ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Allenylporphyrins: a new motif on the porphyrin periphery

Oliver B. Locos, Katja Dahms, Mathias O. Senge *

School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity College Dublin, Dublin 2, Ireland

ARTICLE INFO

Article history: Received 30 November 2008 Revised 3 March 2009 Accepted 12 March 2009 Available online 18 March 2009

ABSTRACT

Palladium-catalysed Suzuki–Miyaura cross-coupling proved to be the simplest and most efficient method for attaching an unsubstituted allene, a novel substituent and potential functional group, to the porphyrin periphery. Comparative studies on various allenyl synthetic pathways show that this method, which makes use of a bromoporphyrin and allenylboronate, affords the corresponding allenylporphyrin in the presence of an appropriate base and THF.

© 2009 Elsevier Ltd. All rights reserved.

The synthesis and functionalisation of porphyrins are of interest to organic chemists. Tetrapyrroles play pivotal, diverse roles in Nature¹ and there is a continuing desire to exploit their properties for applications in medicine,² catalysis³ and nano materials.⁴ As a result, functional group interconversion and synthetic transformations spanning the field of porphyrin chemistry are constantly being explored and improved.⁵ One niche in the area of synthetic transformations that appear to have received little to no attention with porphyrins, however, is the use of 1,2-propadiene, or allene.

Allenes represent a versatile functional group that can be utilised as a building block in a variety of synthetic transformations. With the emergence of efficient protocols for their preparation, allenes have allowed chemists to access a variety of structurally interesting products that possess biological, chiral and optical activity. 7

While cumulenic porphyrin dimers linked by two carbons have been explored for their impressive optical properties, these dimers are quinoidal in nature, which results in exceptionally perturbed electronic absorption spectra. To the best of our knowledge, no studies have been performed on the utilisation of cumulative double bonds on porphyrins for their chiral and biological aspects, hence this has become the aim of our investigation.

Of the methods we envisaged being successful for allene synthesis on the macrocycle periphery, the Horner–Wadsworth–Emmons (HWE) reaction appealed the most due to its versatility in allene generation⁹ and to its need for a formylporphyrin precursor. Formylporphyrins are commonly used precursors the utility of which has recently been expanded successfully from solely metalloporphyrins to include their metal-free analogues.¹⁰

Applying the one-pot double olefination procedure designed by Tomioka and co-workers¹¹ to formylporphyrin **1** (Scheme 1), the HWE reaction using tetraisopropyl methylenebisphosphonate and NaH worked well and the extremely polar intermediate **2**

Scheme 1.

could be isolated by simple chromatography in very good yield. Interestingly though, both in the one-pot procedure, and using the isolated intermediate **2**, the second olefination reaction could not be realised under a variety of conditions. This olefination

^{*} Corresponding author. Tel.: +353 1 896 8537; fax: +353 1 896 8536. E-mail address: sengem@tcd.ie (Mathias O. Senge).

reaction occurs through nucleophilic substitution of an in situ generated carbanion intermediate by an aldehyde. ¹¹ However, in our case, when using either benzaldehyde or hexanal in conjunction with LDA, the result was the unexpected substitution of diisopropylamine from the base onto the alkenephosphonate to generate porphyrin **4**. Reaction of diisopropylamine with **2** occurred seemingly regardless of the temperature used ($-80\,^{\circ}\text{C}$ to $60\,^{\circ}\text{C}$). Use of the non-nucleophilic base, 'BuOK, only resulted in partial dehydrophosphonation to yield the alkynylporphyrin **3** in modest amounts when the reaction mixture was heated to $60\,^{\circ}\text{C}$ after addition of the base. Using the metal-free analogue **6**, which was synthesised by Heck coupling, only starting material was retrieved from the reaction mixture.

As the double HWE reaction did not afford the desired result, we tried a more unconventional synthetic route to allenes by using the allenylboronic acid pinacol ester reagent and Suzuki coupling (Scheme 2). Previously, this particular reagent has been used mainly to take advantage of the allene in three- and four-component reactions and in Ru^{II} catalysis to generate alkenylboronates. ^{12,13}

All Suzuki coupling reactions were attempted using a ten-fold excess of the allenylboronate, and the reaction mixture was degassed by three freeze-pump-thaw cycles before being heated to the desired temperature. Using a variety of conditions to couple the allenylboronate to the bromoporphyrin, it was discovered that very few conditions resulted in the consumption of the bromo starting material. However, when successful, depending on the

Table 1Yields of the Suzuki-Miyaura coupling reaction between **5** and allenylboronate in THF

Scheme 2.

ricius of the Suzuki-Ivilyadra couping reaction between 3 and anenyiboronate in 1111									
Entry	M	Catalyst	Cat. Conc. (% mol)	Time (h)	Base (excess)	Temp °C	Yield 7 (%) ^a	Yield 8 (%) ^a	Yield 9 (%) ^a
1	Ni	Pd(PPh ₃) ₄	15	15	Cs ₂ CO ₃ (twofold)	80	_	2	_
2 ^b	Ni	Pd(PPh ₃) ₄	15	15	K ₃ PO ₄ (twofold)	67	25	_	_
3 ^b	Ni	Pd(PPh ₃) ₄	15	15	K ₃ PO ₄ (20-fold)	80	14	9	_
4	Ni	PdCl ₂ (PPh ₃) ₂ /AsPh ₃	25	15	Cs ₂ CO ₃ (twofold)	80	_	8	_
5	Ni	PdCl ₂ (PPh ₃) ₂ /AsPh ₃	15	5	Cs ₂ CO ₃ (twofold)	80	_	10	_
6	Ni	Pd ₂ (dba) ₃ /AsPh ₃	15	15	Cs ₂ CO ₃ (twofold)	80	_	10	_
7	Ni	PdCl ₂ (dppp)	15	15	Cs ₂ CO ₃ (twofold)	80	9	37	_
8	Ni	PdCl ₂ (dppe)	15	15	Cs ₂ CO ₃ (twofold)	80	_	41	_
9	Ni	PdCl ₂ (dppe)	15	15	Cs ₂ CO ₃ (10-fold)	80	61	_	_
10	Ni	PdCl ₂ (dppe)	15	15	K ₂ CO ₃ (10-fold)	80	_	50	_
11	Zn	PdCl ₂ (dppe)	15	15	K ₂ CO ₃ (10-fold)	80	_	_	46

a Isolated yield

base and metalloporphyrin used, either the 1-propynyl-, **7**, allenyl-, **8**, or 2-propynylporphyrin, **9** could be isolated after column chromatography. The results of the investigations to find the optimum conditions for attaching the allene to the porphyrin are shown in Table 1.

Except for when $\rm K_3PO_4$ was used as base, the Suzuki coupling was relatively unsuccessful when carried out at reflux in THF. Even using $\rm K_3PO_4$, coupling only occurred with the Ni^{II} bromoporphyrin, and the use of this with a strong base resulted in rearrangement of the allene to the more stable 1-propynylporphyrin **Ni7**, along with the formation of unidentifiable side products. Our first successful attempt at isolating the allenylporphyrin **Ni8** came from heating in THF to 80 °C in a sealed Schlenk tube and using a 20-fold excess of $\rm K_3PO_4$ (9% yield). Porphyrin **Ni7** was also isolated from this reaction in 14% yield along with unidentifiable side products. Interestingly, using the same conditions, but in 1,4-dioxane at 80 °C, 100 °C and 120 °C, no allenyl- or propynyl-porphyrin was isolated.

On varying the Pd catalyst, the best coupling results were achieved with Pd^{II} salts with the bidentate ligands 1,2-(diphenylphosphino)ethane and 1,3-(diphenylphosphino)propane. In particular, the allenyl-porphyrin **Ni8** was isolated in up to 50% yield when K₂CO₃ was used as the base in 10-fold excess. ¹⁴ Interestingly, while PdCl₂(dppe) and PdCl₂(dppp) were found to be equally effective in coupling, when a twofold excess of Cs₂CO₃ was used, the PdCl₂(dppp) caused ~25% rearrangement from the allene to the 1-propynylporphyrin (entry 7). The use of PdCl₂(dppe) gave no such rearrangement, so it was considered the catalyst of choice for the remaining optimisation experiments. It should be noted that the Pd^{II} catalysts were synthesised according to the procedure of Miyaura and Suzuki, ¹⁵ and these represent new applications for the catalysts PdCl₂(dppe) and PdCl₂(dppp).

The amount of base, strength of base and type of metalloporphyrin used in the coupling reactions were also found to have a profound effect on the outcome of the reaction. Using a twofold excess of Cs_2CO_3 resulted in **Ni8** solely being isolated from the reaction, while a 10-fold excess resulted in **Ni7** being the only Suzuki product in 61% yield. 14b Cs_2CO_3 was found to be an inappropriate base when either a Zn^{II} or free-base porphyrin was used, the result being unidentifiable products. Using the less labile alkali base, K_2CO_3 in 10-fold excess led to **Ni8** again being isolated as the only product from **Ni5**, while quite surprisingly, the kinetically rearranged **Zn9** was the only product isolated from the reaction of **Zn5**. 14c K_2CO_3 was ineffective for porphyrin H_2 **5**, while Na_2CO_3 did not aid in Suzuki coupling for any of the metalloporphyrins.

Inspired by the base-catalysed kinetic rearrangement of the allene in the Zn^{II} porphyrin to form **Zn9**, the same rearrangement was attempted for **Zn7** (Scheme 3). **Zn7** was prepared by a method adapted from Newman-Evans et al. for phenylprop-2-yne from phenylacetylene, ¹⁶ which subjects the alkyne to a strong base with

^b The strength of the base resulted in another porphyrin product that was not identifiable by ¹H NMR and MS analysis.

subsequent trapping of the anion intermediate with Mel. However, only starting material and the demetallated ${\bf H_27}$ were retrieved from the reaction mixture after column chromatography when subjecting 2-propynylporphyrin ${\bf Zn7}$ to 2 equiv of n-BuLi in THF at 0 °C. This preliminary investigation is ongoing in our laboratory with Ni^{II} derivatives.

Scheme 3.

In conclusion, for the first time, unsubstituted allenes and propargyl substituents have been attached to the porphyrin periphery by Suzuki coupling and trapping of an alkyne anion with Mel. The phenomenon of allene rearrangement on the porphyrin periphery is still being investigated. However, as allenes are particularly reactive functional groups, especially towards metal catalysis, 7.17,18 we have also begun exploring their reactivity on the macrocycle.

Acknowledgements

This work was generously funded by a Science Foundation Ireland Research Professorship Award (SFI 04/RP1/B482) and we used facilities provided by the Centre of Chemical Synthesis and Chemical Biology funded by the HEA.

References and notes

- (a)The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, California, 2000; Vol. 1, (b) Milgrom, L. R. The Colors of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds; Oxford University Press: London, 1997.
- (a) Maillard, P.; Loock, B.; Grierson, D. S.; Laville, I.; Blais, J.; Doz, F.; Desjardins, L.; Carrez, D.; Guerquin-Kern, J. L.; Croisy, A. Photodiagn. Photodyn. Ther. 2007, 4, 261; (b) Molinari, A.; Bombelli, C.; Mannino, S.; Stringaro, A.; Toccacieli, L.; Calcabrini, A.; Colone, M.; Mangiola, A.; Maira, G.; Luciani, P.; Mancini, G.; Arancia, G. Int. J. Cancer 2007, 121, 1149; (c) Kiesslich, T.; Berlanda, J.; Plaetzer, K.; Krammer, B.; Berr, F. Photochem. Photobiol. Sci. 2007, 6, 619; (d) Moghissi, K.; Dixon, K. Photodiagn. Photodyn. Ther. 2005, 2, 135; (e) Kessel, D.; Dougherty, T. J. Rev. Contemp. Pharmacol. 1999, 10, 19; (f) Wiehe, A.; Shaker, Y. M.; Brandt, J. C.; Mebs, S.; Senge, M. O. Tetrahedron 2005, 61, 5535.
- (a) Aviv, I.; Gross, Z. Chem. Eur. J. 2008, 14, 3995; (b) Zhang, H.-J.; Liu, Y.; Lu, Y.; He, X.-S.; Wang, X.; Ding, X. J. Mol. Catal. A: Chem. 2008, 287, 80; (c) Korotchenko, V. N.; Severin, K.; Gagne, M. R. Org. Biomol. Chem. 2008, 6, 1961; (d) Chatterjee, D. Coord. Chem. Rev. 2008, 252, 176.
- (a) Ren, D.-M.; Guo, Z.; Du, F.; Liu, Z.-F.; Zhou, Z.-C.; Shi, X.-Y.; Chen, Y.-S.; Zheng, J.-Y. *Int. J. Mol. Sci.* 2008, 9, 45; (b) Nobukuni, H.; Shimazaki, Y.; Tani, F.; Naruta, Y. *Angew. Chem., Int. Ed.* 2007, 46, 8975; (c) Kojima, T.; Nakanishi, T.; Harada, R.; Ohkubo, K.; Yamauchi, S.; Fukuzumi, S. *Chem. Eur. J.* 2007, 13, 8714;

- (d) Langa, F.; Gomez-Escalonilla, M. J.; de la Cruz, P. J. Porphyrins Phthalocyanines 2007, 11, 348.
- 5. For recent examples of porphyrin functionalization, see: (a) Senge, M. O.; Richter, J. J. J. Porphyrins Phthalocyanines 2004, 8, 934; (b) Sugiura, K.-i.; Kato, A.; Iwasaki, K.; Miyasaka, H.; Yamashita, M.; Hino, S.; Arnold, D. P. Chem. Commun. 2007, 2046; (c) Esdaile, L. J.; Jensen, P.; McMurtrie, J. C.; Arnold, D. P. Angew. Chem., Int. Ed. 2007, 46, 2090; (d) Atefi, F.; Locos, O. B.; Senge, M. O.; Arnold, D. P. J. Porphyrins Phthalocyanines 2006, 10, 176; (e) Baba, H.; Chen, J.; Shinokubo, H.; Osuka, A. Chem. Eur. J. 2008, 14, 4256; (f) Hori, T.; Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Yoon, Z. S.; Yoon, M.-C.; Yang, J.; Kim, D.; Osuka, A. Chem. Eur. J. 2008, 14, 582; (g) Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Adv. Mater. 2007, 19, 2737; (h) Senge, M. O. Acc. Chem. Res. 2005, 38, 733; (i) Horn, S.; Sergeeva, N. S.; Senge, M. O. J. Org. Chem. 2007, 72, 5414; (j) Horn, S.; Senge, M. O. Eur. J. Org. Chem. 2008, 4881; (k) Hao, E. H.; Fronczek, F. R.; Vicente, M. G. H. Chem. Commun. 2006, 4900; (1) Fan, D. Z.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5350; (m) Mori, G.; Shinokubo, H.; Osuka, A. Tetrahedron Lett. 2008, 49, 2170; (n) Maes, W.; Ngo, T. H.; Vanderhaeghen, J.; Dehaen, W. Org. Lett. 2007, 9, 3165.
- (a) Castro, A. M. M. Chem. Rev. 2004, 104, 2939; (b) Sydnes, L. K. Chem. Rev. 2003, 103, 1133; (c) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021; (d) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885; (e) Smadja, W. Chem. Rev. 1983, 83, 263; (f) Taylor, D. R. Chem. Rev. 1967, 67, 317; (g) Pasto, D. J. Tetrahedron 1984, 40, 2805; (h) Krause, N.; Hoffmann-Roeder, A. Tetrahedron 2004, 60, 11671; (i) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933.
- (a) Ma, S.; Hou, H.; Zhao, S.; Wang, G. Synthesis 2002, 1643; (b) Hoffmann-Roeder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196.
- 8. (a) Blake, I. M.; Rees, L. H.; Claridge, T. D. W.; Anderson, H. L. *Angew. Chem., Int. Ed.* **2000**, 39, 1818; (b) Piet, J. J.; Taylor, P. N.; Anderson, H. L.; Osuka, A.; Warman, J. M. *J. Am. Chem. Soc.* **2000**, *122*, 1749; (c) Beljonne, D.; O'Keefe, G. E.; Hamer, P. J.; Friend, R. H.; Anderson, H. L.; Bredas, J. L. *J. Chem. Phys.* **1997**, *106*, 9439.
- (a) Nagaoka, Y.; Tomioka, K. J. Org. Chem. 1998, 63, 6428; (b) Nagaoka, Y.; Inoue, H.; Tomioka, K. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 1843; (c) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733; (d) Fillion, H.; Refouvelet, B.; Pera, M. H.; Dufaud, V.; Luche, J. L. Synth. Commun. 1989, 19, 3343; (e) Fillion, H.; Hseine, A.; Pera, M. H. Synth. Commun. 1987, 17, 929
- (a) Runge, S.; Senge, M. O. *Tetrahedron* 1999, 55, 10375; (b) Dahms, K.; Senge, M. O.; Bakar, M. B. *Eur. J. Org. Chem.* 2007, 3833; (c) Senge, M. O.; Hatscher, S. S.; Wiehe, A.; Dahms, K.; Kelling, A. *J. Am. Chem. Soc.* 2004, 126, 13634; (d) Takanami, T.; Wakita, A.; Sawaizumi, A.; Iso, K.; Onodera, H.; Suda, K. *Org. Lett.* 2008, 10, 685.
- 11. Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. Tetrahedron 2002, 58, 83.
- 12. (a) Tonogaki, K.; Itami, K.; Yoshida, J. Org. Lett. **2006**, 8, 1419; (b) Tonogaki, K.; Itami, K.; Yoshida, J.-I. J. Am. Chem. Soc. **2006**, 128, 1464.
- Bustelo, E.; Guerot, C.; Hercouet, A.; Carboni, B.; Toupet, L.; Dixneuf, P. H. J. Am. Chem. Soc. 2005, 127, 11582.
 - (a) Ni8 was synthesised in the optimum yield using the following procedure: To a 20 cm³ Schlenk tube, **Ni5** (50 mg), PdCl₂(dppe) (15 mol %, 10 mg) and K_2CO_3 (107 mg) were added and dried under vacuum before the flask was charged with argon. Dry THF (10 cm³) was added and the mixture was degassed via three freeze-pump-thaw cycles. Allenylboronic acid pinacol ester (140 µL, 10-fold excess) was subsequently added, and the flask was sealed and heated to 80 °C overnight. The progress of the reaction was monitored by TLC using CH₂Cl₂/n-hexane (1:2) as eluent. Upon complete consumption of the starting material, the solvent was removed in vacuo and the residue was chromatographed on silica gel using CH_2Cl_2/n -hexane (1:2). The first fraction collected was **Ni8** (24 mg, 50%). Analytical data: mp: $300 \, ^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃): 9.46 (d, 3 J = 5.0 Hz, 2H, β -H), 8.80 (d, 3 J = 5.0 Hz, 2H, β -H), 8.69 (d, 3 J = 4.90 Hz, 2H, β -H), 8.31 (t, 4 J = 6.8 Hz, 1H, allene–CH), 8.01 (m, 6H, o-Ph–H), 7.70 (m, 9H, m_p -Ph–H), 5.32 (d, 4 J = 6.8 Hz, 2H, allene–CH₂); 13 C NMR (150 MHz, CDCl₃): 216.6, 142.1, 141.9, 141.4, 141.1, 140.5, 140.2, 133.2, 132.2, 132.0, 131.8, 131.7, 130.3, 128.2, 126.5. 125.5, 118.6, 109.3, 92.1; UV/Vis (CH $_2$ Cl $_2$) λ_{max} (log ϵ): 421 (5.41), 535 (4.31), 12.3., 113.4, 103.5, 32.1, 0V/NS ($(21212)^2$) $(21213)^2$ (21210.78 mmol). The residue was chromatographed on silica gel using CH2Cl2/nhexane (1:2). The first fraction collected was Ni7 (29 mg, 61%). mp: >300 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃): 9.63 (d, ${}^{3}J$ = 4.7 Hz, 2H, β -H), 8.99 (d, ${}^{3}J$ = 4.7 Hz, 2H, β -H), 8.85 (d, ${}^{3}J$ = 4.7 Hz, 2H, β -H), 8.84 (d, ${}^{3}J$ = 4.7 Hz, 2H, β -H), 8.20 (m, 6H, α -Ph-11), 0.50 (t,) = -1.7 112, 21., p-1.), 0.50 (t,) = -2.6 Hz, 2H, CH₂), 2.51 (t, ⁴) = 2.6 Hz, 1H, CH₂), 2.51 (t, ⁴) = 2.6 Hz, 1H, acetylene–H); ¹³C (150 MHz, CDCl₃): 144.8, 142.8, 142.4, 142.1, 140.6, 140.5, 133.5, 133.4, 132.5, 132.0, 131.9, 131.5, 127.6, 126.7, 119.7, 119.2, 100.1, 93.4, 79.7, 5.2; UV/Vis (CH $_2$ Cl $_2$) λ_{max} (log ϵ): 420 (5.47), 553 (4.18); HRMS (ESI) calcd. for [M]⁺ C₄₁H₂₆N₄Ni 632.1449, found 632.1530. (c) **Zn9** was obtained using **Zn5** (0.073 mmol), $PdCl_2(dppe)$ (10 mg, 0.018 mmol) and K_2CO_3 (107 mg, 0.78 mmol). The residue was chromatographed on silica gel using CH2Cl2/nhexane (1:2). The first fraction collected gave Zn9 (22 mg, 46%). mp: >300 °C; ¹H NMR (400 MHz, CDCl₃): 9.63 (d, ^{3}J = 4.7 Hz, 2H, β-H), 8.99 (d, ^{3}J = 4.7 Hz, 2H, β-H), 8.85 (d, ${}^{3}J$ = 4.7 Hz, 2H, β-H), 8.84 (d, ${}^{3}J$ = 4.7 Hz, 2H, β-H), 8.20 (m, 6H, o-Ph-H), 7.75 (m, 9H, m,p-Ph-H), 5.99 (d, ${}^{4}J$ = 2.6 Hz, 2H, CH₂), 2.51 (t, ${}^{4}J$ = 2.6 Hz, 1H, acetylene-H); 13 C NMR (150 MHz, CDCl₃): 150.1, 150.0, 149.8, 149.6, 143.5, 134.5, 132.5, 131.6, 128.5, 127.1, 126.3, 126.2, 122.9, 120.4, 86.0, 73.1, 29.7;

- UV/Vis (CH₂Cl₂) λ_{max} (log ϵ): 420 (5.47), 553 (4.18); LRMS (MALDI) calcd for [M]* C₄₁H₂₆N₄Zn 638.1449, found 638.1467. 15. Miyaura, N.; Suzuki, A. *Org. Synth.* **1990**, 68, 130.

- Newman-Evans, R. H.; Simon, R. J.; Carpenter, B. K. J. Org. Chem. 1990, 55, 695.
 Ohno, H. Chem. Pharm. Bull. 2005, 53, 1211.
 Marshall, J. A. J. Org. Chem. 2007, 72, 8153.