Tetrahedron 70 (2014) 4478-4484

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Palladium(II)-catalyzed cyclization of heterocyclic ketene aminals with (E)-ethyl 2,3-diiodoacrylates: selective synthesis of bicyclic pyrroles and bicyclic pyridones

Ling Hu[†], Kai-Min Wang[†], Min Zhao, Xin-Rong Lin, Hong-You Zhu, Sheng-Jiao Yan *, Jun Lin *

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China

A R T I C L E I N F O

Article history: Received 28 December 2013 Received in revised form 7 May 2014 Accepted 8 May 2014 Available online 16 May 2014

Keywords: Bicyclic pyrroles Bicyclic pyridones Heterocyclic ketene aminals (E)-Ethyl 2,3-diiodoacrylates

ABSTRACT

A concise and efficient synthesis of novel bicyclic pyrroles has been achieved by PdCl₂-catalyzed cyclic condensation of six-membered heterocyclic ketene aminals (HKAs) or seven-membered HKAs with ethyl 2,3-diiodoacrylate and diethyl 2,3-diiodofumarate in the presence of Cs₂CO₃, respectively. A series of novel bicyclic pyridones have also been obtained via five-membered HKAs with diethyl 2,3-diiodofumarate under the optimized conditions in moderate yields. These reactions are the first application of a transition metal to catalyze the building blocks HKAs to form the bicyclic pyrrole library via condensation reaction.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pyrrole derivatives are a class of important organic compounds and serve as key structural building blocks in numerous natural products, synthetic biological medicinal agents, and functional materials.^{1–5} As a result, more and more pyrroles have been synthesized by various methods including Knorr,⁶ Paal–Knorr,^{1e,7} and multicomponent reactions.⁸ Bicyclic pyrroles, one class of pyrrole derivatives, are particularly important due to their broad spectrum of excellent biological activities.⁹ Some characteristic examples of these compounds are shown in Fig. 1, i.e., (–)-longmide B methyl ester (with cytotoxic activity)^{9a} and axinohydantion (which inhibits protein kinase C).^{9b,10}

Similarly, bicyclic pyridones represent a class of important organic molecules, which have attracted the interest of both medicinal and synthetic chemists. Bicyclic pyridones are core structures in many drugs, including anti-cancer compounds¹¹ and acetylcholinesterase inhibitors^{12,13} (Fig. 1, A58365A). Therefore, various synthetic methods have been developed to prepare bicyclic pyridones¹⁴ including [2+2+2] cycloaddition of alkynes and

0040-4020/\$ — see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.05.032

isocyanates,^{14a–d} acyl-ketene imine cyclocondensation,^{14e} 6π -electrocyclic ring closure,^{14f} Diels–Alder cyclization,^{14g} rhodiumcatalyzed tandem reaction of cyclization–cycloaddition-ring opening,^{14h} and so on.^{14i,j} Among them, the heterocyclic ketene aminals (HKAs) based methods developed by the Huang¹⁵ group have been received wide attention. However, these methods usually suffer from the use of expensive metal reagents, tedious workup procedures, or the products lack of diversity. Hence, it is still important to explore efficient and novel synthetic methods in order to meet present drug discovery and high-throughput screening needs.

HKAs are fascinating and versatile intermediates of a variety of fused heterocyclic compounds,¹⁶ which are frequently found in pharmacophores.^{17–23} However, palladium(II) catalyzed bicyclic pyrroles formation from HKAs has not been reported. Moreover, in

^{*} Corresponding authors. E-mail addresses: yansj@ynu.edu.cn (S.-J. Yan), linjun@ ynu.edu.cn (J. Lin).

 $^{^{\}dagger}\,$ The two authors contributed equally to this paper.

continuation of our research interests regarding the development of the synthesis and applications of HKAs for new drug discovery,²⁴ herein we report a PdCl₂ catalyzed synthesis of bicyclic pyrroles from HKAs.

2. Result and discussion

PdCl₂-catalyzed cyclic condensation of HKAs with **2a** and **2b** was investigated, respectively. The method is efficient and operationally simple. New pyrroles **3a–t** were synthesized in 71–93% yields and five new bicyclic pyridones **4a–e** were also constructed in 60–67% yields.

In the initial experiment, HKAs **1a** and ethyl 2,3-diiodofumarate **2a** were chosen as the model substrates to optimize the reaction conditions (catalyst, base, solvent, and temperature). The results were listed in Table 1. The reaction was not able to proceed in the absence of catalyst (Table 1, entries 1–12, respectively). When the catalyst PdCl₂ and the base Cs₂CO₃ were added with EtOH as the solvent, we obtained product **3a** in 43% yield. DMSO was found to be the best solvent, and the yield was improved to 73% (Table 1, entry 15). Next, the reaction was performed without base and gave lower yield (Table 1, entry 17), indicating base could efficiently promote this reaction. However, the reaction did not give

Table 1

Optimization of the reaction conditions

$ \begin{array}{c} & & & \\ & &$										
	2a	3a								
Entry	Solvent	Catalyst	Base	<i>T</i> (°C)	Time (h)	Yield ^h (%)				
1 ^a	EtOH	_	_	100	20	n.r.				
2 ^a	Toluene	—	—	100	18	n.r.				
3ª	DMSO	—	—	100	21	n.r.				
4 ^a	Dioxane	_	_	100	20	n.r.				
5 ^a	EtOH	—	Et ₃ N ^e	100	16	n.r.				
6 ^a	Toluene	—	Et ₃ N ^e	100	21	n.r.				
7 ^a	DMSO	—	Et ₃ N ^e	100	18	n.r.				
8 ^a	Dioxane	_	Et₃N ^e	100	15	n.r.				
9 ^a	EtOH	_	CS ₂ CO ₃ ^e	100	17	n.r.				
10 ^a	Toluene	_	CS ₂ CO ₃ ^e	100	22	n.r.				
11 ^a	DMSO	—	CS ₂ CO ₃ ^e	100	20	n.r.				
12 ^a	Dioxane	—	CS ₂ CO ₃ ^e	100	20	n.r.				
13 ^a	EtOH	PdCl ₂ ^d	CS ₂ CO ₃ ^e	100	8	43				
14 ^a	Toluene	PdCl ₂ ^d	$CS_2CO_3^e$	100	6	60				
15 ^a	DMSO	PdCl ₂ ^d	$CS_2CO_3^e$	100	5	73				
16 ^a	Dioxane	PdCl ₂ ^d	CS ₂ CO ₃ ^e	100	6	52				
17 ^a	DMSO	PdCl ₂ ^d	_	100	8	38				
18 ^a	DMSO	PdCl ₂ ^d	Et ₃ N ^e	100	8	41				
19 ^a	DMSO	PdCl ₂ ^d	$CS_2CO_3^{f}$	100	5	71				
20 ^a	DMSO	PdCl ₂ ^d	$CS_2CO_3^g$	100	5	58				
21 ^b	DMSO	PdCl ₂ ^d	$CS_2CO_3^e$	100	5	82				
22 ^c	DMSO	PdCl ₂ ^d	$CS_2CO_3^e$	100	5	70				
23 ^b	DMSO	PdCl ₂ ^d	CS ₂ CO ₃ ^e	130	5	61				
24 ^b	DMSO	PdCl ₂ ^d	CS ₂ CO ₃ ^e	rt	24	n.r.				
25 ^b	DMSO	PdCl ₂ ^d	CS ₂ CO ₃ ^e	70	8	43				

n.r.=no reaction.

^b Compounds **1a** (1.1 mmol), **2a** (1.0 mmol).

^d PdCl₂ (10 mol %).

^e Base (1.0 mmol). ^f Base (2.0 mmol).

^g Base (0.1 mmol).

^h Isolated yield based on 2a.

satisfactory yield when using Et₃N as the base, so Cs_2CO_3 was the best base (Table 1, entry 18). Then, the amount of Cs_2CO_3 was tested (Table 1, entries 19, 20) and it was found that the amount of base could affect the yield of **3a**. After that, the stoichiometry of substrates **1a** and **2a** was also tested (Table 1, entries 21, 22). It was clear that use of a 1.1:1 molar ratio of **1a**/**2a** gave better results (Table 1, entries 21). Finally, the model reaction was performed at different temperatures, such as: 130 °C, 70 °C; or rt, and the results suggest that the yields of **3a** decreased at all of these temperatures (Table 1, entries 23–25). Thus, the reaction conditions were optimized with the presence of PdCl₂ (0.1 equiv) and Cs₂CO₃ (1.0 equiv) in DMSO as the solvent at 100 °C.

With the optimal reaction conditions, we explored the scope and limitations of the condensation reactions using different HKAs and ethyl 2,3-diiodoacrylate 2a or diethyl 2,3-diiodofumarate 2b (Table 2). First, we tested the scope of substrates 1 (Table 2, entries 1-15). Various six-membered HKAs were used to react with 2a, and similar reactivities were observed (Table 2, entries 2-5). It is shown that the substituents on the aromatic ring of HKAs had some influence on the yield. The substituted aromatic ring of HKAs with electron-withdrawing groups, such as fluoro and chloro groups (Table 2, entries 4, 5) reacted faster and gave higher yields than those with electron-donating groups, such as methyl and methoxyl groups (Table 2, entries 2, 3). Next, the seven-membered HKAs (Table 2, entries 6–10) were also employed in this process, and all reactions proceeded well, giving the corresponding bicyclic pyrroles **3f**–j. The seven-membered HKAs gave higher yields in shorter time than six-membered HKAs, however, five-membered HKAs **1k–o** didn't afford any product (Table 2, entries 11–15).

In an endeavor to expand the scope of substrates **2** (Table 2, entries 16–30), diethyl 2,3-diiodofumarate **2b** was reacted with six-membered HKAs (**1a**–**e**) with both electron-withdrawing and electron-donating groups to give bicyclic pyrroles **3k**–**o** (Table 2, entries 16–20). Compared to ethyl 2,3-diiodoacrylate **2a**, the yields of the diethyl 2,3-diiodofumarate **2b** were lower. The following seven-membered HKAs **1f**–**j** were also employed under the optimum reaction conditions with **2b** to obtain similar bicyclic pyrroles **3p**–**t** in higher yields (84–90%) (Table 2, entries 21–25). Both electron-donating and electron-withdrawing groups on aromatic rings of HKAs were also tolerated, although the former gave slightly reduced yields.

In order to further investigate the scope of HKAs, fivemembered HKAs **1k–o** were also employed to react with diethyl 2,3-diiodofunarate **2b**. Surprisingly, the desired bicyclic pyrroles **3** were not obtained, instead we isolated the bicyclic pyridones **4** in moderate yields (Table 2, entries 26–30). It is shown, the substituent on the aromatic HKAs **1k–o** had little influence on the yield. However, the ring sizes are crucial to the reactions. It is easy to fuse a six-membered ring to a five-membered ring, while the five-membered ring of HKAs **1k–o** could not fuse another fivemembered ring owing to the tension of the ring, which was too high to form bicyclic fused products.

To further investigate the reaction, we shortened the reaction time (Table 2, entry 29 vs Scheme 1) and obtained a small amount of product **4d** and a large amount of the bicyclic pyridone **5a**, which contains iodine (Scheme 1). This indicated that **5a** may be a precursor of **4d** (Scheme 2).

Products **3**, **4**, and **5a** were characterized by their ¹H HMR, ¹³C NMR, IR, and HRMS spectra, which were in agreement with the proposed structures. We obtained a single crystal of product **3g** and the X-ray diffraction structure was shown in Fig. 2.²⁵

Based on the above experimental results, a possible mechanism for the formation of bicyclic pyrroles **3** is proposed and depicted in Scheme 2. First, a small part of the HKA acts as a ligand to react with the PdCl₂ catalyst and forms a complex **6**. This complex is an effective catalyst for the formation of the oxidative addition products

^a The reaction was performed with **1a** (1.0 mmol), **2a** (1.0 mmol).

^c Compounds **1a** (1.0 mmol), **2a** (1.1 mmol).

Table 2

Preparation of the bicyclic pyrrole **3** or bicyclic pyridine **4**^a

	$ \sqrt[n]{\binom{NH}{NH}} = R^{1} + EtOOC $	2 10 mol% Pd 1 equiv. Cs ₂ C 1 DMSO 100 ⁰ C, 4~6	$ \begin{array}{c} Cl_2 \\ CO_3 \\ \hline & \\ \hline \\ \hline$	R^2 R^1 $\sqrt{COOEt} + H$	$N \rightarrow N^2$ $N \rightarrow N^2$ $N \rightarrow 0$ 4
Entry	$1/n, R^1$	$2/R^{2}$	Time (h)	3 /Yield ^b (%)	4 /Yield ^b (%)
1	1a / $n=1$, R ¹ =H	2a /R ² =H	5	3a /82	_
2	1b / $n=1$, R ¹ =CH ₃	$2a/R^2 = H$	6	3b /81	_
3	1c/n=1, R ¹ =OCH ₃	$2a/R^2 = H$	6	3c /78	_
4	$1d/n=1$, $R^1=Cl$	$2a/R^2 = H$	5	3d /82	_
5	$1e/n=1, R^1=F$	$2a/R^2 = H$	4.5	3e /84	—
6	1f / <i>n</i> =2, R ¹ =H	2a /R ² =H	5	3f /89	—
7	$1g/n=2$, $R^1=CH_3$	2a /R ² =H	5.5	3g /87	—
8	1h / $n=2$, R ¹ =OCH ₃	2a /R ² =H	6	3h /86	—
9	1i / $n=2$, R ¹ =Cl	2a /R ² =H	4	3i /92	—
10	1j $/n=2$, R ¹ =F	2a /R ² =H	4	3j /93	—
11	1k / $n=0$, R ¹ =H	2a /R ² =H	8	_	—
12	11 / $n=0$, R ¹ =CH ₃	$2a/R^2 = H$	8	—	—
13	$1m/n=0, R^1=OCH_3$	$2a/R^2 = H$	9	_	-
14	$1n/n=0, R^{1}=Cl$	$2a/R^2 = H$	8	—	—
15	10 / <i>n</i> =0, R ¹ =F	2a /R ² =H	11	—	—
16	1a $/n=1$, R ¹ =H	$2b/R^2 = COOEt$	5	3k /74	—
17	1b / $n=1$, R ¹ =CH ₃	$2b/R^2 = COOEt$	6	31 /73	—
18	1c/n=1, R ¹ =OCH ₃	$2b/R^2 = COOEt$	6	3m /71	—
19	$1d/n=1, R^{1}=Cl$	$2b/R^2 = COOEt$	5	3n /76	—
20	$1e/n=1, R^{1}=F$	$2b/R^2 = COOEt$	5	30 /77	—
21	$1f/n=2, R^{1}=H$	$2b/R^2 = COOEt$	5	3p /85	—
22	$1g/n=2, R^1=CH_3$	2b /R ² =COOEt	6	3q /85	—
23	1h / $n=2$, R ¹ =OCH ₃	$2b/R^2 = COOEt$	6	3r /84	—
24	$1i/n=2, R^{1}=Cl$	$2b/R^2 = COOEt$	4.5	3s /90	—
25	1j $/n=2$, R ¹ =F	2b /R ² =COOEt	4	3t /90	-
26	1k / $n=0$, R ¹ =H	2b /R ² =COOEt	6	—	4a /63
27	11 / $n=0$, R ¹ =CH ₃	2b /R ² =COOEt	6	—	4b /67
28	1m/n=0, R ¹ =OCH ₃	2b /R ² =COOEt	6	—	4c /60
29	$1n/n=0, R^1=Cl$	2b /R ² =COOEt	6	—	4d /64
30	10 / <i>n</i> =0, R ¹ =F	2b/R ² =COOEt	5	—	4e /65

^a The reaction was performed with **1** (1.1 mmol), **2** (1.0 mmol), PdCl₂ (10 mol %), Cs₂CO₃ (1.0 mmol), and the solvent DMSO (10 ml) at 100 °C. ^b Isolated yields based on **2**.

Scheme 1. Preparation of the bicyclic pyridines.

7. Next, the HKAs **1**, as aza-ene reaction components, react with intermediates **7** to afford **8**, which undergoes reductive elimination to give intermediates **9**. Then, rapid imine—enamine tautomerization leads to the formation of **10**, which again undergoes oxidative addition with the catalyst **6** (L_2Pd^0) to give **11**. The key intermediates **12** are formed by the intramolecular reaction of **11**. Finally, **12** undergoes reductive elimination to give the final products **3**, and the complexes **6** re-enter the catalytic cycle.

A proposed mechanism of the synthesis of bicyclic pyridones **4d** is also depicted in Scheme 3. First, the five-membered HKAs **1** react with **2b** in the presence of $PdCl_2$ and Cs_2CO_3 to form the intermediates **10**, which is similar to the mechanism of bicyclic pyrroles **3** synthesis in Scheme 2. Then, the NH group of intermediates **10** attacks the ester intramolecularly to give the product **5a**, which is reduced to the final product **4d**.

3. Conclusion

In summary, we have successfully developed a concise and efficient synthesis of novel bicyclic pyrroles and bicyclic pyridones by cyclic condensation of HKAs with ethyl 2,3-diiodoacrylate or diethyl 2,3-diiodofumarate in the presence of PdCl₂, excess HKAs and Cs₂CO₃. The ring sizes of the HKA have a significant influence on the products. For five-membered HKAs, they can exclusively react with diethyl 2,3-diiodofumarate to provide bicyclic pyridones, and the yields of these reactions are not related to the substituents of the HKAs. For the six- or seven-membered HKAs, they can react with not only ethyl 2,3-diiodoacrylate but also diethyl 2,3diiodofumarate to give the corresponding bicyclic pyrroles. In addition, seven-membered HKAs and HKAs bearing electronwithdrawing groups could provide higher yields. For the first

Scheme 2. The possible reaction mechanism for the formation of 3.

Fig. 2. X-ray crystal structure of 3g; ellipsoids are drawn at 30% probability level.

Scheme 3. Plausible mechanism for the formation of 4d.

time, we have developed transition metal catalyzed bicyclic pyrroles and bicyclic pyridones synthesis and these structures are playing unique roles in medicinal chemistry.

4. Experimental

4.1. General information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz); chemical shifts (δ) are expressed in parts per million, *J* values are given in hertz, and deuterated CDCl₃ andDMSO-*d*₆

were used as the solvent. IR spectra were recorded on an FT-IR Thermo Nicolet Avatar 360 using KBr pellets. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on an XT-4A melting point apparatus and are uncorrected. HRMS were performed on an Agilent LC/Msd TOF instrument. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed using silica gel (200–300 mesh). Compounds **1** were prepared according to the literature.²⁶ Compounds **2a** were prepared according to the literature.²⁷ The materials were purchased from Aldrich Corporation Limited.

4.2. Preparation of compound 2b

Compound **2b** was synthesized by the following method:²⁸ To a 100 ml round-bottom flask, diethyl acetylene dicarboxylate (10.0 mmol, 1.70 g) and iodine (12.0 mmol, 3.04 g) in CHCl₃ were added. The resulting mixture was heated to reflux and stirred until all starting acetylene was consumed, as indicated by TLC. After cooled to rt, the reaction mixture was washed with 20% aq sodium thiosulfate solution (40 ml) and concentrated under reduced pressure. The residue was dissolved in ethanol (15 ml) and the product was precipitated by the addition of water (15 ml). Recrystallization from methanol/water furnished a white solid **2b** (9.3 mmol, 3.95 g) in 93% yield.

4.2.1. Diethyl 2,3-diiodofunarate **2b**. White solid; mp 107–109 °C; IR (KBr): 2976, 1715, 1473, 1368, 1257, 1023 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ =1.39 (t, *J*=7.0 Hz, 6H, CH₃), 4.36 (q, *J*=7.0 Hz, 4H, OCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ =13.8, 63.1, 87.9, 164.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₈H₁₀I₂O₄ [M⁺], 423.8668; found, 423.8658.

4.3. Typical procedure for the preparation of bicyclic pyrroles 3 and pyridones 4

To a 25 ml round-bottom flask, HKAs **1** (1.1 mmol) and substrate **2** (1.0 mmol) were added to a solution of DMSO (10 ml). PdCl₂ (0.1 mmol) and Cs₂CO₃ (1.0 mmol) were then added to the above mixture. The resulting solution was stirred at 100 °C for about 4–6 h until the substrates **2** were completely consumed. The mixture was cooled to rt, then quenched with a saturated solution of Na₂S₂O₃ (20 ml) and extracted with EtOAc (50 ml×3). The organic layers were combined, dried over brine and over anhydrous

 Na_2SO_4 , concentrated, and purified by flash column chromatography to give the products **3** or **4**.

4.3.1. Ethyl 8-benzoyl-1,2,3,4-tetrahydropyrrolo[1,2-a]-pyrimidine-6carboxylate **3a**. Yellow solid; mp 120–123 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =1.21 (t, *J*=7.1 Hz, 3H, CH₃), 1.98–2.00 (m, 2H, CH₂), 3.30–3.48 (m, 2H, NCH₂), 4.15 (q, *J*=7.2 Hz, 2H, OCH₂), 4.19–4.21 (m, 2H, CH₂N), 6.87 (s, 1H, CH=), 7.49–7.53 (m, 3H, ArH), 7.62–7.63 (m, 2H, ArH), 7.94 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =14.7, 20.8, 37.9, 42.7, 102.8, 115.7, 118.6, 128.0, 128.7, 130.9, 140.7, 149.3, 160.5, 188.1; IR (KBr): 3352, 2973, 1695, 1618, 1534, 1348, 1165, 739 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₉N₂O₃ [(M+H)⁺], 299.1390; found, 299.1398.

4.3.2. *Ethyl* 8-(4-methylbenzoyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]-pyrimidine-6-carboxylate **3b**. Yellow solid; mp 108–110 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =1.21 (t, *J*=7.2 Hz, 3H, CH₃), 1.98–2.00 (m, 2H, CH₂), 2.36 (s, 3H, ArCH₃), 3.36–3.38 (m, 2H, NCH₂), 4.14 (q, *J*=7.1 Hz, 2H, OCH₂), 4.18–4.20 (m, 2H, CH₂N), 6.88 (s, 1H, CH=), 7.29 (d, *J*=7.8 Hz, 2H, ArH), 7.53 (d, *J*=7.9 Hz, 2H, ArH), 7.89 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =14.7, 20.8, 21.3, 37.9, 42.7, 59.6, 102.8, 115.6, 118.7, 128.1, 129.2, 137.9, 140.9, 149.3, 160.5, 188.0; IR (KBr): 3348, 2975, 1690, 1612, 1539, 1219, 1168, 756 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₂₁N₂O₃ [(M+H)⁺], 313.1547; found, 313.1556.

4.3.3. Ethyl 8-(4-methoxybenzoyl)-1,2,3,4-tetrahydropyrrolo-[1,2-a] pyrimidine-6-carboxylate **3c**. Yellow solid; mp 128–130 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =1.22 (t, J=7.0 Hz, 3H, CH₃), 1.98–2.00 (m, 2H, CH₂), 3.36–3.38 (m, 2H, NCH₂), 3.82 (s, 3H, OCH₃), 4.13–4.16 (m, J=7.1 Hz, 2H, OCH₂), 4.17–4.20 (m, 2H, CH₂N), 6.93 (s, 1H, CH=), 7.03 (d, J=8.6 Hz, 2H, ArH), 7.64 (d, J=8.6 Hz, 2H, ArH), 7.88 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =14.7, 20.8, 37.9, 42.7, 55.7, 59.7, 102.7, 114.0, 115.5, 118.7, 149.3, 160.6, 161.6, 187.1; IR (KBr): 3352, 2978, 1732, 1687, 1523, 1214, 1101, 1024, 774 cm⁻¹; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₀N₂NaO₄ [(M+Na)⁺], 351.1315; found, 351.1322.

4.3.4. Ethyl 8-(4-chlorobenzoyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]-pyrimidine-6-carboxylate **3d**. Yellow solid; mp 169–174 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =1.22 (t, J=7.0 Hz, 3H, CH₃), 1.98–2.00 (m, 2H, CH₂), 4.15 (q, J=6.9 Hz, 2H, OCH₂), 4.19–4.20 (m, 2H, CH₂N), 6.86 (s, 1H, CH=), 7.57 (d, J=8.1 Hz, 2H, ArH), 7.65 (d, J=8.1 Hz, 2H, ArH), 7.95 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =14.7, 20.7, 37.9, 42.7, 59.7, 102.6, 116.0, 118.3, 128.9, 129.9, 135.7, 139.2, 149.1, 160.5, 186.5; IR (KBr): 3341, 2970, 1682, 1616, 1537, 1219, 1172, 1090, 760 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₇ClN₂NaO₃ [(M+Na)⁺], 355.0820; found, 355.0826.

4.3.5. Ethyl 8-(4-fluorobenzoyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]-pyrimidine-6-carboxylate **3e**. Yellow solid; mp 142–146 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =1.19 (t, J=7.1 Hz, 3H, CH₃), 1.96–1.98 (m, 2H), 4.13 (q, J=7.2 Hz, 2H, OCH₂), 4.15–4.18 (m, 2H, CH₂N), 6.85 (s, 1H, CH₂=), 7.28–7.31 (m, 2H, ArH), 7.67–7.70 (m, 2H, ArH), 7.91 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =14.7, 20.8, 37.9, 42.7, 59.6, 102.6, 115.7, 118.4, 130.5, 137.1, 149.4, 160.5, 162.8, 164.8, 186.6; IR (KBr): 3354, 2966, 1693, 1614, 1537, 1220, 1167, 1090, 841, 764 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₇FN₂NaO₃ [(M+Na)⁺], 339.1115; found, 339.1113.

4.3.6. *Ethyl 9-benzoyl-2,3,4,5-tetrahydro-1H-pyrrolo*[*1,2-a*][*1,3*]*-diazepine-7-carboxylate* **3f**. Yellow solid; mp 88–89 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ =1.19 (t, *J*=6.9 Hz, 3H, CH₃), 1.79–1.82 (m, 4H, CH₂CH₂), 3.28–3.30 (m, 2H, NCH₂), 4.12 (q, *J*=7.0 Hz, 2H, OCH₃), 4.28–4.30 (m, 2H, CH₂N), 6.86 (s, 1H, CH=), 7.46–7.53 (m, 2H, ArH), 7.58–7.62 (m, 2H, ArH), 7.93 (br, 1H, NH); ¹³C NMR (125 MHz,

DMSO- d_6): δ =14.5, 26.6, 28.9, 45.3, 46.9, 60.0, 105.1, 117.2, 120.2, 128.1, 128.7, 131.3, 140.1, 157.1, 160.7, 189.8; IR (KBr): 3352, 2978, 1732, 1687, 1523, 1214, 1174, 1101, 774 cm⁻¹; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₀N₂NaO₃ [(M+Na)⁺], 335.1366; found, 335.1373.

4.3.7. Ethyl 9-(4-methylbenzoyl)-2,3,4,5-tetrahydro-1H-pyrrolo-[1,2-a][1,3]-diazepine-7-carboxylate **3g**. Yellow solid; mp 94–97 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =1.19 (t, *J*=7.1 Hz, 3H, CH₃), 1.80–1.82 (m, 4H, CH₂CH₂), 2.35 (s, 3H, ArCH₃), 3.27–3.29 (m, 2H, NCH₂), 4.13 (q, *J*=7.0 Hz, 2H, OCH₂), 4.29–4.30 (m, 2H, CH₂N), 6.94 (s, 1H, CH=), 7.28 (d, *J*=7.8 Hz, 2H, ArH), 7.53 (d, *J*=7.8 Hz, 2H, ArH), 7.91 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =14.6, 21.3, 26.6, 28.9, 45.4, 46.9, 59.9, 105.2, 117.0, 120.2, 128.3, 129.3, 137.4, 141.4, 157.1, 160.7, 189.6; IR (KBr): 3300, 2922, 1689, 1601, 1208, 1091, 1174, 762 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₁₉H₂₃N₂O₃ [(M+H)⁺], 327.1703; found, 327.1710.

4.3.8. Ethyl 9-(4-methoxybenzoyl)-2,3,4,5-tetrahydro-1H-pyrrolo-[1,2-a][1,3]-diazepine-7-carboxylate **3h**. Yellow solid; mp 87–91 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =1.23 (t, J=7.1 Hz, 3H, CH₃), 1.81–1.84 (m, 4H, CH₂CH₂), 3.29–3.31 (m, 2H, NCH₂), 3.84 (s, 3H, OCH₃), 4.17 (q, J=7.1 Hz, 2H, OCH₂), 4.32–4.33 (m, 2H, CH₂N), 7.00 (s, 1H, CH=), 7.05 (d, J=8.5 Hz, 2H, ArH), 7.67 (d, J=8.5 Hz, 2H, ArH), 7.91 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =14.7, 26.7, 29.1, 45.5, 47.0, 55.7, 59.9, 105.2, 114.1, 116.9, 120.1, 130.4, 132.6, 157.1, 160.7, 162.0, 188.7; IR (KBr): 3300, 2921, 1688, 1600, 1431, 1228, 1169, 1090, 764 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₉H₂₂N₂NaO₄ [(M+Na)⁺], 365.1472; found, 365.1479.

4.3.9. *Ethyl* 9-(4-*chlorobenzoyl*)-2,3,4,5-*tetrahydro*-1*H*-*pyrrolo*[1,2-*a*][1,3]-*diazepine*-7-*carboxylate* **3i**. Yellow solid; mp 103–108 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ =1.22 (t, *J*=7.1 Hz, 3H, CH₃), 1.81–1.85 (m, 4H, CH₂CH₂), 3.33–3.38 (m, 2H, NCH₂), 4.16 (q, *J*=7.0 Hz, 2H, OCH₂), 4.32–4.33 (m, 2H, CH₂N), 6.93 (s, 1H, CH=), 7.58 (d, *J*=8.0 Hz, 2H, ArH), 7.67 (d, *J*=8.0 Hz, 2H, ArH), 7.96 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ =14.6, 26.6, 28.8, 45.3, 47.0, 60.0, 104.9, 117.4, 119.9, 128.9, 130.1, 136.1, 138.8, 157.2, 160.6, 188.2; IR (KBr): 3309, 2938, 1692, 1435, 1167, 1089, 845, 772 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₁₉ClN₂O₃ [(M+Na)⁺], 369.0976; found, 369.0985.

4.3.10. Ethyl 9-(4-fluorobenzoyl)-2,3,4,5-tetrahydro-1H-pyrrolo-[1,2a][1,3]-diazepine-7-carboxylate **3***j*. Yellow solid; mp 201–204 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.99 (t, *J*=7.0 Hz, 3H, CH₃), 1.57–1.61 (m, 4H, CH₂CH₂), 3.09–3.12 (m, 2H, NCH₂), 3.93 (q, *J*=6.9 Hz, 2H, OCH₂), 4.09–4.10 (m, 2H, CH₂N), 6.70 (s, 1H, CH=), 7.08–7.12 (m, 2H, ArH), 7.48–7.51 (m, 2H, ArH), 7.70 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =14.6, 26.6, 28.9, 45.3, 47.0, 59.9, 105.0, 115.8, 117.3, 120.0, 130.9, 136.6, 157.2, 160.6, 165.0, 188.2; IR (KBr): 3282, 2917, 1692, 1605, 1436, 1218, 1164, 1095, 841 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₁₉FN₂NaO₃ [(M+Na)⁺], 353.1272; found, 353.1278.

4.3.11. Diethyl 8-benzoyl-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrimidine-6,7-dicarboxylate **3k**. Yellow solid; mp 167–169 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.96 (t, *J*=6.9 Hz, 3H, CH₃), 1.16 (t, *J*=6.9 Hz, 2H, CH₃), 1.99–2.02 (m, 2H), 3.36–3.39 (m, 2H, NCH₂), 3.47–3.49 (m, 2H, CH₂N), 4.11–4.17 (m, 4H, OCH₂, OCH₂), 7.38–7.45 (m, 5H, ArH), 7.83 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.7, 14.2, 20.8, 37.9, 43.0, 60.3, 60.8, 101.5, 114.2, 123.9, 127.3, 128.1, 130.5, 141.2, 148.1, 159.9, 165.0, 189.8; IR (KBr): 3352, 2978, 1730, 1621, 1526, 1271, 1174, 775 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₂N₂NaO₅ [(M+Na)⁺], 393.1421; found, 393.1425.

4.3.12. Diethyl 8-(4-methylbenzoyl)-1,2,3,4-tetrahydropyrrolo[1,2-a] pyrimidine-6,7-dicarboxylate **31**. Yellow solid; mp 184–186 °C; ¹H

NMR (500 MHz, DMSO- d_6): δ =0.98 (t, 3H, CH₃), 1.18 (t, 3H, CH₃), 1.99–2.01 (m, 2H, CH₂), 2.34 (s, 3H, ArCH₃), 3.36–3.38 (m, 2H, NCH₂), 3.53–3.54 (m, 2H, CH₂N), 4.13–4.17 (m, 4H, OCH₂, OCH₂), 7.18–7.20 (d, *J*=6.2 Hz, 2H, ArH), 7.28–7.30 (d, *J*=6.6 Hz, 2H, ArH), 7.77 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =13.7, 14.3, 20.8, 21.3, 37.9, 43.4, 60.2, 60.8, 101.6, 114.1, 123.9, 127.5, 128.6, 138.5, 140.5, 148.0, 159.9, 165.0, 189.7; IR (KBr): 3352, 2978, 1732, 1687, 1621, 1214, 1174, 1015, 774 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₂₁H₂₄N₂NaO₅ [(M+Na)⁺], 407.1577; found, 407.1585.

4.3.13. Diethyl 8-(4-methoxybenzoyl)-1,2,3,4-tetrahydropyrrolo-[1,2-a]pyrimidine-6,7-dicarboxylate **3m**. Yellow solid; mp 164–168 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =1.01 (t, *J*=7.0 Hz, 3H, CH₃), 1.16–1.19 (t, *J*=7.2 Hz, 3H, CH₃), 1.99–2.01 (m, 2H, CH₂), 3.34–3.37 (m, 2H, NCH₂), 3.61–3.64 (m, 2H, CH₂N), 3.81 (s, 3H, OCH₃), 4.12–4.17 (m, 4H, OCH₂, OCH₂), 6.93 (d, *J*=8.1 Hz, 2H, ArH), 7.40 (d, *J*=8.1 Hz, 2H, ArH), 7.67 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =13.7, 14.3, 20.9, 37.8, 43.1, 55.7, 60.2, 60.9, 101.6, 113.4, 114.0, 123.9, 129.5, 133.7, 147.8, 159.9, 161.5, 189.0; IR (KBr): 3349, 2979, 1729, 1690, 1102, 1028, 785 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₂₁H₂₄N₂NaO₆ [(M+Na)⁺], 423.1527; found, 423.1537.

4.3.14. Diethyl 8-(4-chlorobenzoyl)-1,2,3,4-tetrahydropyrrolo-[1,2-a] pyrimidine-6,7-dicarboxylate **3n**. Yellow solid; mp 167–172 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ =1.00 (m, *J*=7.0 Hz, 3H, CH₃), 1.16 (t, *J*=7.0 Hz, 3H, CH₃), 1.99–2.01 (m, 2H, CH₂), 3.50–3.57 (m, 2H, CH₂N), 4.10–4.16 (m, 4H, OCH₂, OCH₂), 7.38 (d, *J*=7.9 Hz, 2H, ArH), 7.47 (d, *J*=7.9 Hz, 2H, ArH), 7.88 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ =13.7, 14.3, 20.7, 37.8, 43.0, 60.3, 61.0, 101.3, 114.5, 123.6, 128.2, 129.2, 135.3, 139.8, 148.2, 159.8, 165.0, 188.3; IR (KBr): 3348, 2977, 1731, 1689, 1524, 1214, 1174, 1100, 772 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₁ClN₂NaO₅ [(M+Na)⁺], 427.1031; found, 427.1036.

4.3.15. Diethyl 8-(4-fluorobenzoyl)-1,2,3,4-tetrahydropyrrolo-[1,2-a] pyrimidine-6,7-dicarboxylate **30**. Yellow solid; mp 169–171 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ =0.99 (t, 3H, CH₃), 1.15 (t, 3H, CH₃), 1.98–2.02 (m, 2H, CH₂), 3.32–3.35 (m, 2H, NCH₂), 3.54–3.56 (m, 2H, CH₂N), 4.10–4.15 (m, 4H, OCH₂, OCH₂), 7.21–7.23 (m, 2H, ArH), 7.42–7.44 (m, 2H, ArH), 7.83 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ =13.7, 14.3, 20.8, 37.9, 43.1, 60.3, 61.0, 101.4, 114.3, 115.0, 123.7, 130.0, 137.7, 148.1, 159.9, 162.6, 165.0, 188.3; IR (KBr): 3327, 2979, 1617, 1524, 1409, 1173, 1102, 1075, 777 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₂₀H₂₁FN₂NaO₅ [(M+Na)⁺], 411.1327; found, 411.1328.

4.3.16. Diethyl 9-benzoyl-2,3,4,5-tetrahydro-1H-pyrrolo[1,2-a][1,3] diazepine-7,8-dicarboxylate **3p**. Yellow solid; mp 91–93 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.93 (t, 3H, CH₃), 1.16 (t, 3H, CH₃), 1.78–1.82 (m, 4H, CH₂CH₂), 3.20–3.24 (m, 2H, NCH₂), 3.46–3.47 (m, 2H, CH₂N), 4.13–4.15 (m, 4H, OCH₂, OCH₂), 7.41–7.50 (m, 5H, ArH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.6, 14.0, 26.4, 28.7, 45.8, 47.5, 60.9, 104.9, 117.2, 123.4, 127.8, 128.3, 131.4, 140.4, 154.6, 160.2, 164.6, 191.1; IR (KBr): 3309, 1696, 1612, 1519, 1212, 1162, 698 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₁H₂₄N₂NaO₅ [(M+Na)⁺], 407.1577; found, 407.1585.

4.3.17. Diethyl 9-(4-methylbenzoyl)-2,3,4,5-tetrahydro-1*H*-pyrrolo [1,2-a][1,3]-diazepine-7,8-dicarboxylate **3q**. Yellow solid; mp 103–107 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.93 (t, *J*=7.2 Hz, 3H, CH₃), 1.17 (t, *J*=6.9 Hz, 3H, CH₃), 1.77–1.81 (m, 4H, CH₂CH₂), 2.33 (s, 3H, ArCH₃), 3.17–3.19 (m, 2H, NCH₂), 3.48–3.53 (m, 2H, CH₂N), 4.11–4.17 (m, 4H, OCH₂, OCH₂), 7.20 (d, *J*=7.8 Hz, 2H, ArH), 7.37 (d, *J*=8.0 Hz, 2H, ArH), 7.40 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.6, 14.0, 21.3, 26.4, 28.9, 45.9, 47.5, 60.9, 105.2, 117.1, 123.3, 128.1, 128.8, 137.7, 141.6, 154.4, 160.3, 164.6, 190.9; IR (KBr): 3326,

2940, 1733, 1701, 1544, 1404, 1100, 781 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₂₂H₂₆N₂NaO₅ [(M+Na)⁺], 421.1734; found, 421.1740.

4.3.18. Diethyl 9-(4-methoxybenzoyl)-2,3,4,5-tetrahydro-1H-pyrrolo [1,2-a][1,3]diazepine-7,8-dicarboxylate **3r**. Yellow solid; mp 121–123 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.97 (t, *J*=7.0 Hz, 3H, CH₃), 1.19 (t, *J*=7.1 Hz, 3H, CH₃), 1.78–1.82 (m, 4H, CH₂CH₂), 3.17–3.19 (m, 2H, NCH₂), 3.60–3.64 (m, 2H, CH₂N), 3.81 (s, 3H, OCH₃), 4.15–4.19 (m, 4H, OCH₂, OCH₂), 6.96 (d, *J*=8.4 Hz, 2H, ArH), 7.25 (br, 1H), 7.49 (d, *J*=8.3 Hz, 2H, ArH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.7, 14.1, 26.5, 29.1, 46.0, 47.5, 55.8, 60.8, 60.9, 105.5, 113.6, 117.1, 123.2, 130.2, 133.0, 154.0, 160.3, 162.2, 164.7, 190.0; IR (KBr): 3327, 2945, 1701, 1605, 1429, 1163, 1025, 791 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₂H₂₆N₂NaO₆ [(M+Na)⁺], 437.1683; found, 437.1690.

4.3.19. Diethyl 9-(4-chlorobenzoyl)-2,3,4,5-tetrahydro-1*H*-pyrrolo [1,2-a][1,3]-diazepine-7,8-dicarboxylate **3s.** Yellow solid; mp 130–133 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.98 (t, *J*=7.1 Hz, 3H, CH₃), 1.18 (t, *J*=7.0 Hz, 3H, CH₃), 1.79–1.84 (m, 4H, CH₂CH₂), 3.24–3.26 (m, 2H, NCH₂), 3.55–3.57 (m, 2H, CH₂N), 4.13–4.17 (m, 4H, OCH₂, OCH₂), 7.46–7.50 (m, 5H, ArH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.7, 14.1, 26.3, 28.7, 45.8, 47.6, 60.9, 61.0, 104.7, 117.4, 123.0, 128.4, 129.8, 136.1, 139.2, 154.6, 160.1, 164.5, 189.6; IR (KBr): 3331, 2944, 1729, 1606, 1404, 1159, 782 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₁H₂₃ClN₂NaO₅ [(M+Na)⁺], 441.1188; found, 441.1196.

4.3.20. Diethyl 9-(4-fluorobenzoyl)-2,3,4,5-tetrahydro-1H-pyrrolo-[1,2-a][1,3]-diazepine-7,8-dicarboxylate **3t**. Yellow solid; mp 126–127 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.74 (t, 3H, CH₃), 0.95 (t, 3H, CH₃), 1.54–1.60 (m, 4H, CH₂CH₂), 2.98–3.10 (m, 2H, NCH₂), 3.33–3.36 (m, 2H, CH₂N), 3.90–3.93 (m, 4H, OCH₂, OCH₂), 7.00–7.02 (m, 2H, ArH), 7.21 (br, 1H, NH), 7.28–7.31 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.7, 14.1, 26.4, 28.8, 45.8, 47.6, 60.9, 61.0, 104.9, 115.2, 117.3, 123.1, 130.6, 137.1, 154.5, 160.2, 163.1, 164.6, 189.6; IR (KBr): 3328, 2940, 1707, 1604, 1237, 1098, 843, 789 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₁H₂₃FN₂NaO₅ [(M+Na)⁺], 425.1483; found, 425.1476.

4.3.21. Ethyl 8-benzoyl-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]-pyridine-7-carboxylate **4a**. Yellow solid; mp 168–172 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =0.88 (m, *J*=6.8 Hz, 3H, CH₃), 3.38–3.40 (m, 2H, CH₂N), 3.78–3.81 (m, 2H, NCH₂), 4.08 (q, *J*=6.8 Hz, 2H, OCH₂), 5.77 (s, H, CH=), 7.41–7.49 (m, 5H, ArH), 8.63 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =13.6, 43.1, 43.7, 61.6, 93.8, 106.7, 128.0, 128.6, 131.6, 140.8, 146.1, 156.5, 160.1, 166.7, 191.5; IR (KBr): 3350, 2974, 1736, 1667, 1605, 1556, 1242, 1042, 755 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₁₇H₁₆N₂NaO₄ [(M+Na)⁺], 335.1002; found, 335.1002.

4.3.22. Ethyl 8-(4-methylbenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylate **4b**. Yellow solid; mp 156–159 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =0.88 (t, *J*=7.0 Hz, 3H, CH₃), 2.32 (s, 3H, ArCH₃), 3.41–3.45 (m, 2H, NCH₂), 3.77–3.80 (m, 2H, CH₂N), 4.07 (q, *J*=7.0 Hz, 2H, OCH₂), 5.76 (s, 1H, CH=), 7.21 (d, *J*=7.8 Hz, 2H, ArH), 7.35 (d, *J*=7.9 Hz, 2H, ArH), 8.53 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.5, 21.3, 43.1, 43.7, 61.6, 94.0, 106.5, 128.1, 129.1, 138.1, 141.9, 146.1, 156.4, 160.1, 166.8, 191.3; IR (KBr): 3356, 2978, 1660, 1599, 1564, 1331, 1245, 1047, 772 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₁₈N₂NaO₄ [(M+Na)⁺], 349.1159; found, 349.1168.

4.3.23. Ethyl 8-(4-methoxybenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo [1,2-a]-pyridine-7-carboxylate **4c**. Yellow solid; mp 163–164 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =0.92 (t, J=6.3 Hz, 3H, CH₃), 3.32–3.35 (m, 2H, CH₂N), 3.53–3.56 (m, 2H, NCH₂), 3.80 (s, 3H, OCH₃), 4.09 (q, J=6.3 Hz, 2H, OCH₂), 5.76 (s, 1H, CH=), 6.97 (d, J=7.3 Hz, 2H, ArH), 7.47 (d, J=7.3 Hz, 2H, ArH), 8.44 (br, 1H, NH); ¹³C NMR (125 MHz,

DMSO- d_6): δ =13.7, 43.1, 43.8, 55.8, 61.5, 93.8, 106.4, 113.9, 130.2, 133.5, 146.0, 156.2, 159.8, 162.2, 166.8, 190.4; IR (KBr): 3350, 2978, 1742, 1659, 1596, 1248, 1173, 829, 780 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₈H₁₈N₂NaO₅ [(M+Na)⁺], 365.1108; found, 365.1112.

4.3.24. Ethyl 8-(4-chlorobenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylate **4d**. Yellow solid; mp 183–185 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =0.91 (t, J=7.3 Hz, 3H, CH₃), 3.46–3.50 (m, 2H, NCH₂), 3.76–3.80 (m, 2H, CH₂N), 4.08 (q, J=7.3 Hz, 2H, OCH₂), 5.78 (s, 1H, CH=), 7.45–7.49 (m, 4H, ArH), 8.65 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =13.6, 43.2, 43.7, 61.8, 93.7, 107.0, 128.7, 130.0, 136.4, 139.6, 145.8, 156.5, 160.1, 166.7, 190.2; IR (KBr): 3348, 2991, 1728, 1671, 1604, 1559, 1249, 1046, 772 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₅ClN₂NaO₄ [(M+Na)⁺], 369.0613; found, 369.0621.

4.3.25. Ethyl 8-(4-fluorobenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylate **4e**. Yellow solid; mp 165–166 °C; ¹H NMR (500 MHz, DMSO- d_6): δ =0.70 (t, *J*=7.2 Hz, 3H, CH₃), 3.26–3.30 (m, 2H, NCH₂), 3.55–3.58 (m, 2H, CH₂N), 3.85 (q, *J*=7.2 Hz, 2H, OCH₂), 5.55 (s, 1H, CH=), 7.01–7.04 (m, 2H, ArH), 7.29–7.32 (m, 2H, ArH), 8.40 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ =13.6, 43.2, 43.7, 61.6, 93.6, 107.0, 111.5, 130.7, 137.6, 145.8, 156.5, 159.9, 163.1, 165.1, 166.7, 190.0; IR (KBr): 3352, 2988, 1667, 1601, 1240, 1182, 791 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₅FN₂NaO₄ [(M+Na)⁺], 353.0908; found, 353.0913.

4.3.26. Ethyl 8-(4-chlorobenzoyl)-6-iodo-5-oxo-1,2,3,5tetrahydroimidazo[1,2-a]pyridine-7-carboxylate **5a**. Yellow solid; mp 194–196 °C; ¹H NMR (500 MHz, DMSO-d₆): δ =1.08 (t, J=7.1 Hz, 3H), 3.70–3.77 (m, 2H, NCH₂), 4.12 (q, J=7.1 Hz, 2H, OCH₂), 7.47–7.52 (m, 4H, ArH), 8.41 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ =13.6, 43.3, 45.0, 61.9, 74.4, 96.9, 128.4, 130.8, 136.7, 137.9, 150.8, 156.1, 157.9, 166.6, 189.9; IR (KBr): 3352, 3444, 1729, 1657, 1604, 1360, 1218, 1046, 686 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₄ClIN₂NaO₄ [(M+Na)⁺], 494.9579; found, 494.9582.

Acknowledgements

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT13095), the National Natural Science Foundation of China (Nos. U1202221, 21262042, 21362042, 21162037, and 81160384) and Reserve Talent Foundation of Yunnan Province (No. 2012HB001).

References and notes

- For review, see: (a) Laurila, M. L.; Magnus, N. A.; Staszak, M. A. Org. Process Res. Dev. 2009, 13, 1199–1201; (b) Trofimov, B. A.; Sobenina, L. N.; Demenev, A. P.; Mikhaleva, A. I. Chem. Rev. 2004, 104, 2481–2506; (c) Wood, T. E.; Thompson, A. Chem. Rev. 2007, 107, 1831–1861; (d) Balme, G.; Bouyssi, D.; Monteiro, N. Heterocycles 2007, 73, 87–124; (e) Balme, G. Angew. Chem., Int. Ed. 2004, 43, 6238–6241; (f) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402–4421.
- (a) Mancini, I.; Guella, G.; Amade, P.; Roussakis, C.; Pietra, F. Tetrahedron Lett. 1997, 38, 6271–6274; (b) Cafieri, F.; Fattorusso, E.; EScafati, O. T. J. Nat. Prod. 1998, 61, 122–125; (c) Carroll, A. R.; Bowden, M. T.; Coll, J. C. Aust. J. Chem. 1993, 46, 489–501; (d) Quesada, A. R.; Gravalos, M. D. G.; Puentes, J. L. F. Br. J. Cancer 1996, 74, 677–682; (e) Ishibashi, F.; Tanabe, S.; Oda, T.; Iwao, M. J. Nat. Prod. 2002, 65, 500–504; (f) Bailly, C. Curr. Med. Chem.: Anti-Cancer Agents 2004, 4, 363–378; (g) Kluza, J.; Gallego, M. A.; Loyens, A.; Beauvillain, J. C.; Sousa-Faro, J. M. F.; Cuevas, C.; Marchetti, P.; Bailly, C. Cancer Res. 2006, 66, 3177–3178; (h) Vanhuyse, M.; Kluza, J.; Tardy, C.; Otero, G.; Cuevas, C.; Bailly, C.; Lansiaux, A. Cancer Lett. 2005, 221, 165–175.
- (a) Ridley, C. P.; Reddy, M. V. R.; Rocha, G.; Bushman, F. D.; Faulknera, D. J. *Bioorg. Med. Chem.* 2002, *10*, 3285–3290; (b) Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. *J. Med. Chem.* 1999, *42*, 1901–1907.
- 4. Kaiser, D. G.; Glenn, E. M. J. Pharm. Sci. 1972, 61, 1908–1911.
- 5. Demir, A. S.; Akhmedov, I. M.; Sesenoglu, O. *Tetrahedron* **2002**, *58*, 9793–9799.
- (a) Cheng, L.; Linghtner, D. A. Synthesis 1999, 46–48; (b) Paine, J. B.; Brough, J. R.; Buller, K. K.; Erikson, E. E.; Dolphin, D. J. Org. Chem. 1987, 52, 3993–3997; (c) Rapoport, H.; Harbuct, J. W. J. Org. Chem. 1971, 36, 853–855; (d) Magnus, N. A.;

Staszak, M. A.; Udodong, U. E.; Wepsiec, J. P. Org. Process Res. Dev. 2006, 10, 899–904.

- (a) Knorr, L. Chem. Ber. 1884, 17, 1635–1642; (b) Patterson, J. M. Synthesis 1976, 281–304; (c) Banik, B. K.; Banik, I.; Renteria, M.; Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2643–2645; (d) Danks, T. N. Tetrahedron Lett. 1999, 40, 3957–3960.
- (a) Kaupp, G.; Schemeyers, J.; Kuse, A.; Atfeh, A. Angew. Chem., Int. Ed. 1999, 38, 2896–2899;
 (b) Tan, B.; Shi, Z.-G.; Chua, P.-J.; Li, Y.-X.; Zhong, G.-F. Angew. Chem., Int. Ed. 2009, 48, 758–761;
 (c) Cadierno, V.; Gimeno, J.; Nebra, N. Chem. Eur. J. 2007, 13, 9973–9981;
 (d) Lui, X.-T.; Huang, L.; Zheng, F.-J.; Zhan, Z.-P. Adv. Synth. Catal. 2008, 350, 2778–2788;
 (e) Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7474–7479.
- (a) Umeyama, A.; Ito, S.; Yuasa, E.; Arihara, S.; Yamada, T. J. Nat. Prod. **1998**, *61*, 1433–1434;
 (b) Patil, A. D.; Freyer, A. J.; Killmer, L.; Hofmann, G.; Johnson, R. K. Nat. Prod. Lett. **1997**, *9*, 201–207;
 (c) Chari, R. V. J.; Jackel, K. A.; Bourret, L. A.; Derr, S. M.; Tadayoni, B. M.; Mattocks, K. M.; Shah, S. A.; Liu, C.; Blattler, W. A.; Goldmacher, V. S. Cancer Res. **1995**, *55*, 4079–4084;
 (d) Suzawa, T.; Nagamura, S.; Saito, H.; Ohta, S.; Hanai, N.; Yamasaki, M. J. Controlled Release **2000**, *69*, 27–41;
 (e) Suzawa, T.; Nagamura, S.; Saito, H.; Ohta, S.; Hanai, N.; Yamasaki, M. Bioorg. Med. Chem. **2000**, *8*, 2175–2184.
- (a) Park, S. P.; Song, Y. S.; Lee, K. J. *Tetrahedron* **2009**, *65*, 4703–4708; (b) Zhao, L.; Tao, K.; Li, H.; Zhang, J. *Tetrahedron* **2011**, *67*, 2803–2806; (c) Ranu, B. C.; Dey, S. S. *Tetrahedron Lett.* **2003**, *44*, 2865–2868; (d) Gangjee, A.; Yang, J.; Queener, S. F. Bioorg. Med. Chem. **2006**, *14*, 8341–8351; (e) Palmer, A. M.; Munch, G.; Berhm, C.; Zimmermann, P. J.; Buhr, W.; Feth, M. P.; Simon, W. A. Bioorg. Med. Chem. **2008**, *16*, 1511–1530.
- 11. Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; Mcphail, A. I.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888–3890.
- (a) Tang, X.-C.; He, X.-C.; Bai, D.-L. Drugs Future 1999, 24, 647–663; (b) Wang, B.-S.; Wang, H.; Wei, Z.-H.; Song, Y.-Y.; Zhang, L.; Chen, H.-Z. J. Neural Transm. 2009, 116, 457–465.
- Hunt, A.; Mynderse, S.; Samlaska, S. K.; Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L.; Swartendruber, J. K.; Jones, N. D. J. Antibiot. (Tokyo) 1988, 41, 771–779.
- (a) Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3, 2117–2119; (b) Tanaka, K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737–4739; (c) Duong, H. A.; Cross, M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438–11439; (d) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605–613; (e) Pemberton, N.; Jakobsson, L.; Almqvist, F. Org. Lett. 2006, 8, 935–938; (f) Alajarín, M.; Ortín, M.-M.; Sánchez-Andrada, P.; Vidal, Á. J. Org. Chem. 2006, 71, 8126–8139; (g) Comins, D. L.; Kuethe, J. T.; Miller, T. M.; Février, F. C.; Brooks, C. A. J. Org. Chem. 1909, 64, 8648–8659 For review, see; (i) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149–3159; (j) Hamama, W. S.; Zoorob, H. H. Tetrahedron 2002, 58, 6143–6162.
- (a) Huang, Z.-T.; Wang, M.-X. J. Chem. Soc., Perkin Trans. 1 1993, 1085–1090; (b) Zhao, M.-X.; Wang, M.-X.; Huang, Z.-T. Tetrahedron 2002, 58, 1309–1316; (c) Naito, H.; Hata, T. Tetrahedron Lett. 2008, 49, 2298–2301.
- For review, see: (a) Huang, Z.-T.; Wang, M.-X. *Heterocycles* 1994, *37*, 1233–1262;
 (b) Huang, Z.-T.; Wang, M.-X. *Prog. Nat. Sci.* 1999, *11*, 971–983; (c) Wang, K.-M.; Yan, S.-J.; Lin, J. *Eur. J. Org. Chem.* 2014, 1129–1145.
- (a) Tieman, C. H.; Kollmeyer, W. D.; Roman, S. A. Ger. Offen. 2,445,421, 1976; *Chem. Abstr.* **1975**, *83*, 97297; (b) Tieman, C. H.; Kollmeyer, W. D. U.S. Patent 3,948,934, 1976; *Chem. Abstr.* **1976**, *85*, 46680; (c) Porter, P. E.; Kollmeyer, W. D. U.S. Patent 4,053,623, 1977; *Chem. Abstr.* **1978**, *88*, 37796.
- (a) Maryanoff, B. E.; Nortey, S. O.; McNally, J. J.; Sanfilippo, P. J.; Mccomsey, D. F.; Dubinsky, B.; Shank, R. P.; Reitz, A. B. *Biomed. Chem. Lett.* **1999**, 9, 1547–1552; (b) Kondo, H.; Taguchi, M.; Inoue, Y.; Sakamoto, F.; Tsukamoto, G. *J. Med. Chem.* **1990**, 33, 2012–2015.
- (a) Huang, C.; Yan, S.-J.; Zeng, X.-H.; Dai, X.-Y.; Zhang, Y.; Qing, C.; Lin, J. Eur. J. Med. Chem. 2011, 46, 1172–1180; (b) Yan, S.-J.; Liu, Y.-J.; Chen, Y.-L.; Liu, L.; Lin, J. Bioorg. Med. Chem. Lett. 2010, 20, 5225–5228.
- 20. Eswaran, S.; Adhikari, A. V.; Kumar, R. A. Eur. J. Med. Chem. 2010, 45, 957–966.
- (a) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Borea, P. A. J. Med. Chem. 2005, 48, 5001–5008; (b) Colottta, V.; Catarzi, D.; Varano, F.; Cecchi, L.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Lucacchini, A. J. Med. Chem. 2000, 43, 3118–3124.
- Abdelhalim, M. M.; El-Saidi, M. M. T.; Rabie, S. T.; Elmegeed, G. A. Steroids 2007, 72, 459–462.
- Milbank, J. B. J.; Stevenson, R. J.; Ware, D. C.; Chang, J. Y. C.; Tercel, M.; Ahn, G. O.; Wilson, W. R.; Denny, W. A. J. Med. Chem. 2009, 52, 6822–6834.
- (a) Yu, F.-C.; Yan, S.-J.; Hu, L.; Wang, Y.-C.; Lin, J. Org. Lett. 2011, 13, 4782–4785;
 (b) Yan, S.-J.; Chen, Y.-L.; Liu, L.; He, N.-Q.; Lin, J. Green Chem. 2010, 12, 2043–2052;
 (c) Yan, S.-J.; Chen, Y.-L.; Liu, L.; Tang, Y.-J.; Lin, J. Tetrahedron Lett. 2011, 52, 465–467;
 (d) Yan, S.-J.; Niu, Y.-F.; Huang, R.; Lin, J. Synlett 2009, 2821–2824.
- 25. CCDC 946792 (3g) contains all crystallographic details of this publication. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Unit cell parameters (3g): a: 6.6323(11) Å; b: 9.9091(17) Å; c: 14.608(3) Å; a: 71.147(2)°; β: 79. 238(2)°; γ: 74.744(2)°; space group Triclinic, P-1.
- 26. (a) Huang, Z.-T.; Wang, M.-X. Synthesis 1992, 1273–1276; (b) Li, Z.-J.; Charles, D. Synth. Commun. 2001, 31, 527–533; Chen, X.-B.; Liu, X.-M.; Huang, R.; Yan, X.-J.; Lin, J. Eur. J. Org. Chem. 2013, 4607–4613.
- 27. Duan, J.-X.; Dolbier, W. R., Jr.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486-9489.
- 28. Hollins, R. A.; Campos, M. P. A. J. Org. Chem. 1979, 44, 3931-3934.