.p. 111–113 °C (2 Torr). Found (%): C, 47.01; H, 2.35.  $C_{11}H_7F_4NO_3$ . Calculated (%): C, 47.67; H, 2.55. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 3.90 (s, 3 H, MeO); 7.10–7.20, 8.00–8.10 (both m, 2 H each, CH<sub>Ar</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$ : 7.41 (s, 3 F, CF<sub>3</sub>); -38.20 (m, 1 F, CF<sub>Ar</sub>).

**Methyl 2-(4-chlorobenzoylimino)-3,3,3-trifluoropropionate** (1d) was obtained analogously from 4-chlorobenzamide (15.5 g, 0.1 mol). The yield was 22.4 g (76%), b.p. 138–140 °C (2 Torr). Found (%): C, 44.72; H, 2.16. C<sub>11</sub>H<sub>7</sub>ClF<sub>3</sub>NO<sub>3</sub>. Calculated (%): C, 45.00; H, 2.40. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 4.15 (s, 3 H, MeO); 7.30, 7.85 (both d, 2 H each, CH<sub>Ar</sub>,  $J_{H,H} = 8.0$  Hz). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$ : 7.32 (s).

**Methyl 2- (benzothiazol-2-ylimino)-3,3,3-trifluoropropionate** (1e) was obtained analogously from 2-aminobenzothiazole (15.0 g, 0.1 mol). The yield was 22.1 g (73%), m.p. 143–145 °C. Found (%): C, 45.56; H, 2.23.  $C_{11}H_7F_3N_2O_2S$ . Calculated (%): C, 45.84; H, 2.45. <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 3.95 (s, 3 H, MeO); 7.10, 7.25 (both m, 1 H each, CH<sub>Ar</sub>); 7.60 (m, 2 H, CH<sub>Ar</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>),  $\delta$ : 6.33 (s).

Methyl 2-benzoylamino-3,3,3-trifluoro-2-(3-methylureido)propionate (3c). Imine 1b (1.30 g, 5 mmol) was added to a suspension of *N*-methylurea 2a (0.37 g, 5 mmol) in benzene (5 mL). The reaction mixture was stirred for 1 h. The solvent was removed and the residue was recrystallized from benzene—hexane (1:1). The yield was 1.05 g (63%).

Methyl 2-benzoylamino-2-(3-benzylureido)-3,3,3-trifluoropropionate (3d) was obtained analogously from *N*-benzylurea 2d (0.75 g, 5 mmol) and imine 1b (1.30 g, 5 mmol). The yield was 1.51 g (74%).

Melting points, spectroscopic characteristics, and elemental analysis data for compounds **3c**,**d** are given in Tables 1 and 2.

5-Acetylamino-3-methyl-5-trifluoromethylimidazolidine-2,4dione (4a). A solution of imine 1a (1.0 g, 5.1 mmol) and *N*-methylurea 2a (0.38 g, 5.2 mmol) in DMF (5 mL) and Et<sub>3</sub>N (0.05 g, 0.5 mmol) were heated at 90 °C for 3 h and then diluted with water (100 mL). The precipitate that formed was filtered off and recrystallized from benzene—hexane (1 : 1). The yield was 0.99 g (82%).

5-Benzoylamino-3-methyl-5-trifluoromethylimidazolidine-2,4-dione (4c). A. A solution of propionate 3c (0.5 g, 1.5 mmol) and  $Et_3N$  (0.05 g, 0.5 mmol) in benzene (5 mL) was refluxed for 3 h. The solvent was removed and the residue was recrystallized from benzene—hexane (1 : 1). The yield was 0.35 g (77%).

**B.** A solution of imine **1b** (1.0 g, 3.8 mmol), *N*-methylurea **2a** (0.28 g, 3.8 mmol), and Et<sub>3</sub>N (0.05 g, 0.5 mmol) in DMF (5 mL) was heated at 90 °C for 3 h and then diluted with water (100 mL). The precipitate that formed was filtered off and recrystallized from benzene—hexane (1 : 1). The yield was 0.96 g (75%).

| Com-<br>pound | Yield<br>(%) | M.p./°C | Found (%)<br>Calculated |                     |                       | Molecular<br>formula            |
|---------------|--------------|---------|-------------------------|---------------------|-----------------------|---------------------------------|
|               |              |         | С                       | Н                   | N                     |                                 |
| 3c            | 63           | 177—178 | <u>46.89</u><br>46.85   | $\frac{4.48}{4.23}$ | <u>12.48</u><br>12.61 | $C_{13}H_{14}F_3N_3O_4$         |
| 3d            | 74           | 119-121 | <u>55.79</u><br>55.75   | $\frac{4.08}{4.43}$ | <u>10.08</u><br>10.26 | $C_{19}H_{18}F_3N_3O_4$         |
| 4a            | 82           | 245—247 | <u>35.29</u><br>35.16   | <u>3.08</u><br>3.37 | <u>17.63</u><br>17.57 | $C_7H_8F_3N_3O_3$               |
| 4b            | 87           | 110-117 | <u>49.38</u><br>49.53   | <u>3.95</u><br>3.84 | <u>13.52</u><br>13.33 | $C_{13}H_{12}F_3N_3O_3$         |
| 4c            | 77<br>75*    | 176—178 | <u>47.70</u><br>47.85   | <u>3.33</u><br>3.35 | <u>13.83</u><br>13.95 | $C_{12}H_{10}F_3N_3O_3$         |
| 4d            | 91<br>88*    | 143—144 | <u>57.14</u><br>57.30   | <u>3.54</u><br>3.74 | <u>11.05</u><br>11.14 | $C_{18}H_{14}F_3N_3O_3$         |
| <b>4e</b>     | 89           | 195—197 | <u>51.30</u><br>51.14   | <u>2.53</u><br>2.52 | $\frac{10.62}{10.52}$ | $C_{17}H_{10}F_5N_3O_3$         |
| 4f            | 90           | 128-129 | <u>54.58</u><br>54.69   | <u>3.22</u><br>3.31 | $\frac{10.33}{10.63}$ | $C_{18}H_{13}F_4N_3O_3$         |
| 4g            | 92           | 158—159 | <u>47.89</u><br>47.69   | <u>3.90</u><br>4.00 | <u>11.39</u><br>11.12 | $C_{15}H_{15}ClF_{3}N_{3}O_{3}$ |
| 4h            | 93           | 153—154 | <u>47.59</u><br>47.84   | <u>2.52</u><br>2.76 | <u>10.36</u><br>10.46 | $C_{16}H_{11}ClF_{3}N_{3}O_{4}$ |
| 4i            | 96           | 227—229 | <u>52.29</u><br>52.04   | <u>2.52</u><br>2.83 | <u>14.12</u><br>14.28 | $C_{17}H_{11}F_3N_4O_2S$        |
| 4j            | 93           | 213-215 | <u>53.39</u><br>53.20   | <u>3.47</u><br>3.22 | <u>13.84</u><br>13.79 | $C_{18}H_{13}F_3N_4O_2S$        |
| 4k            | 91           | 205-206 | <u>51.44</u><br>51.25   | $\frac{4.34}{4.30}$ | <u>14.24</u><br>14.06 | $C_{17}H_{17}F_3N_4O_2S$        |
| 41            | 88           | 142—144 | <u>53.59</u><br>53.20   | <u>3.52</u><br>3.22 | <u>13.82</u><br>13.79 | $C_{18}H_{13}F_{3}N_{4}O_{2}S$  |
| 5a            | 71<br>78*    | 255—257 | $\frac{48.19}{48.00}$   | <u>4.47</u><br>4.39 | <u>15.44</u><br>15.27 | $C_{11}H_{12}F_3N_3O_2$         |
| 5b            | 69<br>74*    | 239—241 | <u>58.39</u><br>58.12   | <u>4.47</u><br>4.59 | <u>11.84</u><br>11.96 | $C_{17}H_{16}F_3N_3O_2$         |

 Table 1. Yields, melting points, and elemental analysis data for compounds 3c,d, 4a–l, and 5a,b

\* According to procedure **B**.

Table 2. <sup>1</sup>H and <sup>19</sup>F NMR spectra of compounds 3c,d, 4a–l, and 5a,b in DMSO-d<sub>6</sub>

| Com-       | δ ( <i>J</i> /Hz)                                                                                                                                                                             |                 |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| pound      | 1 <sub>H</sub>                                                                                                                                                                                | <sup>19</sup> F |  |  |  |  |
| 3c         | 2.60 (d, 3 H, MeN, $J_{H,H} = 7.0$ ); 3.85 (s, 3 H, MeO); 6.35 (q, 1 H, NHMe,<br>$J_{H,H} = 7.0$ ); 7.45 (m, 4 H, CH <sub>Ar</sub> + NH); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 8.90 (s, 1 H, NH) | 2.47 (s)        |  |  |  |  |
| 3d         | 3.80 (s, 3 H, MeO); 4.20 (m, 2 H, CH <sub>2</sub> N); 6.90–7.20 (m, 6 H, CH <sub>Ar</sub> ); 7.40 (m, 4 H, CH <sub>Ar</sub> + NH); 7.85 (m, 2 H, CH <sub>Ar</sub> ); 8.90 (s, 1 H, NH)        | 2.68 (s)        |  |  |  |  |
| <b>4</b> a | 1.95 (s, 3 H, MeC); 2.95 (s, 3 H, MeN); 9.00, 9.37 (both s, 1 H each, NH)                                                                                                                     | 0.31 (s)        |  |  |  |  |
| 4b         | 1.95 (s, 3 H, MeC); 4.60 (m, 2 H, AB system, $CH_2N$ , $J = 14.0$ ); 7.10–7.25 (m, 5 H, $CH_{A+}$ ); 9.20, 9.45 (both s, 1 H each, NH)                                                        | -0.23 (s)       |  |  |  |  |
| 4c         | 3.00 (s, 3 H, Me); 7.45 (m, 3 H, CH <sub>Ar</sub> ); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 9.15, 9.70 (both s, 1 H each, NH)                                                                      | 0.29 (s)        |  |  |  |  |
| 4d         | 4.70 (m, 2 H, AB system, CH <sub>2</sub> ); 7.20–7.60 (m, 8 H, CH <sub>Ar</sub> ); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 9.20, 9.70 (both s, 1 H each, NH)                                        | -0.16 (s)       |  |  |  |  |

(to be continued)

## Table 2 (continued)

| Com-       | δ ( <i>J</i> /Hz)                                                                                                                                                                                                                                                                                                                         |                                                        |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| pound      | 1 <sup>1</sup> H                                                                                                                                                                                                                                                                                                                          | <sup>19</sup> F                                        |  |  |  |
| <b>4</b> e | 7.10–7.30 (m, 4 H, $CH_{Ar}$ ); 7.40–7.50, 8.00–8.10 (both m, 2 H each, $CH_{Ar}$ ); 9.60, 10.00 (both s, 1 H each, NH)                                                                                                                                                                                                                   | -35.10, -29.00<br>(both m, 1 F each);<br>0.53 (s, 3 F) |  |  |  |
| 4f         | 4.70 (m, 2 H, AB system, CH <sub>2</sub> ); 7.10–7.45 (m, 7 H, CH <sub>Ar</sub> ); 7.90–8.10 (m, 2 H, CH <sub>Ar</sub> ); 9.30, 9.80 (both s, 1 H each, NH)                                                                                                                                                                               | -29.30 (m, 1 F);<br>0.33 (s, 3 F)                      |  |  |  |
| 4g         | 0.90 (d, 6 H, Me, $J = 7.0$ ); 2.05 (m, 1 H, CH); 3.30 (d, 2 H, CH <sub>2</sub> , $J = 8.0$ );<br>7.35 (d, 2 H, CH <sub>Ar</sub> , $J = 8.0$ ); 7.90 (d, 2 H, CH <sub>Ar</sub> , $J = 7.0$ ); 9.10, 9.70 (both s, 1 H each, NH)                                                                                                           | 0.15 (s)                                               |  |  |  |
| 4h         | 4.70 (m, 2 H, AB system, CH <sub>2</sub> ); 6.27 (m, 2 H, CH of furan); 7.30–7.40 (m, 3 H, CH <sub>Ar</sub> + CH of furan); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 9.25, 9.80 (both s, 1 H each, NH)                                                                                                                                           | 0.21 (s)                                               |  |  |  |
| <b>4</b> i | 7.00–7.70 (m, 9 H, CH <sub>Ar</sub> ); 9.55, 9.70 (both s, 1 H each, NH)                                                                                                                                                                                                                                                                  | -0.33 (s)                                              |  |  |  |
| 4j         | 2.45 (s, 3 H, Me); 7.05–7.40 (m, 7 H, $CH_{Ar}$ ); 7.65 (m, 1 H, $CH_{Ar}$ ); 9.40, 9.60 (both s, 1 H each, NH)                                                                                                                                                                                                                           | -0.36 (s)                                              |  |  |  |
| 4k         | 1.00–1.40 (m, 3 H, $CH_{Alk}$ ); 1.60–2.20 (m, 7 H, $CH_{Alk}$ ); 3.90 (m, 1 H, CHN);<br>7.10, 7.20 (both t, 1 H each, $CH_{Ar}$ , $J_{H,H}$ = 7.2); 7.40, 7.65 (both d, 1 H each, $CH_{Ar}$ , $J_{H,H}$ = 7.2); 9.10, 9.45 (both s, 1 H each, NH)                                                                                        | -0.89 (s)                                              |  |  |  |
| 41         | 4.65 (m, 2 H, CH <sub>2</sub> , $J_{A,B}$ = 12.0); 7.00–7.60 (m, 9 H, CH <sub>Ar</sub> ); 9.30, 9.50 (both s, 1 H each, NH)                                                                                                                                                                                                               | -0.57 (s)                                              |  |  |  |
| 5a         | 2.65 (d, 3 H, MeN, $J_{H,H} = 7.0$ ); 6.30 (quint, 1 H, CHCF <sub>3</sub> , $J_{H,H} = 7.0$ , $J_{H,F} = 7.0$ );<br>6.40 (q, 1 H, N <u>H</u> Me, $J_{H,H} = 7.0$ ); 6.60 (d, 1 H, CHN <u>H</u> , $J_{H,H} = 7.0$ );<br>7.45 (m, 3 H, CH <sub>Ar</sub> ); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 9.00 (d, 1 H, BzN <u>H</u> , $J_{H,H} = 7.0$ ) | 0.30 (d,<br>$J_{\rm H,F} = 7.0$ )                      |  |  |  |
| 5b         | 4.23 (m, 2 H, CH <sub>2</sub> ); 6.25 (sext, 1 H, CHCF <sub>3</sub> , $J_{H,F} = 7.0$ , $J_{H,H} = 7.0$ );<br>6.72 (d, 1 H, NHCH, $J_{H,H} = 7.0$ ); 6.90 (t, 1 H, NHCH <sub>2</sub> , $J_{H,H} = 7.0$ ); 7.05–7.50 (m, 8 H, CH <sub>Ar</sub> ); 7.90 (m, 2 H, CH <sub>Ar</sub> ); 9.02 (d, 1 H, BzNH, $J_{H,H} = 7.0$ )                  | 0.45 (d,<br>$J_{\rm H,F} = 7.0$ )                      |  |  |  |

**5-Benzoylamino-3-benzyl-5-trifluoromethylimidazolidine-2,4-dione (4d)** was obtained analogously according to procedures *A* and *B*.

5-Acetylamino-3-benzyl-5-trifluoromethylimidazolidine-2,4dione (4b), 5-(4-fluorobenzoylamino)-3-(4-fluorophenyl)-5trifluoromethylimidazolidine-2,4-dione (4e), 3-benzyl-5-(4fluorobenzoylamino)-5-trifluoromethylimidazolidine-2,4-dione (4f), 5-(4-chlorobenzoylamino)-3-isobutyl-5-trifluoromethylimidazolidine-2,4-dione (4g), 5-(4-chlorobenzoylamino)-3-furfuryl-5-trifluoromethylimidazolidine-2,4-dione (4h), 5-(1,3-benzothiazol-2-ylamino)-3-phenyl-5-trifluoromethylimidazolidine-2,4dione (4i), 5-(1,3-benzothiazol-2-ylamino)-3-(4-methylphenyl)-5-trifluoromethylimidazolidine-2,4-dione (4j), 5-(1,3-benzothiazol-2-ylamino)-3-cyclohexyl-5-trifluoromethylimidazolidine-2,4-dione (4k), and 5-(1,3-benzothiazol-2-ylamino)-3-benzyl-5trifluoromethylimidazolidine-2,4-dione (41) were obtained as described for compound 4a. The yields, melting points, and spectroscopic characteristics of compounds 4a-l are given in Tables 1 and 2.

*N*-[2,2,2-Trifluoro-1-(3-methylureido)ethyl]benzamide (5a). A 1 *M* solution of KOH (1 mL) was added to a solution of compound 3c (0.5 g, 1.5 mmol) (procedure *A*) or compound 4c (0.5 g, 1.6 mmol) (procedure *B*) in DMF (5 mL). The reaction mixture was refluxed for 3 h and then diluted with water (50 mL). The precipitate that formed was filtered off and recrystallized from 50% EtOH. The yields were 0.29 g (71%) (procedure *A*) and 0.31 g (78%) (*B*).

*N*-[1-(3-Benzylureido)-2,2,2-trifluoroethyl]benzamide (5b) was obtained analogously according to procedures *A* and *B*. The

yields, melting points, and spectroscopic characteristics of compounds **5a**,**b** are given in Tables 1 and 2.

#### References

- 1. W. J. Brouillette, V. P. Jestkov, M. L. Brown, and M. S. Akhtar, J. Med. Chem., 1994, **37**, 3289.
- R. F. Struck, M. C. Kirk, L. S. Rice, and W. J. Suling, J. Med. Chem., 1986, 29, 1319.
- C. J. Mappes, E. H. Pommer, C. Rentzea, and B. Zeeh, US Pat. 4 198 423, 1980; *Chem. Abstrs*, 1980, **93**, 71784.
- H. Ohta, T. Jikihara, K. Wakabayashi, and T. Fujita, *Pestic. Biochem. Physiol.*, 1980, 14, 153.
- C. Avendano Lopez and G. Gonsalez Trigo, Adv. Heterocycl. Chem., 1985, 38, 177.
- 6. E. Ware, Chem. Rev., 1950, 46, 403.
- V. B. Sokolov, A. Yu. Aksinenko, and I. V. Martynov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 1064 [*Russ. Chem. Bull., Int. Ed.*, 2001, **50**, 1113].
- V. B. Sokolov, A. Yu. Aksinenko, T. A. Epishina, T. V. Goreva, A. N. Pushin, and I. V. Martynov, *Izv. Akad. Nauk, Ser. Khim.*, 2005, 1619 [*Russ. Chem. Bull., Int. Ed.*, 2005, 54, 1667].

Received March 2, 2006; in revised form April 13, 2006