Accepted Manuscript

Title: A green and efficient hydration of alkynes catalyzed by hierarchically porous poly(ionic liquid)s solid strong acids

Authors: Duan-Jian Tao, Fujian Liu, Lin Wang, Lilong Jiang

PII:	S0926-860X(18)30341-7
DOI:	https://doi.org/10.1016/j.apcata.2018.07.018
Reference:	APCATA 16744
To appear in:	Applied Catalysis A: General
Received date:	30-5-2018
Revised date:	7-7-2018
Accepted date:	14-7-2018

Please cite this article as: Tao D-Jian, Liu F, Wang L, Jiang L, A green and efficient hydration of alkynes catalyzed by hierarchically porous poly(ionic liquid)s solid strong acids, *Applied Catalysis A, General* (2018), https://doi.org/10.1016/j.apcata.2018.07.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A green and efficient hydration of alkynes catalyzed by hierarchically porous poly(ionic liquid)s solid strong acids

Duan-Jian Tao^{*a*}, Fujian Liu^{**b*}, Lin Wang^{*c*} and Lilong Jiang^{*b*}

^a College of Chemistry and Chemical Engineering, Institute of Advanced Materials, Jiangxi Normal University, Nanchang, P. R. China.

^b National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou 350002, Fujian, P. R. China. E-mail: <u>fjliu1982@gmail.com; fjliu@usx.edu.cn</u> ^c Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

GRAPHICAL ABSTRACT

Highlights

- One-step solvothermal approach was used to synthesize N doped nanoporous polymers.
- ► Strong acid ionic liquids were post grafted onto the synthesized nanoporous polymers.
- ▶ Porous polymeric ionic liquids show strong acid strength and adjustable acid contents.
- ▶ Porous polymeric ionic liquids were very active in hydration and hydroamination of alkynes.
- Green and metal-free approach was developed for conversion of alkynes into useful chemicals.

Abstract

The catalytic conversion of alkynes into ketones *via* hydration has received considerable attention, because the ketones are very important intermediates in the chemical and pharmaceutical industries. The hydration of alkynes was usually performed with rather complicated processes in presence of liquid acids or highly toxic metal

catalysts. We report here a novel metal free and efficient route to conversion of alkynes into ketones catalyzed by hierarchically porous poly(ionic liquid)s solid strong acids, which were synthesized from one-step, template-free copolymerization of divinylbenzene (DVB) with nitrogen containing monomers under solvothermal condition, further by post grafting with strong acid ionic liquid groups. The porous poly(ionic liquid)s solid acids have large BET surface areas, hierarchical nanopores and enhanced acid strength. A variety of alkynes could be effectively transformed into ketones catalyzed by the synthesized porous poly(ionic liquid)s solid acids under green and mild conditions, which were much better than those of Amberlyst 15, phosphotungstic acid and sulfuric acid. Furthermore, the porous poly(ionic liquid)s solid acids also show excellent activities and good reusability in direct hydroamination of amines with phenylacetylene. This work largely expands the wide applications of porous poly(ionic liquid)s solid strong acids in hydration and hydroamination, which develops a green, efficient and cost effective approach for conversion of low cost alkynes into high-value added ketones.

Keywords: Porous polymeric ionic liquids; Alkynes hydration; Hydroamination; Solid acids; Green and sustainable chemistry.

1. Introduction

Ketones are very important intermediates in the chemical and pharmaceutical industries, and they are popularly produced by the hydration of alkynes with 100 % atomic economy. [1,2] However, the traditional alkynes hydration usually employs mercuric (II) salt, a highly toxic compound, as the catalyst in aqueous sulfuric acid, which strongly constrain their wide applications in the industry. [3] To overcome the toxicity of Hg salts, the usage of various organometallic catalysts such as compounds containing Au, Pt, Ag, Ru, and even biomimetic catalysts have been widely developed. [4-13] Despite enhanced conversions and selectivities were obtained, these catalysts also suffered from at least one of the following drawbacks: (1) expensive noble metals (Au, Pt, Ru, Ag, etc); (2) high reaction temperatures (>100 °C); (3) large excess of water and additional acidic additives; (4) limited functional group compatibility. Recently, several Brønsted acids (e.g. TfOH, HNTf₂) were found to exhibit very good catalytic activity for the hydration of alkynes. [14,15] However, the processes usually require stoichiometric or excess amounts of acids, which lead to the difficulties in separating and recycling of acid catalysts. Therefore, it is still highly desirable to develop new kind of acid catalysts with high effectiveness for alkynes hydration under green and mild conditions.

Acidic ionic liquids (ILs), regarded as a new type of green reaction medium, have been successfully introduced into the area of acid catalysis owing to their unique properties such as negligible vapor pressure, remarkable solubility, and structural variety

[16-19]. To promote separation and reusability of the homogeneous ILs catalysts, the synthesis of mesoporous polymeric ILs catalysts containing both the acidic sites and the IL groups has received considerable attention in these years. [20,21] Porous polymeric ILs, as highly active acid catalysts, should have several characteristics including large BET surface areas, strong acid strength, and enhanced exposure degree of active sites. However, many polymeric ILs reported in the previous literatures, have very low concentrations of acidic sites and rather poor porosities, which constrain them used as efficient solid acids in various acid-catalyzed reactions, especially in hydration reaction. [22-25] Therefore, it remains a challenge to prepare porous polymeric ILs with large BET surface areas, enhanced acid strength, controllable and high contents of acid sites.

Recently, we reported the preparation of strongly acidic ILs functionalized, porous polymers with unique characteristics such as controllable hydrophilic–hydrophobic networks, hierarchical porosity, large BET surface areas and strong acid strength, which exhibit even higher activities than their homogeneous counterparts in biodiesel production. [20] In this work, we report here the synthesis of sponge-like nanoporous polymers functionalized with both the sulfonic group and the ionic liquids group (e.g., PDVB–[C₃VP][SO₃CF₃], PDVB: polydivinylbenzene, VP: 4-vinyl pyridine, C₃: 1,3-propanesultone, SO₃CF₃: HSO₃CF₃ anion-exchanger), which were synthesized from solvothermal copolymerization of divinylbenzene (DVB) with functional monomers of 1-vinylimidazolate (vim) or 4-vinyl pyridine (VP) at 100 °C, followed by formation of quaternary ammonium salts using 1,3-propanesultone, and finally ion-exchanged with

HSO₃CF₃, similar to the method we previously reported. The combination of structural characteristics such as large BET surface areas, hierarchical nanopores and much enhanced acid strength, the synthesized nanoporous polymer ionic liquid solid acids show extraordinary catalytic activities and improved reusability in both hydration of alkynes into ketones and hydroamination of amines with phenylacetylene, which were better than those of Amberlyst 15, phosphotungstic acid and sulfuric acid. This work largely expands the wide applications of porous poly(ionic liquid)s solid strong acids in hydration and hydroamination, which develops a green, efficient and cost-effective approach for the conversion of raw feedstocks into high value-added chemicals in the industry.

2. Experimental details

2.1 Chemicals and reagents

All reagents were of analytical grade and used as purchased without further purification. Divinylbenzene (DVB), 1-vinylimidazole, 4-vinyl pyridine Amberlyst 15 were purchased from Sigma-Aldrich Co. Azobisisobutyronitrile (AIBN), ethyl acetate, 1,3-propanesultone, HSO₃CF₃, H₂SO₄, HCl, trifluoroethanol, toluene, phosphotungstic acid and CH₂Cl₂ were obtained from Beijing Chemical Agents Company.

2.2. Samples preparation

Nanoporous polymers could be synthesized from crosslinking of 1-vinylimidazolate (vim) or 4-vinylpyridine (VP) with DVB under solvothermal condition at 100 °C, where

ethyl acetate was employed as the solvent. After quaternary ammonization and anion-exchange treatment, ILs functionalized nanoporous polymers were obtained. [21]

In a typical synthesis of PDVB-VP-0.5 support, 2.0 g of DVB and 0.5 g of VP were introduced into a solution containing 0.07 g of AIBN and 30 mL of ethyl acetate. After stirring at room temperature for 3 h, the mixture was solvothermally treated at 100 °C for 24 h, followed by slow evaporation of the solvent at room temperature for 2 days. The product of PDVB-VP-0.5 with monolithic morphology was obtained. Correspondingly, PDVB-VP-0.2 could be synthesized with similar procedures, where 0.2 g of VP functional monomer was introduced into the mixture. Meanwhile, PDVB-vP-0.2, where 0.2 g of vim functional monomer was introduced into the mixture.

PDVB-[C₃VP][SO₃CF₃]-0.5 (C₃ stands for quaternary ammoniation reagent of 1,3-propanesultone) were synthesized by quaternary ammoniation of pristine PDVB-VP-0.5 support with 1,3-propanesultone, followed by ion exchanging with HSO₃CF₃. Typically, 1.0 g of PDVB-VP-0.5 was added into 25 mL of toluene under vigorous stirring, followed by addition of 0.25 g of 1,3-propanesultone. After quaternary ammoniation at 100 °C for 24 h, the product was collected by filtration, washing with abundant ethanol and drying at 60 °C. The resultant sample was then treated with HSO₃CF₃ in toluene solvent for 24 h at room temperature, washed with abundant CH₂Cl₂ and dried at 80 °C for 8 h under vacuum condition, to give the final solid acid of PDVB-[C₃VP][SO₃CF₃]-0.5. Correspondingly, PDVB-[C₃VP][SO₄H]-0.5 could also

synthesized with similar procedures, where the exchange acid was sulfuric acid. PDVB-[C₃vim][SO₃CF₃]-0.2 was prepared in a similar way, and PDVB-SO₃H was prepared as literature for comparison. [26]

2.3. Characterizations

Nitrogen isotherms were measured using a Micromeritics ASAP 3020M system. The samples were outgassed for 10 h at 150 °C before the measurements. The pore-size distribution was calculated by using Barrett-Joyner-Halenda (BJH) model. FT-IR spectra were collected by using a Bruker 66V FT-IR spectrometer. SEM images were performed on JEOL 6335F field emission scanning electron microscope (FESEM) attached with a Thermo Noran EDX detector. Transmission electron microscopy (TEM) images were performed on a JEM-2100F electron microscope (JEOL, Japan) with an acceleration voltage of 200 kV. CHNS elemental analysis was performed on a Perkin-Elmer series II CHNS analyzer 2400. XPS spectra were performed on a Thermo ESCALAB 250 with Al K α radiation at y = 901 for the X-ray sources, the binding energies were calibrated using the C1s peak at 284.9 eV. ¹³C solid state NMR experiments were carried out on a Varian Infinityplus-300 spectrometer at resonance frequencies of 75.38 MHz. The experiments were recorded using a 4 mm double-resonance MAS probe at a spinning rate of 10 kHz. The pulse width ($\pi/2$) for ¹³C was measured to be 4.1 µs. A contact time of 4 ms and a recycle delay of 3 s were used for the ¹³C CP/MAS measurement.

The solid-state ³¹P NMR spectra over nanoporous polymer based solid acids were performed as the following procedures: prior to the sorption of trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) probe molecules, the samples were placed in glass tubes, which were connected to a vacuum line for dehydration. The samples were kept at a final temperature at 453 K for 24 h, with the pressure below 10⁻³ Pa. Then, they were cooled. The preparation of TMPO adsorbed samples was performed according to the method proposed by Zheng and coworkers. [27] Prior to the NMR experiments, the sealed sample tubes were opened and the samples were transferred into NMR rotors with a Kel-F end cap under a dry nitrogen atmosphere in a glove box. ³¹P NMR experiments were performed on a Bruker Ascend-500 spectrometer at a resonance frequency of 202.34 MHz for ³¹P nucleus, with a 4 mm triple-resonance MAS probe at a spinning rate of 12 kHz. Pulse width ($\pi/2$) for ³¹P was measured to be 4.5 µs. ³¹P MAS NMR spectra with high power proton decoupling were recorded with a recycle delay of 30 s. The chemical shift of ³¹P resonance was externally referenced to 1 M aqueous H₃PO₄.

2.3. Reaction procedures

A typical procedure for the ketone from alkynes hydration is as follows: Catalyst (44 mg) was added into the mixture of phenylacetylene (0.4 mmol) and deionized water (0.8 mmol) in trifluoroethanol (2.0 mL) in a 12 mL microwave tube. The resulting mixture was vigorously stirred at 1000 rpm at controlled temperature. After reaction for 18 h, the reaction mixture was centrifuged and the liquid was transferred to a bottle. Qualitative

analyses of products were examined by a Thermo Trace 1300 GC-ISQ, and quantitative analyses were carried out by a GC-FID (Agilent 7890B). A capillary column HP-5 (methyl polysiloxane, 30 m×0.32 mm×1 μ m) was used to determine the composition of the samples with nitrogen as the carrier gas at a flow rate of 3 mL/min. The temperature of the column, the inlet and the detector was kept at 453, 473, and 523 K, respectively.

3. Results and discussion

3.1 Structural characterizations

Figure 1 shows N₂ sorption-desorption isotherms at 77 K and pore size distribution of the synthesized PDVB-[C₃vim][SO₃CF₃]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.2 and PDVB-[C₃VP][SO₃CF₃]-0.5. Interestingly, all the samples show typical type-IV isotherms with relatively high volume adsorption, which increases steeply at the relative pressure of 0.85–1.0, indicating that abundant meso–macropores were formed in these samples. The pore size distribution cover a wide range from 0 to 300 nm, indicating hierarchical nanopores were formed in these samples. The calculated textural properties of the synthesized POPs are illustrated in Table 1, PDVB based poly(ionic liquid)s solid strong acids show large BET surface areas ranged from 92 to 698 m²/g, the corresponding pore volumes were ranged from 0.27 to 1.49 cm³/g. The pore size distributions curves of PDVB based poly(ionic liquid)s shows dual peaks centered at around 30 and 120 nm, which were distributed in the range of meso-macroporous scale. Combination of large BET surface areas and abundant meso-macropores in PDVB based poly(ionic liquid)s.

which was favorable for the fast diffusion of various substrates, enhancement of accessibility of acidic sites in these samples. The acid contents of PDVB based poly(ionic liquid)s were ranged from 0.95 to 1.83 mmol/g (Table 1), which were lower than variously traditional acid catalysts such as Amberlyst 15 (4.7 mmol/g), H₃O₄₀PW₁₂ (3.5 mmol/g), and H₂SO₄ (10.1 mmol/g).

Figure shows SEM images PDVB-[C₃vim][SO₃CF₃]-0.2 and 2 of PDVB-[C₃VP][SO₃CF₃]-0.2. Both samples showed monolith morphology with rather rough surface and sponge-like characteristics, and abundant macropores were found in these samples. The pore sizes were larger than 100 nm, which was in consistent with N₂ adsorption results. On the other hand, TEM images of the synthesized samples were also systematically studied. TEM is a reliable technique for characterization the internal nanopores of porous materials. Figure 3 shows the TEM images of PDVB-[C3vim][SO3CF3]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.2 and PDVB-[C₃VP][SO₃CF₃]-0.5. Interestingly, all the samples showed the hierarchical meso-macropores characteristics, which are in consistent with N₂ adsorption and SEM results. The mesopore sizes were distributed in the range from 20 to 40 nm, in good agreement with N₂ adsorption results.

Figure 4 shows ¹³C solid state NMR spectrum of PDVB-[C₃VP][SO₃CF₃]-0.2. Notably, the chemical shifts at around 41 and 46 ppm should be assigned to methylene bridges in PDVB-VP support and C₃ alkyl chain. The chemical shift at around 138 ppm should be assigned to the carbon atom connected with nitrogen in pyridinic ring. The

chemical shifts at around 129, 145 and 150 ppm should be assigned to the carbon atoms in DVB and pyridinic ring without connecting with nitrogen. The ¹³C NMR spectrum confirms the successful grafting of strong acid ionic liquids onto the network of PDVB-VP, which gives PDVB-[C₃VP][SO₃CF₃]-0.2 solid acids.

To further confirm the acidity of the synthesized nanoporous poly(ionic liquid)s solid acids. Various characterization of FT-IR, XPS and ³¹P solid state NMR spectra were investigated. Figure 5 shows FT-IR spectra of PDVB-[C₃vim][SO₃CF₃]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.5 and five times recycled PDVB-[C₃VP][SO₃CF₃]-0.5. Notably, the vibration at around 1036 and 1220 cm⁻¹ associated with the C–S and S=O vibrations could be observed in these samples. The vibration at around 1170 cm⁻¹ associated with the C–F and S-O vibration could also be observed in these samples, indicating the successful introduction of acid ionic liquid and sulfonate groups in these samples. [20,26,28,29]

Figure 6 shows X-ray photoelectron spectroscopy (XPS) of PDVB-[C₃VP][SO₃CF₃]-0.5 and PDVB-[C₃vim][SO₃CF₃]-0.5. The samples show the signals of C1s, N1s, O1s, S2p and F1s. The signal of S2p associated with sulfonate group was centered at around 168.5 eV. The C1s peaks at around 284.6, 286.2, and 291.9 eV are assigned to C–C, C–N, and C-F bond. [20] The N1s peaks are centered at around 401.9 eV, which indicates the successful quaternary ammonization of N atom in VP and vim building units with 1,3-propanesultone. [20] The O1s peaks at around 533.0 and 535.0 eV are assigned to the oxygen atoms in the -SO₃H and -SO₂CF₃, respectively. [20] The F1s

peaks at around 535.0 eV are assigned to -SO₂CF₃ group. [20] The above results further confirm the successful grafting of acidic ionic liquid and sulfonate groups in the synthesized PDVB-VP and PDVB-vim.

To further study the acidity of the synthesized solid acids, ³¹P MAS NMR spectra of trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) adsorbed on the synthesized samples was investigated. It is well known that ³¹P MAS solid state NMR spectra is a state of the art technique for acidity characterization of various acid catalysts, and such approach has been extensively used to determine the acidic properties (i.g., acidic type, acidic strength and acidic amount) of various solid acids, including zeolites, sulfated mesoporous metal oxides and heteropolyacids. [27,30-35] Figure 7a shows room temperature ³¹P MAS NMR spectra of TMP adsorbed on PDVB-[C₃VP][SO₃CF₃]-0.5. ³¹P NMR of adsorbed TMP has been demonstrated to be a sensitive and reliable technique for the determination of the Brønsted and Lewis acid sites in the solid acids. The adsorption of TMP on the Brønsted acid will give rise to ³¹P resonances in a rather narrow range (ca. $-2 \sim -5$ ppm), and TMP bound to Lewis acid sites, may result in ³¹P peaks in the range of ca. -20 ~ -60 ppm. [29,30] As shown in Figure 7a, using TMP as a probe molecule, the ³¹P resonance at -3.3 ppm was assigned to the protonated adducts, [(CH₃)₃P-H]⁺, attributed by the reaction of TMP and the Brønsted acidic protons. The ³¹P resonance at -62 ppm was assigned to the physical absorbed TMP in the sample. [34] The ³¹P resonance at 26.8 ppm should be attributed to the signal of mobile TMP in the sample.

[34]

In order to reveal the acid strength of the synthesized PDVB-[C₃VP][SO₃CF₃]-0.5, TMPO as the probe molecular adsorbed on the surface of $PDVB-[C_3VP][SO_3CF_3]-0.5$ was also investigated. The corresponding ³¹P solid-state NMR spectrum was shown in Figure 7b. Interestingly, multiple ³¹P resonances at around 66, 83, 87 ppm were observed in the PDVB- $[C_3VP][SO_3CF_3]$ -0.5, which are assigned to various acid sites with different strength present in the sample. The resonance peak at around 66 ppm may be assigned to carboxylic acid site, which was resulted from partially oxidation of polymer networks. The resonances at around 83 and 87 ppm should be assigned to the grafted sulfonate group and immobilized acid ionic liquid site, which exhibit strong acid strength in comparison with variously reported solid acids. [34] Notably, a ³¹P resonance at -15.5 ppm could be observed in both TMP and TMPO absorbed samples, which may be attributed to the residual phosphorus in the sample. This signal was not derived from the interactions between TMP or TMPO and PDVB-[C₃VP][SO₃CF₃]-0.5. The ³¹P NMR spectra certified the successful introduction of strong acid ionic liquid group in PDVB-[C₃VP][SO₃CF₃]-0.5, in good with FT-IR and XPS results.

3.2 Catalytic performance of porous poly(ionic liquid)s solid strong acids

Firstly, the catalytic performance of nanoporous poly(ionic liquid)s solid strong acids for hydration reaction of phenylacetylene was screened. The results are summarized in Table 2. It was found that under mild condition of reaction temperature of 40 °C for 18 h, PDVB-[C₃VP][SO₃CF₃]-0.5 had the highest catalytic activity in the hydration reaction of

phenylacetylene with a 98 % yield of acetophenone (entries 1-7). This could be directly assigned the high to super acid strength and acid content of the PDVB-[C₃VP][SO₃CF₃]-0.5 catalyst. Although PDVB-[C₃VP][SO₃CF₃]-0.2 has larger BET surface area than PDVB-[C₃VP][SO₃CF₃]-0.5, the limited acid content of $PDVB-[C_3VP][SO_3CF_3]-0.2$ results in its lower activity in comparison with of PDVB-[C₃VP][SO₃CF₃]-0.5. Similar trend could also be found in the PDVB-[C₃vim][SO₃CF₃] samples. Also, relatively large surface area is favorable for exposure of catalytically active sites to reactants, and the abundant mesoporosity has an advantage for mass transfer. Moreover, the hydration of phenylacetylene was also examined using traditional liquid acids (H₂SO₄, heteropolyacid) and solid acid (Amberlyst 15) as catalysts (entries 8-10). It can be seen that PDVB-[C₃VP][SO₃CF₃]-0.5 show much higher catalytic activity than those conventional acid catalysts. It is reasoned that on the basis of the same amount of acidic sites, PDVB-[C₃VP][SO₃CF₃]-0.5 show much enhanced acid strength in comparison with these liquid acids. Also, the heterogeneous catalyst Amberlyst 15 has a relatively large mass transfer resistance, thus resulting in a low yield of acetophenone. Therefore, the above results demonstrated that PDVB-[C₃VP][SO₃CF₃]-0.5 is considered to be a promising superacid catalyst with high activity for hydration of phenylacetylene.

3.3 Optimization of reaction parameters

To optimize the reaction conditions for PDVB-[C₃VP][SO₃CF₃]-0.5 in hydration of phenylacetylene to prepare acetophenone, the effects of solvent, reaction time, reaction temperature, and catalyst loading on the yield of acetophenone were investigated. It can be seen from Table 3 that the solvent has a significant effect on the hydration reaction. Compared with other solvents, trifluoroethanol (CF₃CH₂OH) would be much more favorable to the hydration reaction. Given that alkyne's hydration is generally via a vinyl carbocation intermediate, [36] CF₃CH₂OH has the ability to stabilize a vinyl carbocation intermediate and thereby cause the hydration reaction to proceed more efficient than those of reactions occurring in other solvents.[14] Moreover, the effect of reaction temperature was investigated in the range of 30-60 °C. Figure 8a shows that the hydration could be completely carried out at the optimal reaction temperature of 40 °C, and thus the yield of acetophenone was given to 98 %. This suggests that the favorable temperature in this work is much milder than those in most of reported literatures. Then, Figure 8b shows the effect of catalyst loading on the hydration reaction. With an increase in the relative amount of PDVB-[C₃VP][SO₃CF₃]-0.5, the reaction rate was speeded up and higher thus yield was obtained. For example, when dosage of a the PDVB-[C₃VP][SO₃CF₃]-0.5 increased from 4 to 10 %, the yield significantly increased from 63 to 98 %. However, the catalyst loading was further added to 12 %, only a little increase in the yield was examined. This indicates that over a certain catalyst loading, too much catalyst amount is not imperative. Thus, in view of the cost of catalyst, 10 wt.% is taken as the optimum catalyst loading and used in bulk of hydration experiments. Further,

the reaction time was examined in the range of 12-24 h as shown in Figure 8c. The yield of acetophenone gradually increases to 98 % in the first 18 h but keeps no obvious change at longer reaction times. Thus, 18 h is chosen as the optimal reaction time. The reusability and stability of catalyst are also the key influential factors for potentially industrial application. After the completion of a reaction, the system with catalyst PDVB-[C₃VP][SO₃CF₃]-0.5 was centrifuged. Follow on removing the liquid part and washing silt substance with dichloromethane, dried it in vacuum oven at 50 °C for 6 h. After that, there was a step called catalyst activation. The formed suspension, as the ratio of sample: dichloromethane: triflic acid = 1 g : 25 mL : 2 mL, was stirred at room temperature for 24 h. Next step, centrifuged, washed and dried, recycled PDVB-[C₃VP][SO₃CF₃]-0.5 was used in hydration reaction. The above operation was repeated five times to test its activity as well as stability. As shown in Figure 8d, no significant decrease in the yield of acetophenone was examined during the five successive recycles. Thus, the catalyst PDVB-[C₃VP][SO₃CF₃]-0.5 was stable enough to be recycled for the hydration of phenylacetylene. $PDVB-[C_3VP][SO_3CF_3]-0.5$ was considered to be steadily recycled for the hydration reaction.

3.4 Applicability of PDVB-[C₃VP][SO₃CF₃]-0.5 catalyst

The applicability of PDVB-[C₃VP][SO₃CF₃]-0.5 catalyst was examined for catalyzing hydration of different alkyne substrates. The results were presented in Table 4. With the substituent electron withdrawing group -Br and electron donating groups -CH₃,

-OCH₃ attached to the aromatic ring, the desired ketones could be obtained with excellent yields (85-99 %) under mild conditions (entries 1-4). Besides aromatic alkynes, the scope of this catalytic system was also explored for the hydration of aliphatic alkynes. It was indicated that the hydration of 1-octyne and 1,2-diphenylacetylene required a relatively long time and high temperature, resulting in corresponding the target products with 99% yield (entries 5, 6).

In addition, we tried to inspect the adaptation of PDVB-[C₃VP][SO₃CF₃]-0.5 in a consecutive reaction, hydroamination of phenylacetylene with different amines (Table 5). The catalyst PDVB-[C₃VP][SO₃CF₃]-0.5 showed the high activity with a 81% yield of imine. Notably, the hydroamination of aromatic amines with electron-donating or withdrawing group was further performed with almost 100 % yields, although the reaction time prolongs to 50 h. These results demonstrate that poly(ionic liquid)s solid strong acid catalyst PDVB-[C₃VP][SO₃CF₃]-0.5 exhibits the broad functional group compatibility in the hydration and hydroamination reactions, showing the potential industrial synthesis of high-value added ketones and imines.

4. Conclusions

In summary, hierarchically nanoporous poly(ionic liquid)s solid strong acids were prepared from copolymerization of DVB with nitrogen containing monomers under solvothermal condition without using additional templates, further by post grafting with

strong acid ionic liquid groups. The synthesized porous ionic polymer based solid acids show excellent activities and good reusability in direct hydration of alkynes into ketones without using any co-catalysts, much better than commercial acids such as Amberlyst 15, phosphotungstic acid and sulfuric acid. In addition, the synthesized poly(ionic liquid)s solid acids also show enhanced activities in hydroamination of alkynes with amines. This work develops efficient porous polymers ionic liquid solid strong acids in hydration and hydroamination of alkynes, which offers a green and metal free approach for transformation of low cost alkynes into high-value added ketones in the industry.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573150, 21203122, 21566011, 31570560) and Jiangxi Province Sponsored Programs for Distinguished Young Scholars (20162BCB23026).

References

- L. Hintermann, A. Labonne, Catalytic hydration of alkynes and its application in synthesis. Synthesis, 8 (2007) 1121–1150.
- [2] C. J. Li, B. M. Trost, Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci., 105 (2008) 13197–13202.
- [3] M. Nishizawa, H. Imagawa, H. Yamamoto, A new catalyst for organic synthesis: mercuric triflate. Org. Biomol. Chem., 8 (2009) 511–521
- [4] F. X. Zhu, W. Wang, H. X. Li, Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO₃H functionalized periodic mesoporous organosilica. J. Am. Chem. Soc., 133 (2011) 11632–11640.
- [5] Y. Xu, X. Hu, J. Shao, G. Yang, Y. Wu, Z. Zhang, Hydration of alkynes at room temperature catalyzed by gold (I) isocyanide compounds. Green Chem., 17 (2015) 532–537.
- [6] F. Trentin, A. M. Chapman, A. Scarso, P. Sgarbossa, R. A. Michelin, G. Strukul, D. F. Wass, Platinum (II) diphosphinamine complexes for the efficient hydration of alkynes in micellar media. Adv. Synth. Catal., 354 (2012) 1095–1104.
- [7] A. Mann, A. Wagner, Mild chemo-selective hydration of terminal alkynes catalyzed by AgSbF₆. Chem. Comm., 48 (2012) 434–436.

- [8] F. Chevallier, B. Breit, Self-assembled bidentate ligands for Ru-catalyzed Anti–Markovnikov hydration of terminal alkynes. Angew. Chem., Int. Ed., 118 (2006) 1629–1632.
- [9] F. Boeck, T. Kribber, L. Xiao, L. Hintermann, Mixed phosphane n5-CpRuCl (PR₃)₂ complexes as ambifunctional catalysts for Anti-Markovnikov hydration of terminal alkynes. J. Am. Chem. Soc., 133 (2011) 8138–8141.
- [10] W. Baidossi, M. Lahav, J. Blum, Hydration of alkynes by a PtCl₄-CO catalyst. J. Org. Chem., 62 (1997) 669–672.
- [11] J. W. Hartman, W. C. Hiscox, P. W. Jennings, Catalytic hydration of alkynes with platinum (II) complexes. J. Org. Chem., 58 (1993) 7613–7614.
- [12] Z. W. Chen, D. N. Ye, Y. P. Qian, M. Ye, L. Liu, Highly efficient AgBF₄-catalyzed synthesis of methyl ketones from terminal alkynes. Tetrahedron, 69 (2013) 6116–6120.
- [13] A. Mann, A. Wagner, Mild chemo-selective hydration of terminal alkynes catalysed by AgSbF₆. Chem. Commun., 48 (2012) 434–436.
- [14] W. Liu, H. Wang, C. J. Li, Metal-free Markovnikov-type alkyne hydration under mild conditions. Org. Lett., 18 (2016) 2184–2187.
- [15] T. Tsuchimoto, T. Joya, E. Shirakawa, Y. Kawakami, Brønsted acid-catalyzed hydration of alkynes: A convenient route to diverse carbonyl compounds. Synlett, 12 (2000) 1777–1778.
- [16] A. S. Amarasekara, Acidic ionic liquids. Chem. Rev., 116 (2016) 6133–6183.

- [17] J. P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev., 111 (2011) 3508–3576.
- [18] V. I. Pârvulescu, C. Hardacre, Catalysis in ionic liquids. Chem. Rev., 107 (2007) 2615–2665.
- [19] H. Xing, T. Wang, Z. Zhou, Y. Dai, Novel Brønsted-acidic ionic liquids for esterifications. Ind. Eng. Chem. Res., 44 (2005) 4147–4150.
- [20] F. J. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng, F. Xiao, Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc., 134 (2012) 16948–16950.
- [21] D. W. Kim, D. Y. Chi, Polymer-supported ionic liquids: Imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew. Chem., Int. Ed., 43 (2004) 483–485.
- [22] V. I. Pârvulescu, C. Hardacre, Catalysis in ionic liquids. Chem. Rev., 107 (2007) 2615–2665.
- [23] C. Sievers, O. Jimenez, T. E. Muller, S. Steuernagel, J. A. Lercher, Formation of solvent cages around organometallic complexes in thin films of supported ionic liquid. J. Am. Chem. Soc., 128 (2006) 13990–13991.
- [24] M.-J. Jin, A. Taher, H. J. Kang, M. Choi, R. Ryoo, Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chem., 11 (2009) 309–313.

- [25] F. Shi, Q. Zhang, D. Li, Y.-Q. Deng, Silica-Gel-Confined ionic liquids: A new attempt for the development of supported nanoliquid catalysis. Chem.-Eur. J., 11 (2005) 5279–5288.
- [26] F. J. Liu, X.-J. Meng, Y.-L. Zhang, L.-M. Ren, F. Nawaz, F.-S. Xiao, Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J. Catal., 271 (2010) 52–58.
- [27] A. M. Zheng, S. J. Huang, S. B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state ³¹P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys., 13 (2011) 14889–14901.
- [28] W. Li, Z. J. Jiang, F. Y. Ma, F. Su, L. Chen, S. Q. Zhang, Y. H. Guo, Design of mesoporous SO₄²⁻/ZrO₂-SiO₂ (Et) hybrid material as an efficient and reusable heterogeneous acid catalyst for biodiesel production. Green Chem., 12 (2010) 2135–2138.
- [29] Q. H. Yang, J. Liu, J. Yang, M. P. Kapoor, S. Inagaki, C. Li, Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. J. Catal., 228 (2004) 265–272.
- [30] Y. Chu, Z. Yu, A. Zheng, H. Fang, H. Zhang, S. J. Huang, S. B. Liu, F. Deng, Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by ³¹P NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C, 115 (2011) 7660–7667.

- [31] A. M. Zheng, H. Zhang, X. Lu, S. B. Liu, F. Deng, Theoretical predictions of ³¹P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. J. Phys. Chem. B, 112 (2008) 4496–4505.
- [32] N. Feng, A. M. Zheng, S. J. Huang, H. Zhang, N. Yu, C.Y. Yang, S. B. Liu, F. Deng, Combined solid-state NMR and theoretical calculation studies of Brønsted acid properties in anhydrous 12-molybdophosphoric acid. J. Phys. Chem. C, 114 (2010) 15464–15472.
- [33] A. M. Zheng, S. Li, S. B. Liu, F. Deng, Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res., 49 (2016) 655–663.
- [34] A. M. Zheng, S. B. Liu, F. Deng, ³¹P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev., 117 (2017) 12475–12531.
- [35] A. M. Zheng, S. J. Huang, W. H. Chen, P. H. Wu, H. L. Zhang, H. K. Lee, L. C. de Ménorval, F. Deng, S. B. Liu, ³¹P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. J. Phys. Chem. A, 112 (2008) 7349–7356.
- [36] V. Lucchini, G. Modena, Kinetics of acid-catalyzed hydration of acetylene. Evidence for the presence in the solution phase of unsubstituted vinyl cation. J. Am. Chem. Soc., 112 (1990) 6291–6296.

Samples	Acid content	SBET ^b	V_p^c	$D_{p}(nm)^{d}$
	(mmol/g) ^a	(m ² /g)	(cm ³ /g)	
PDVB-[C ₃ vim][SO ₃ CF ₃]-0.2	0.95	698	1.49	32.5&126.5
PDVB-[C3vim][SO3CF3]-0.5	1.78	279	0.73	29.4&123.3
PDVB-[C ₃ VP][SO ₃ CF ₃]-0.2	0.98	196	0.61	30.9&126.5
PDVB-[C ₃ VP][SO ₃ CF ₃]-0.5	1.83	92	0.27	28.4&122.1
Amberlyst 15	4.7	45	0.31	40
H ₃ O ₄₀ PW ₁₂ ^e	3.5	\rightarrow	-	-
H2SO4 ^e	10.1	-	-	-

Table 1. The textural and acidic parameters of various acid catalysts.

^{*a*} Measured by acid-base titration.

^{*b*} Surface area calculated from the BET equation in the relative pressure range of $0.05 \sim 0.20$.

^{*c*} Single point total pore volume calculated at the relative pressure of 0.99.

^{*d*} Pore size distribution estimated from BJH model.

^{*e*} Calculated from molecular formula.

Entry	Catalysts	Conversion (%)	Yield (%)
1	PDVB-[C ₃ VP][SO ₃ CF ₃]-0.5	99	98
2	PDVB-[C ₃ VP][SO ₄ H]-0.5	90	81
3	PDVB-[C ₃ VP][SO ₃ CF ₃]-0.2	95	89
4	PDVB-[C3vim][SO3CF3]-0.5	96	90
5	PDVB-[C ₃ vim][SO ₄ H]-0.5	53	45
6	PDVB-[C3vim][SO3CF3]-0.2	67	63
7	PDVB-SO ₃ H	39	35
8	Amberlyst 15	18	8
9	H3O40PW12	78	56
10 ^b	Sulfuric acid	62	36

a.

 a Reaction condition: Phenylacetylene (0.4 mmol), H2O (0.8 mmol), CF3CH2OH (2 mL), catalyst (10 wt.% of phenylacetylene), 40 °C, 18 h. b Catalyst (0.0005g).

Entry	Solvent	Yield (%)
1	CF ₃ CH ₂ OH	97
2	H ₂ O	<1
3	CH ₃ CH ₂ OH	<1
4	DMSO	<1
5	CH ₃ CN	<1
6	toluene	<1
7	-	<1

Table 3. Hydration reaction of phenylacetylene over different solvents ^a.

^a Reaction condition: Phenylacetylene (0.4 mmol), H₂O (0.8 mmol), solvent (2 mL),

PDVB-[C₃VP][SO₃CF₃]-0.5 catalyst (10 wt.% of phenylacetylene), 40 °C, 18 h.

Entry	Alkyne	Product	Yield (%)
1		$\bigwedge \rightarrow \checkmark^{\mathrm{o}}$	98
2		\sim	99
3 ^b	0-		- 85
4 ^c	Br-	Br	99
5 ^d		o V	99
6 ^e			99

Table 4. Hydration of various alkynes catalyzed by PDVB-[C₃VP][SO₃CF₃]-0.5 ^a.

^a Reaction condition: Alkyne (0.4 mmol), H₂O (0.8 mmol), CF₃CH₂OH (2 mL), catalyst (10 wt.% of alkyne), 40 °C, 18 h. ^{b,c} 50 °C. ^{d,e} 90 °C, 24 h.

Table 5. Hydroamination of phenylacetylene with various amines ^a.

^a Reaction condition: Phenylacetylene (0.4 mmol), H₂O (0.8 mmol), amine (0.4 mmol), CF₃CH₂OH (2 mL), catalyst (0.048 g), 110 °C, 50 h.

Figure 1. N2 adsorption-desorption isotherms and pore size distribution obtained forPDVB-[C3vim][SO3CF3]-0.2,PDVB-[C3VP][SO3CF3]-0.2and

PDVB-[C₃VP][SO₃CF₃]-0.5.

Figure 2. SEM images of (a) PDVB-[C₃vim][SO₃CF₃]-0.2 and (b) PDVB-[C₃VP][SO₃CF₃]-0.2.

 Figure 3.
 TEM images of (A&B)
 PDVB-[C_3vim][SO_3CF_3]-0.2, (C)

 PDVB-[C_3VP][SO_3CF_3]-0.2 and (D)
 PDVB-[C_3VP][SO_3CF_3]-0.5.

Figure 5. FT-IR spectra of PDVB-[C₃vim][SO₃CF₃]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.2, PDVB-[C₃VP][SO₃CF₃]-0.5 and five recycled PDVB-[C₃VP][SO₃CF₃]-0.5.

Figure 6. X-ray photoelectron spectroscopy of (a) PDVB-[C₃vim][SO₃CF₃]-0.5 and (b) PDVB-[C₃VP][SO₃CF₃]-0.5.

Figure 7. Room temperature ³¹P MAS NMR spectra of (a) TMP and (b) TMPO adsorbed on PDVB-[C₃VP][SO₃CF₃]-0.5.

Figure 8. Effect of (a) reaction temperature, (b) catalyst loading, (c) reaction time on hydration of phenylacetylene, and (d) recycling test of PDVB-[C₃VP][SO₃CF₃]-0.5.