Accepted Manuscript

An efficient synthesis of dihydrofuranyl spirooxindoles from isatin-derived propargylic alcohols and 1,3-dicarbonyls

Hwa Jung Roh, Su Yeon Kim, Beom Kyu Min, Jae Nyoung Kim

PII:	S0040-4039(16)31558-1
DOI:	http://dx.doi.org/10.1016/j.tetlet.2016.11.077
Reference:	TETL 48363
To appear in:	Tetrahedron Letters
Received Date:	25 October 2016
Revised Date:	16 November 2016
Accepted Date:	18 November 2016

Please cite this article as: Jung Roh, H., Yeon Kim, S., Kyu Min, B., Nyoung Kim, J., An efficient synthesis of dihydrofuranyl spirooxindoles from isatin-derived propargylic alcohols and 1,3-dicarbonyls, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.11.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters journal homepage: www.elsevier.com

An efficient synthesis of dihydrofuranyl spirooxindoles from isatin-derived propargylic alcohols and 1,3-dicarbonyls

Hwa Jung Roh, Su Yeon Kim, Beom Kyu Min, Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Various dihydrofuranyl spirooxindoles have been synthesized via montmorillonite K-10catalyzed propargylation of 1,3-dicarbonyl compounds with isatin-derived propargylic alcohols and subsequent base-mediated 5-*exo-dig* cyclization.

2016 Elsevier Ltd. All rights reserved.

1

Spirooxindoles Dihydrofuran Propargylic alcohols 1,3-Dicarbonyls

Keywords:

Various types of spirooxindoles exist in a large number of natural products and biologically interesting compounds.¹ Thus, developments of efficient synthetic protocols to access these important motifs have received much attention over the past years.¹⁻⁴ Especially, spirooxindoles bearing five-membered oxacycles have been found in many biologically important synthetic and natural compounds.^{3,4} The five-membered oxacyclic moieties found in reported spirooxindoles include 2,3-dihydrofurans,^{3a-e,r} 2,5-dihydrofurans,^{3f-q} γ -butyrolactones,^{4a-c} α -methylene- γ -butyrolactones,^{4d-h} tetrahydrofurans,^{4i-k} butenolides,^{4l,m} and 1,3-dioxolanes.^{3o,p} During our recent synthesis of 3-naphtho[2,1-*b*]furanyl-2-

During our recent synthesis of 3-naphtho[2,1-*b*]furanyl-2oxindoles, we found that 2,3-dihydrofuranyl spirooxindole could be synthesized readily from 3-(*ortho*-hydroxyaryl)-2-oxindole by base-catalyzed cyclization reaction,⁵ as shown in Scheme 1. Bi and co-workers also reported the synthesis of spirodihydrofurans by base-catalyzed cyclization reaction of the propargylated acetylacetone derivative.⁶ In these contexts, we envisioned that dihydrofuranyl spirooxindole **4a** could be synthesized by basemediated 5-*exo-dig* cyclization reaction of propargylated acetylacetone derivative **3a**, as also shown in Scheme 1.

The propargylation of acetylacetone (**2a**), as a typical 1,3dicarbonyl compound, with propargylic alcohols has been extensively studied, as shown in Scheme 2.⁷ Secondary propargylic alcohols afforded the corresponding α -adducts in good yields in most papers.^{7a-i} However, the reaction with tertiary propargylic alcohols afforded different products depending on the substrates. Takai and co-workers reported the synthesis of α -

Scheme 1. Synthetic rationale of dihydrofuranyl spirooxindole 4a.

adduct in low yield (10%) from 2-methyl-4-phenylbut-3-yn-2-ol by rhenium-catalyzed reaction.⁷ⁱ Roy and co-workers obtained the same α -adduct in moderate yield (45%) by using Ir-Sn catalyst.^{7j} In contrast to the dimethyl derivative,^{7i,j} the reaction with 1,1,3-triphenylprop-2-yn-1-ol gave allene or its isomerized diene derivative.^{7a-e} Thus, at the outset of this study, we examined the synthesis of starting material **3a** from isatin-derived propargylic alcohol **1a**.

^{*}Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389; E-mail address: kimjn@chonnam.ac.kr (J. N. Kim)

Tetrahedron

Scheme 2. Propargylation of 2a with various propargylic alcohols.

The reaction of isatin-derived propargylic alcohol **1a** and acetylacetone (**2a**) was examined in the presence of some representative acid catalysts, as shown in Table 1. The reaction in the presence of *p*-TsOH (CH₃CN, reflux, entry 1) afforded **3a** in a low yield (14%) for 10 h. The reactions using FeCl₃ (toluene, 80 °C, entry 2) or Yb(OTf)₃ (CH₃NO₂, 80 °C, entry 3) provided **3a** in low yields. Trifluoroacetic acid was not an efficient catalyst for the reaction (entry 4). To our delight, the use of montmorillonite K-10 (MK10, 300%, *w/w*) in 1,2-dichloroethane (DCE, reflux, entry 5) afforded **3a** in moderate yield (47%) in short time (2 h).⁸ The yield could be increased by using **2a** in an excess amount (3.0 equiv.) up to 64% (entry 6) in short time (1 h). When we used Boc carbonate of **1a**, the yield of **3a** increased slightly (entry 7). The same yield of **3a** was obtained by using 5.0

Table 2. Synthesis of α -adduct 3.

Entry	Conditions	3a (%)	
1	2a (1.0 equiv.), <i>p</i> -TsOH (5 mol%), CH ₃ CN, reflux, 10 h	14 ^a	
2	$f2a$ (1.0 equiv.), FeCl $_3$ (5 mol%), toluene, 80 °C, 10 h	18 ^a	
3	2a (1.0 equiv.), Yb(OTf) ₃ (5 mol%), CH ₃ NO ₂ , 80 °C, 2 h	29	
4	2a (1.0 equiv.), CF ₃ COOH (20 mol%), DCE, reflux, 10 h	<5ª	
5	2a (1.0 equiv.), MK10 (300 <i>%, w/w</i>), DCE, reflux, 2 h	47	
6	2a (3.0 equiv.), MK10 (300%, <i>w/w</i>), DCE, reflux, 1 h	64	
7	2a (3.0 equiv.), MK10 (300%, <i>w/w</i>), DCE, reflux, 1 h	65 ^b	
8	2a (5.0 equiv.), MK10 (300 <i>%, w/w</i>), DCE, reflux, 1 h	64	
^a Appreciable amount of 1a remained.			

Table 1. Optimization study for the synthesis of α -adduct **3a**.

^b**1a**-Boc derivative was used.

equiv. of **2a** (entry 8). From the results, we decided to use MK10 in DCE with 3.0 equiv. of **2a** (entry 6).⁹

Thus, some representative α -adducts **3b-3l** were prepared in moderate to good yields by the reactions of isatin-derived propargylic alcohols **1a-1j** and 1,3-dicarbonyl compounds **2a-2c** under the optimized condition, as shown in Table 2.¹⁰ Acetylacetone (**2a**), dibenzoylmethane (**2b**), and ethyl acetoacetate (**2c**) were used as representative 1,3-dicarbonyl compounds. The reactions of **1b** and **1c** with **2a** afforded **3b** (67%) and **3c** (63%) in moderate yields. However, the yield of 5-methoxyisatin derivative **3d** (47%) was somewhat lower than other entries. Three arylacetylene and two aliphatic alkyne derivatives **3e-3i** were synthesized in moderate to good yields (55-83%). The reactions of **1a** with **2b** and **2c** afforded **3j** (39%) and **3k** (48%) in low yields presumably due to steric reason. The reaction of *N*-unprotected derivative **3a**.

^aConditions: Propargyl alcohol **1** (1.0 mmol), 1,3-dicarbonyls **2** (3.0 mmol), montmorillonite K-10 (300%, w/w), DCE, reflux, 1 h. ^bReaction time was 8 h. ^cReaction time was 2 h. ^dInseparable 1:0.9 diastereomeric mixture.

Table 3. Synthesis of spirooxindoles 4.

^aConditions: substrate **3** (0.5 mmol), K_2CO_3 (0.5 mmol), CH_3CN , reflux, 1 h. ^bReaction time was 3 h. ^cReaction time was 8 h.

A following base-mediated cyclization of 3a to 4a was examined under the optimized reaction condition in our previous cyclization reaction of 3-(ortho-hydroxyaryl)-2-oxindoles.⁵ To our delight, the reaction of 3a in CH₃CN in the presence of K₂CO₃ (1.0 equiv.) afforded spirooxindole 4a in good yield (91%) in short time (1 h), as shown in Table 3.^{10,11} The spirooxindole 4a was obtained as a single isomer, and the stereochemistry of the benzylidene moiety would be Z-form presumably due to steric hindrance between the oxindole moiety and the phenyl group of benzylidene moiety, as previously reported by Bi⁶ and us⁵ in a similar system. Three 5-substituted isatin derivatives 3b-3d afforded the corresponding spirooxindoles 4b-4d in high yields (94-95%). Spirooxindoles 4e-4i were synthesized in good yields (79-92%) from the corresponding α -adducts **3e-3i** bearing various arylacetylene and aliphatic alkyne moieties. The cyclization of 3h and 3i required somewhat longer reaction time (3-8 h) than other entries. In addition, sterically congested compounds 4j (91%) and 4k (85%) were produced in good yields. The reaction of N-unprotected derivative 31 afforded 41 in somewhat lower yield (62%) than other entries.

Scheme 3. Synthesis of spirooxindole 4m.

It is interesting to note that the formation of α -adduct **3m** was not observed in the reaction of **1a** and dimedone (**2d**). The spirooxindole **4m** was obtained directly in moderate yield (55%), as shown in Scheme 3. The α -adduct **3a** might be present in its intramolecular hydrogen-bonded six-membered structure and the cyclization of **3a** to **4a** would be difficult, as shown in Scheme 3. Actually, **3a** was not converted to **4a** under the influence of MK10 (DCE, reflux) even after 20 h. As compared to **3a**, an intramolecular hydrogen-bond was not possible for the α -adduct **3m**. Thus, the cyclization of an α -adduct intermediate **3m** to the spirooxindole **4m** could proceed under the same acidic reaction condition.^{12,13}

In summary, various dihydrofuranyl spirooxindoles have been synthesized via montmorillonite K-10-catalyzed propargylation of 1,3-dicarbonyl compounds with isatin-derived propargylic alcohols and subsequent base-mediated 5-*exo-dig* cyclization.

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2015R1A4A1041036 and NRF-2014R1A1A2053606). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- For reviews on spirooxindoles, see: (a) Yu, B.; Yu, D.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2015, 97, 673; (b) Santos, M. M. M. Tetrahedron 2014, 70, 9735; (c) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F., III ACS Catal. 2014, 4, 743; (d) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023; (e) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104; (f) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012, 10, 5165; (g) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003; (h) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
- For our recent synthesis of spirooxindoles, see: (a) Kim, K. H.; Moon, H. R.; Lee, J.; Kim, J.; Kim, J. N. Adv. Synth. Catal. 2015, 357, 1532;
 (b) Kim, K. H.; Moon, H. R.; Lee, J.; Kim, J. N. Adv. Synth. Catal. 2015, 357, 701; (c) Lim, J. W.; Moon, H. R.; Kim, S. Y.; Kim, J. N. Tetrahedron Lett. 2016, 57, 133.
- For similar spirooxindoles bearing dihydrofuran moiety, see: (a) Liu, Y.-L.; Wang, X.; Zhao, Y.-L.; Zhu, F.; Zeng, X.-P.; Chen, L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J. Angew. Chem. Int. Ed. 2013, 52, 13735; (b) Liu, Z.; Fang, J.; Yan, C. Chin. J. Chem. 2013, 31, 1054; (c) Zhou, R.; Zhang, K.; Chen, Y.; Meng, Q.; Liu, Y.; Li, R.; He, Z. Chem. Commun. 2015, 51, 14663; (d) Basavaiah, D.; Badsara, S. S.; Sahu, B. C.; Chem. Eur. J. 2013, 19, 2961; (e) Savitha, G.; Niveditha, S. K.;

4

ACCEPTED MANUSCRIPT

Tetrahedron

Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2007, 48, 2943: (f) Alcaide, B.; Almendros, P.; Gonzalez, A. M.; Luna, A.; Martinez-Ramirez, S. Adv. Synth. Catal. 2016, 358, 2000; (g) Alcaide, B.; Almendros, P.; Luna, A.; Prieto, N. Org. Biomol. Chem. 2013, 11, 1216; (h) Alcaide, B.; Almendros, P.; Luna, A.; Gomez-Campillos, G.; Torres, M. R. J. Org. Chem. 2012, 77, 3549; (i) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem. 2006, 71, 2346; (j) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. Chem. Eur. J. 2005, 11, 5708; (k) Liu, J.; Peng, H.; Yang, Y.; Jiang, H.; Yin, B. J. Org. Chem. 2016, 81, 9695; (1) Liu, J.; Xu, X.; Li, J.; Liu, B.; Jiang, H.; Yin, B. Chem. Commun. 2016, 52, 9550; (m) Huang, L.; Zhang, X.; Li, J.; Ding, K.; Li, X.; Zheng, W.; Yin, B. Eur. J. Org. Chem. 2014, 338; (n) Yin, B.-L.; Lai, J.-Q.; Zhang, Z.-R.; Jiang, H.-F. Adv. Synth. Catal. 2011, 353, 1961; (o) Muthusamy, S.; Karikalan, T. Tetrahedron 2012, 68, 1443; (p) Muthusamy, S.; Ramkumar, R.; Mishra, A. K. Tetrahedron Lett. 2011, 52, 148; (q) Muthusamy, S.; Gunanathan, C.; Nethaji, M. J. Org. Chem. 2004, 69, 5631. During preparation of this manuscript, Kumarswamyreddy and Kesavan reported Cu(OTf)2mediated synthesis of spirooxindol[2,1-b]furan derivatives, see: (r) Kumarswamyreddy, N.; Kesavan, V. Eur. J. Org. Chem. 2016, 5301.

- For similar spirooxindoles bearing γ -butyrolactone, α -methylene- γ butyrolactone, tetrahydrofuran, and butenolide moieties, see: (a) Cerisoli, L.; Lombardo, M.; Trombini, C.; Quintavalla, A. Chem. Eur. J. 2016, 22, 3865; (b) Li, G.; Huang, L.; Xu, J.; Sun, W.; Xie, J.; Hong, L.; Wang, R. Adv. Synth. Catal. 2016, 358, 2873; (c) Buttachon, S.; Chandrapatya, A.; Manoch, L.; Silva, A.; Gales, L.; Bruyere, C.; Kiss, R.; Kijjoa, A. Tetrahedron 2012, 68, 3253; (d) Rana, S.; Blowers, E. C.; Tebbe, C.; Contreras, J. I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R. N.; Arnst, J. L.; Munkarah, A. R.; Rattan, R.; Natarajan, A. J. Med. Chem. 2016, 59, 5121; (e) Jayakumar, S.; Muthusamy, S.; Prakash, M.; Kesavan, V. Eur. J. Org. Chem. 2014, 1893; (f) Takahashi, M.; Murata, Y.; Yagishita, F.; Sakamoto, M.; Sengoku, T.; Yoda, H. Chem. Eur. J. 2014, 20, 11091; (g) Murata, Y.; Takahashi, M.; Yagishita, F.; Sakamoto, M.; Sengoku, T.; Yoda, H. Org. Lett. 2013, 15, 6182; (h) Rana, S.; Natarajan, A. Org. Biomol. Chem. 2013, 11, 244; (i) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129, 1020; (j) Zhou, M.; Miao, M.-M.; Du, G.; Li, X.-N.; Shang, S.-Z.; Zhao, W.; Liu, Z.-H.; Yang, G.-Y.; Che, C.-T.; Hu, Q.-F.; Gao, X.-M. Org. Lett. 2014, 16, 5016; (k) Tang, Z.; Liu, Z.; An, Y.; Jiang, R.; Zhang, X.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2016, 81, 9158; (1) Li, J.; Liu, Y.; Li, C.; Jia, X. Chem. Eur. J. 2011, 17, 7409; (m) Li, J.; Liu, Y.; Li, C.; Jie, H.; Jia, X. Green Chem. 2012, 14, 1314.
- Roh, H. J.; Lim, J. W.; Ryu, J. Y.; Lee, J.; Kim, J. N. *Tetrahedron Lett.* 2016, *57*, 4280.
- Ma, Q.; Wang, Y.; Zhao, Y.; Liao, P.; Sun, B.; Bi, X. Eur. J. Org. Chem. 2014, 4999.
- For introduction of 1,3-dicarbonyl compounds at the α-position of propargylic alcohols, see: (a) Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Org. Lett. 2007, 9, 727; (b) Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron 2007, 63, 11636; (c) Funabiki, K.; Komeda, T.; Kubota, Y.; Matsui, M. Tetrahedron 2009, 65, 7457; (d) Maiti, S.; Biswas, S.; Jana, U. Synth. Commun. 2011, 41, 243; (e) Chatterjee, P. N.; Roy, S. Tetrahedron 2011, 67, 4569; (f) Yadav, J. S.; Reddy, B. V. S.; Pandurangam, T.; Rao, K. V. R.; Praneeth, K.; Kumar, G. G. K. S. N.; Madavi, C.; Kumwar, A. C. Tetrahedron Lett. 2008, 49, 4296; (g) Aridoss, G.; Laali, K. K. Tetrahedron Lett. 2011, 52, 6859; (h) Reddy, C. R.; Vijaykumar, J.; Gree, R. Synthesis 2010, 3715; (i) Kuninobu, Y.; Ueda, H.; Takai, K. Chem. Lett. 2008, 37, 878; (j) Maity, A. K.; Chatterjee, P. N.; Roy, S. Tetrahedron 2013, 69, 942.
- For use of montmorillonite catalyst in nucleophilic substitution reaction of alcohols with 1,3-dicarbonyls, see: (a) Wang, J.; Masui, Y.; Onaka, M. Synlett 2010, 2493; (b) Motokura, K.; Nakagiri, N.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006; (c) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem. Int. Ed. 2006, 45, 2605.
- 9. The reaction of **1a** and **2a** under typical Mitsunobu reaction conditions (PPh₃, diethyl azodicarboxylate) in toluene at room temperature did not produce **3a** at all.
- 10. Typical procedure for the synthesis of 3a and 4a: A stirred mixture of 1a (263 mg, 1.0 mmol), acetylacetone (2a, 300 mg, 3.0 mmol), montmorillonite K-10 (790 mg, 300%, w/w) in ClCH₂CH₂Cl (3.0 mL) was heated to reflux for 1 h. The reaction mixture was filtered through a pad of Celite and washed thoroughly with ClCH₂CH₂Cl. After removal of solvent and column chromatographic purification process (CH₂Cl₂/EtOAc, 40:1) compound 3a was obtained as a pale yellow solid, 221 mg (64%). A stirred mixture of 3a (173 mg, 0.5 mmol) and K₂CO₃ (69 mg, 0.5 mmol) in CH₃CN (2.0 mL) was heated to reflux for 1 h. After the usual aqueous extractive workup and column

chromatographic purification process (hexanes/EtOAc, 1:1) compound **4a** was obtained as a white solid, 157 mg (91%). Other compounds were synthesized similarly, and the selected spectroscopic data of **3a** and **4a** are as follows.

Compound **3a**: 64%; pale yellow solid, mp 125-127 °C; IR (KBr) 1722, 1611, 1493, 1471, 1354 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.19 (s, 3H), 2.57 (s, 3H), 3.31 (s, 3H), 4.68 (s, 1H), 6.89 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.25-7.35 (m, 4H), 7.36-7.43 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 27.1, 30.2, 33.3, 46.4, 70.4, 84.9, 85.1, 108.7, 121.9, 123.1, 124.5, 128.1, 128.3, 128.8, 129.1, 131.8, 143.6, 173.5, 200.5, 203.2; ESIMS *m*/*z* 346 [M+H]⁺. Anal. Calcd for C₂₂H₁₉NO₃: C, 76.50; H, 5.54; N, 4.06. Found: C, 76.78; H, 5.81; N, 3.92.

Compound **4a**: 91%; white solid, mp 230-232 °C; IR (KBr) 1720, 1690, 1631, 1610, 1493, 1385, 1370, 1345, 1230 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.03 (s, 3H), 2.59 (s, 3H), 3.30 (s, 3H), 5.08 (s, 1H), 6.91 (d, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 15.5, 27.1, 29.0, 62.8, 104.4, 108.6, 118.7, 123.5, 123.7, 127.0, 128.4, 128.6, 129.3, 131.9, 133.8, 144.1, 154.2, 167.8, 175.4, 191.4; ESIMS *m*/z 346 [M+H]⁺. Anal. Calcd for C₂₂H₁₉NO₃: C, 76.50; H, 5.54; N, 4.06. Found: C, 76.58; H, 5.73; N, 4.17.

- For metal-free 5-exo-dig cyclizations, see: (a) Taylor, C.; Bolshan, Y. Tetrahedron Lett. 2015, 56, 4392; (b) Kraus, G. A.; Wie, J.; Thite, A. Synthesis 2008, 2427; (c) Chenevert, R.; Page, J.; Plante, R.; Beaucage, D. Synthesis 1982, 75.
- For acid-catalyzed 5-exo-dig cyclization, see: (a) Imagawa, H.; Kotani, S.; Nishizawa, M. Synlett 2006, 642; (b) Liu, C.-R.; Li, M.-B.; Yang, C.-F.; Tian, S.-K. Chem. Eur. J. 2009, 15, 793; (c) Yuan, F.-Q.; Han, F.-S. Adv. Synth. Catal. 2013, 355, 537; (d) Wang, Y.; Bi, X.; Li, D.; Liao, P.; Wang, Y.; Yang, J.; Zhang, Q.; Liu, Q. Chem. Commun. 2011, 47, 809.
- 13. The reaction of **1a** with other cyclic 1,3-dicarbonyl compounds such as 1,3-cyclohexanedione or *N*,*N*-dimethylbarbituric acid was very sluggish, and isolation of the corresponding α -adducts or spirooxindoles failed. The reason is not clear at this stage, and further studies are currently underway.

Supplementary Data

Supplementary data (experimental procedures and characterization data for compounds **1g-1i**, **3a-3l**, and **4a-4m**) associated with this article can be found, in the online version, at xxxxxxxxxxx.

Jose Correction of the second second