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ABSTRACT:  The first Pd-catalyzed carbonylative couplings of 
aryl and vinyl halides with vinylogous enolates is reported gener-
ating products derived from C–C bond formation exclusively at 
the γ-position. Good results were obtained with a dienolate deriva-
tive of acetoacetate (1,3-dioxin-4-one). These transformations 
occurred at room temperature and importantly with only stoichi-
ometric carbon monoxide in a two-chamber reactor. The method-
ology was applied to the synthesis of two members of the statin 
family generating the cis-3,5-diol acid motive by a γ-selective 
carbonylation followed by a cis-stereoselective reduction of the 
3,5-dicarbonyl acid intermediates. 

The palladium-catalyzed arylation or vinylation of enolizable 
carbonyl and related compounds represents a viable and useful C–
C bond forming reaction widely applied in synthetic organic 
chemistry.1 Notably, the groups of Buchwald2 and Hartwig,3 
among others,4 have identified useful catalytic conditions for this 
synthetic transformation involving enolate or enolate-type inter-
mediates. The majority of this work has been focused on the 
installment of an aryl or vinyl substituent in the α-position, but 
few reports have been made extending the methodology to the γ-
position of α,β-unsaturated ketones5 and esters,6 thereby includ-
ing vinylogous enolates in the repertoire of reactive intermediates. 
 Recently, we reported a useful carbonylative version of the α-
arylation allowing access to 1,3-diketones,7 β-ketoesters8 and 
amides,9 as well as α-nitroketones,10 3-acyl-2-oxindoles,11 and 
others.12,13 An intriguing question therefore arose as to whether 
vinylogous enolates also could become useful substrates in this 
carbonylative arylation or vinylation, and if so, would carbonyla-
tion likewise be directed to the γ-position? Furthermore, if such a 
transformation could be adapted to the use of acetoacetate dieno-
lates or dienol silyl ethers, this methodology could provide a 
carbonylative version towards the common cis-3,5-diol acid 
pharmacophore of a range of HMG-CoA reductase inhibitor 
drugs, better known as the family of statins (Scheme 1).14 

 In this communication, we report on the development of such 
a Pd-catalyzed carbonylative protocol, which provides a direct 

entry to 3,5-dicarbonyl acids from the coupling of a dienolate 
equivalent of acetoacetate to a variety of functionalized aryl or 
vinyl iodides. The reactions occur in good yields and with com-
plete γ-selectivity and can be performed using only stoichiometric 
amounts of carbon monoxide (CO). Moreover, this methodology 
allows access to an alternative carbon isotope labeling strategy of 
the statin family. 
 
Scheme 1. Strategy for Carbonylative Coupling of Vinylo-
gous Enolates  

 
 
 In initial studies, efforts were directed to identifying suitable 
reaction conditions for the carbonylative coupling of the dianion 
of ethyl acetoacetate with 4-iodoanisole. A two-chamber reactor 
system was employed with SilaCOgen as the carbon monoxide 
source.15 After extensive screening, the desired diketoester 1 
could be generated (Scheme 2), but at best as a 1:7 mixture with 
the side-product originating from the direct coupling without CO 
incorporation. Alternatively, the silyl enol derivative 2 proved 
more promising and with better selectivity. Treatment of 2 with 
NaHMDS (2 equiv) and then injection into a two-chamber system 
containing Pd(dba)2, Xantphos and 4-iodoanisole provided, ac-
cording to 1H-NMR analysis, the desired tricarbonyl derivative, 
though as a mono-enol tautomer. Although this compound proved 
difficult to isolate, its treatment with hydrazine led to the more 
manageable pyrazole 3. Nevertheless, efforts to improve this  
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Scheme 2. Attempted Carbonylative Coupling of the TMS 
Enol Ether of Ethyl Acetoacetate with 4-Iodoanisole 

 
 
two-step yield to over 50% proved unrewarding.16  
 We suspected that the high basicity and hence instability of 
the carbon nucleophile could be the cause of the low carbonyla-
tive coupling efficiency. Subsequently, efforts were turned to 
2,2,6-trimethyl-4H-1,3-dioxin-4-one (4), which immediately 
under the screening process proved to be superior to 2.17 As can 
be seen from Table 1, entry 1, NaHMDS could be replaced with 
LiHMDS,18 and only a slight excess of the dioxin-4-one compared 
to 4-iodoanisole was required this time. With Xantphos as the 
ligand, an excellent conversion and the isolation of 71% of ketone 
5 was obtained. Importantly, no products from the direct α-
arylation were detected. Use of other bases provided inferior 
results (entries 2–5). Testing of other bidentate ligands was also 
less rewarding (entries 6–8), although application of DiPrPF 
provided a satisfactory NMR yield of 5 (entry 8). Other solvents 
such as dioxane, toluene or acetonitrile led to inferior conversion 
rates (results not shown). Finally, reduction of the catalyst loading 
to 3 mol% did not effect the yield (entry 9) and by decreasing the 
reaction time to 6 h, a satisfactory 82% isolated yield of 5 could 
be secured (entry 11).  
 
Table 1. Screening of Conditions for the Carbonylative 
Coupling of 4 with 4-Iodoanisole 

 

Entry Ligand Base Conv. 
[%]a 

Yield 
[%]a 

1 Xantphos  LiHMDS 100 95 (71)b 
2 Xantphos  LiOtBu 86 58 
3 Xantphos  NaOtBu 100 0 
4 Xantphos  Cs2CO3 n.d.c 0 
5 Xantphos  K2CO3 0 0 
6 DPPP  LiHMDS 0 0 
7 DPPF  LiHMDS n.d. 52 
8 DiPrPF  LiHMDS n.d. 96 
9d Xantphos  LiHMDS 100 99 (71)b 

10d,e Xantphos  LiHMDS 100 >95 
11d,e,f Xantphos  LiHMDS 100 99 (82)b 

a Determined by 1H NMR using MeNO2 as an internal standard. b 
Isolated yield. c Not determined. d 3 mol% of Pd(dba)2 and ligand. e 
Reaction time of 6 h. f CsF (1.3 equiv). 

Scheme 3. Carbonylative Vinylogous Couplings of 4 with 
Aryl and Vinyl Iodidesa 

 
a All reactions were run in a two-chamber system on a 0.5 mmol 

scale (c = 0.167 M). b Reaction time of 18 h. c Triphenylphosphine (6 
mol%) was used and LiHMDS (1.0 M in hexane) was added at 0 °C. 

 With good carbonylative and γ-selective coupling conditions 
identified, we next scoped out the reaction with a number of 
substituted aryl or vinyl iodides, the results of which are depicted 
in Scheme 3. The developed conditions proved equally effective 
for substrates bearing either electron donating or electron with-
drawing substituents with yields ranging between 61–84%. Satis-
fyingly, ortho-substituents on the aryl ring, including fluoride, 
bromide and a methoxy group were also well tolerated (com-
pounds 20, 21, and 22), although prolonged reaction times (18 h) 
were required for efficient conversion. For similar couplings to 
vinyl iodides, direct coupling of 4 to the activated alkene proved 
to be a serious side product. Subsequently, a ligand screening was 
undertaken, revealing PPh3 to be an appropriate ligand in cou-
plings to vinyl iodides as well as suppressing the direct coupling 
(see Supporting Information). In this way, compounds 23 and 24 
could be furnished in isolated yields of 89% and 84%, respective-
ly.19 
 Additionally, we applied this methodology on a range of 
substituted dioxinones as depicted in Scheme 4. When a substitu-
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ent is placed on the γ-position of the dioxinone, the reactivity of 
the entering nucleophile decreases, since the yields drop signifi-
cantly for both aryl iodides and vinyl iodides (compounds 25, 27 
and 29). However, when the substituent was placed on the α-
position of the dioxinone, an excellent yield of 93% was obtained 
with iodoanisole and a good yield of 59% was obtained for the 
(E)-1-(2-iodovinyl)-4-methoxybenzene, although with the neces-
sity of adding the base at 0°C for the latter (compounds 26 and 28, 
respectively). 
 
Scheme 4. Carbonylative Coupling with Substituted Dioxi-
nones 

 
a 3.0 mol% of Xanthphos was used for aryl iodides and 6.0 mol% 

of PPh3 was used for vinyl iodides. b LiHMDS (1.0 M in hexane) was 
added at 0 °C. 

 In light of the suitability of vinyl iodides as the electrophilic 
partner for the Pd-catalyzed carbonylative coupling with 2,2,6-
trimethyl-4H-1,3-dioxin-4-one (4), we next turned to apply this 
strategy for the synthesis of HMG-CoA reductase inhibitors. 
Initial efforts were directed to the drug candidate developed by 
Merck in the early 90’s for the treatment of hypercholesterolaemia 
(Scheme 5). (E)-4'-Fluoro-2-(2-iodovinyl)-3,3',5-trimethyl-1,1'-
biphenyl (31) was readily accessible from commercially available 
2-bromo-4,6-dimethylaniline (30) in four steps.20 The Pd-
catalyzed carbonylative coupling was then conducted leading to 
the formation of the dioxinone 32 in a good isolated yield of 57%. 
From intermediate 32, a two-step procedure could be applied to 
achieve the tert-butyl ester 33 of the HMG-CoA reductase inhibi-
tor as a racemic mixture. The dioxinone was opened by thermal 
decomposition and trapped with tert-butanol. Diastereoselective 
reduction using sodium borohydride combined with diethyl-
methoxyborane as the chelating agent afforded the syn-1,3-diol 33 
with complete diastereoselectivity in an overall yield of 55% yield 
for two steps.21  
 With the successful obtainment of compound 33, we then 
considered the possibility of exploiting the developed method 
towards the specific carbon isotope labeling of the statin family, 
and in particular the commercially available drug, Pitavastatin. As 
illustrated in Scheme 6, (E)-2-cyclopropyl-4-(4-fluorophenyl)-3-

(2-iodovinyl)quinoline (35) was readily prepared in 6 steps from 
2-nitrobenzoic acid (34).22 Subsequently, its participation in the 
Pd-catalyzed carbonylative coupling using 13C-SilaCOgen pro-
duced the 13C-labeled dioxinone 36 in an excellent isolated yield 
of 85%.23 Afterwards, dioxinone opening was accomplished using 
ethanol in toluene followed by the syn-diastereoselective reduc-
tion of the two ketones, ultimately affording the 13C-labeled ethyl 
ester of (±)-Pitavastatin 37 in a 31% isolated yield over two 
steps.24 

Scheme 5. Synthesis of the tButyl Ester of the HMG-CoA 
Reductase Inhibitor 33. 

 
 
Scheme 6. Synthesis of (±)-13C-Pitavastatin Ethyl Ester 

 
 
 In conclusion, we have for the first time expanded the useful-
ness of the Pd-catalyzed carbonylation couplings to a new class of 
nucleophiles, namely vinylogous enolates. In particular, the 
dienolate derivative of acetoacetate could be coupled to a range of 
aryl and vinyl iodides providing 3,5-dicarbonyl acids with com-
plete γ-selectivity. Furthermore, the carbonylation reactions could 
be performed at room temperature and with stoichiometric carbon 
monoxide. Finally, we could adapt this methodology to the syn-
thesis of statins including specific carbon isotope-labeling. Fur-
ther work is now ongoing to examine other vinylogous enolates as 
substrates for this interesting three-component coupling reaction. 
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Copies of 1H NMR and 13C NMR spectra for all coupling prod-
ucts, as well as details on experimental procedures. This material 
is available free of charge via the Internet at http://pubs.acs.org. 
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