Copper-Mediated 1,2-Difunctionalization of Styrenes with Sodium Arylsulfinates and *tert***-Butyl Nitrite: Facile Access to α-Sulfonylethanone Oximes**

Ji Yang,^a Yan-Yun Liu,^a Ren-Jie Song,^a Zhi-Hong Peng,^{a,*} and Jin-Heng Li^{a,b,*}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China

^b State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, People's Republic of China Fax: (+86)-731-8871-3642; phone: (+86)-731-8871-3642; e-mail: pzh7251@yahoo.com or jhli@hnu.edu.cn

Received: January 24, 2016; Revised: April 18, 2016; Published online:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201600109.

Abstract: A new copper-mediated synthesis of α -sulfonylethanone oximes from styrenes, sodium arylsulfinates and *tert*-butyl nitrite (*t*-BuONO; TBN) is presented. This intermolecular three-component method enables the one-step formation of C–N and C–S bonds under mild conditions, and represents a new, straightforward approach to α -sulfonylethanone oximes.

Keywords: *tert*-butyl nitrite; copper; sodium arylsulfinates; styrenes; α-sulfonylethanone oximes

The difunctionalization of alkenes that simultaneously adds two functional groups across a C=C double bond is one of the most important and straightforward methods for rapidly increasing molecular complexity, and it continues to inspire considerable efforts to develop new transformations.^[1,2] In this field, attractive transformations include the difunctionalization reactions of alkenes with sulfonylation reagents and other functional reagents,^[3] which provide an efficient tool for assembling useful sulfonyl-functionalized molecules.^[4] However, transformations of alkenes using the three-component intermolecular strategy for the incorporation of sulfonyl groups turned out to be challenging. Indeed, the success of such three-component intermolecular difunctionalization transformations is rare and restricted to oxysulfonylation^[5] and halosulfonylation (Scheme 1a).^[6] Thus, the development of new, mild three-component intermolecular methods for incorporating a sulfonyl group into simple alkenes, which extends beyond oxysulfonylation and halosulfonylation, is highly interesting.

The α -sulfonylethanone oximes are a class of important compounds that are found in some natural

products, pharmaceuticals, and materials, and are also valuable intermediates in synthesis.^[7] Traditionally, approaches for the synthesis of α -sulfonylethanone oximes often require multiple synthetic steps that have low total yields and limited functional group choice. In 2012, He and co-workers reported the twocomponent cascade oxidation-addition reactions of olefins with N-hydroxysulfonamides for the synthesis of α -sulforylethanone oximes in which the addition of NO free radicals proceeded through the oxidation of hydroxylamine to form the corresponding oximes.^[4h] Inspired by these results, we envisioned that, by using an oxidative-radical strategy, the three-component intermolecular process might be used for introducing the sulfonyl group into the alkenes. Herein, we report a new, three-component intermolecular method to produce α -sulforylethanone oximes by copper-cata-

*t-*BuONO

Scheme 1. Difunctionalization reaction of alkenes *via* the incorporation of the sulfonyl group.

Adv. Synth. Catal. 0000, 000, 0-0Wiley Online Library1These are not the final page numbers!**7**

lyzed difunctionalization of styrenes with sodium arylsulfinates and *t*-BuONO (Scheme 1b). This method allows the construction of a C–S bond and a C=N double bond through cascade radical addition across the C=C double bond in styrenes. This is accomplished by using sodium arylsulfinates, nitrosation and hydroamination and represents a mild and practical access to α -sulfonylethanone oximes.

As shown in Table 1, we optimized reaction conditions for the three-component reaction of 1-methyl-4vinylbenzene (1a) with sodium benzenesulfinate (2a) and t-BuONO. To our delight, treatment of styrene 1a with sodium arylsulfinate 2a, t-BuONO and CuBr in toluene afforded the desired 2-(phenylsulfonyl)-1-(ptolyl)ethan-1-one oxime (3aa) in 71% yield (entry 1). A series of other Cu catalysts, including CuI, CuOTf, CuBr₂ and Cu(OAc)₂, was subsequently tested; each of these catalysts was less effective than CuBr (entries 2–5). However, only a trace amount of product 3aa was observed by GC-MS analysis in the absence of a copper catalyst (entry 6). The results show that the amount of CuBr affected the reaction (entries 7 and 8): a higher amount of CuBr (20 mol%) gave an identical yield to that obtained with 10 mol% of CuBr, but a lower amount of CuBr (5 mol%) sharply decreased the yield to 38%. A screen of various solvents, such as toluene, MeCN, ClCH₂CH₂Cl, CH₂Cl₂, DMF and DMSO, revealed toluene as the best choice (entry 1 *versus* entries 9–13). The reaction at a loading of 3 equiv. H₂O in anhydrous toluene also afforded product **3aa** in good yield (entry 14). Among the reaction temperatures examined, the reaction at 60 °C turned out to be preferred in terms of the yield (entries 1, 15 and 16).

With the optimal reaction conditions in hand, a variety of sodium arylsulfinates **2**, was first investigated in the presence of styrene **1a**, *t*-BuONO and CuBr (Table 2). Gratifyingly, sodium arylsulfinates **2**, bearing either electron-donating (Me and MeO) or electron-withdrawing (Cl, Br and NO₂) groups at the 2 or 4 positions of the aromatic ring were compatible with the optimized conditions (products **3ab–ag**). While 4-Me- or 4-MeO-substituted sodium arylsulfinates **2b** and **c** afforded products **3ab** and **3ac** in 57% and 48% yields, respectively, 4-NO₂-substituted sodium arylsulfinate was converted into product **3af** in 61% yield.

^[a] Reaction conditions: **1a** (0.2 mmol), **2a** (2 equiv.), t-BuONO (2 equiv.), [Cu] and solvent (2 mL) for 12 h. All solvents contain about 0.3% to 0.5% w/w water.

^[b] Isolated yields.

^[c] H_2O (3 equiv.) in anhydrous toluene.

Adv. Synth. Catal. 0000, 000, 0-0

These are not the final page numbers! **77**

2

Table 2. Difunctionalization tandem reaction of 1-methyl-4vinylbenzene (1a) with sodium arylsulfinates (2) and t-BuONO^[a]

^[a] Reaction conditions: **1a** (0.2 mmol), **2** (2 equiv.), *t*-BuONO (2 equiv.), CuBr (10 mol%) and toluene (2 mL) at 60 °C for 12 h.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Interestingly, the halogen groups Cl and Br were welltolerated and, thus, provide additional opportunities for modification of the products (products **3ad**, **3ae** and **3ag**). These results show that the substitution position has a fundamental influence on reactivity. In the case of the bromo-substituted substrates **2e** and **2g**, the reactivity decreased from *para* to *ortho* substitution (products **3ae** and **3ag**).

A wide range of terminal styrenes **1b–l** and internal alkenes **1m–n** were subjected to the optimized conditions to produce products **3ba–na** (Table 3). We were

Table 3. Variation of the styrenes.^[a]

^[a] *Reaction conditions:* **1** (0.2 mmol), **2a** (2 equiv.), *t*-BuONO (2 equiv.), CuBr (10 mol%) and toluene (2 mL) at 60 °C for 12 h.

Adv. Synth. Catal. 0000, 000, 0-0

These are not the final page numbers! **77**

pleased to find that styrene **1b** was able to furnish the desired product, 1-phenyl-2-(phenylsulfonyl)ethan-1one oxime (**3ba**), in 68% yield. Styrenes **1** with a substituent, such as MeO, CH₂Cl, Cl, Br, CN and NO₂, on the aromatic ring were compatible with the optimized reaction conditions, providing the corresponding products 3ca-ka in moderate to good yields. Notably, the steric hindrance effects of substituents impacted on the reactivity. For example, the MeO-substituted styrenes 1c, 1i and 1k smoothly underwent the difunctionalization reaction (products 3ca, 3ia and 3ka, respectively), but the reactivity, as measured by yield, decreased from para to meta to ortho substitution. Gratifyingly, the 2-vinylnaphthalene **11** was a suitable substrate for the reaction (product 3la). It was noted that the internal alkenes 1-methoxy-4-(prop-1-en-1yl)benzene (1m) and (3-chloroprop-1-en-1-yl)benzene (1n) successfully reacted with sodium arylsulfinate 2a and t-BuONO in 62% and 51% yields, respectively (products **3ma** and **3na**). Unfortunately, the aliphatic alkene 10 failed to react under the optimized reaction conditions.

To understand the mechanism of the three-component intermolecular reaction, control experiments were performed (Scheme 2). This reaction was substantially inhibited by radical scavengers, including 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or 2,4di-*tert*-butyl-4-methylphenol (BHT) [Eq. (1)], suggesting that the reaction involves a radical pathway. An ¹⁸O-labelling experiment was also performed by using H₂¹⁸O; the¹⁸O-labelled product **3aa**-¹⁸O was observed, which indicates that the hydroxy group's oxygen atom is from H₂O [Eq. (2)].

Scheme 2. Control experiments.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Therefore, we propose a possible mechanism, which is outlined in Scheme 3, for this tandem protocol.^[8-10] Initially, *t*-BuONO readily decomposes into HNO₂ and *t*-BuOH in the presence of H₂O, and HNO₂ is quickly converted into NO₂, NO and H₂O.^[9,10] Sodium benzenesulfinate releases the oxygen-centered radical **A**, which is in resonance with the sulfonyl radical **B**, with the aid of CuBr.^[8] Addition of sulfonyl radical **B** across styrene **1b** forms intermediate **C**, which then reacts with *t*-BuONO^[9,10] to afford intermediate **D**. Finally, intermediate **D** is converted to the desired oxime, **3ba**, *via* a tautomerization process.^[9i]

Scheme 3. Possible mechanisms.

t-BuONO + H₂O ---> HNO₂ + t-BuOH

In summary, we have developed a new, coppermediated difunctionalization reaction of styrenes with sodium arylsulfinates and *t*-BuONO for the selective synthesis of diverse α -sulfonylethanone oximes. This method proceeds through a sequence of radical addition, nitrosation and hydroamination and is a simple and highly generalizable route for the production of α -sulfonylethanone oximes with excellent functional group tolerance. Further studies on the development of conceptually novel, three-component intermolecular reactions are currently underway in our laboratory.

Experimental Section

General Considerations

The ¹H and ¹³C NMR spectra were recorded in CDCl_3 or acetone- d_6 solvents on an NMR spectrometer using TMS as the internal standard. LR-MS was performed on a GC-MS instrument, and HR-MS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points are uncorrected.

Typical Procedure for the Synthesis of Sodium Arylsulfinates (3)

4-Methylbenzenesulfinic acid sodium salt **2b** was prepared by heating 5.0 g of sodium sulfite, 3.80 g of 4-methylbenzenesulfonyl chloride, and 3.36 g of sodium bicarbonate in 20 mL of water at 80 °C for 8 h. After cooling to room temperature, water was removed under vacuum. Recrystallization of the residue in ethanol produced a white solid; yield: 1.78 g (55%).

Similarly, other sodium arylsulfinates **2c–2g** were prepared from their corresponding sulfonyl chlorides.

Typical Procedure for Copper-Mediated Synthesis of Oximes from Styrenes

A mixture of styrene 1 (0.2 mmol), sodium arylsulfinate 2 (0.4 mmol), *t*-BuONO (0.4 mmol), and CuBr (10 mol%) was stirred in toluene (2 mL) at 60 °C (oil-bath temperature) for the indicated time (about 12 h) until the complete consumption of the starting material as monitored by TLC. After the reaction was finished, the reaction mixture was cooled to room temperature, and washed with brine. The aqueous phase was re-extracted with EtOAc (3×10 mL) and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to isolate the desired products 3.

Analytical Data for 3aa-3ag and 3ba-3na

2-(Phenylsulfonyl)-1-(*p***-tolyl)ethan-1-one oxime (3aa):** yield: 41.0 mg (71%); white solid; mp 153.9–154.3 °C (uncorrected); ¹H NMR (400 MHz, acetone-*d*₆): δ =10.78 (s, 1H), 7.82 (d, *J*=7.6 Hz, 2H), 7.70–7.66 (m, 1H), 7.61 (d, *J*= 8.4 Hz, 2H), 7.57–7.53 (m, 2H), 7.16 (d, *J*=8.0 Hz, 2H), 4.87 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, acetone-*d*₆): δ =146.4, 140.5, 139.0, 133.6, 132.0, 128.8, 128.3, 126.5, 51.7, 20.4; LR-MS (EI, 70 eV): *m/z* (%)=273 (48), 208 (100), 209 (87), 193 (43); HR-MS (ESI): *m/z*=290.0833, calcd. for C₁₅H₁₆NO₃S (M+H)⁺: 290.0845.

3aa-¹⁸O: yield: 37.8 mg (65%); HR-MS (ESI): m/z = 292.0873, calcd. for $C_{15}H_{16}N^{18}O^{16}O_2S (M+H)^+$: 292.0888.

1-(*p***-Tolyl)-2-tosylethan-1-one oxime (3ab):** yield: 34.5 mg (57%); white solid; mp 160.9–161.3 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ =8.54 (s, 1H), 7.70 (d, *J*=8.0 Hz, 2H), 7.49 (d, *J*=8.0 Hz, 2H), 7.22 (d, *J*=7.6 Hz, 2H), 7.16 (d, *J*=8.0 Hz, 2H), 4.70 (s, 2H), 2.37(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =147.8, 144.8, 140.1, 136.5, 130.8, 129.4, 129.3, 128.4, 126.5, 52.7, 21.6, 21.3; LR-MS (EI, 70 eV): *m/z* (%)=288 (1), 119 (100), 91 (37), 108 (23); HR-MS (ESI): *m/z*=304.0990, calcd. for C₁₆H₁₈NO₃S (M+H)⁺: 304.1002.

2-[(4-Methoxyphenyl)sulfonyl]-1-(*p*-tolyl)ethan-1-one oxime (3ac): yield: 30.6 mg (48%); white solid; mp 143.9– 144.7 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.91 (s, 1H), 7.74 (d, *J*=8.4 Hz, 2H), 7.52 (d, *J*=8.0 Hz, 2H), 7.17 (d, *J*=7.6 Hz, 2H), 6.90 (d, *J*=8.8 Hz, 2H), 4.70 (s, 2H), 3.84 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 163.8, 148.3, 140.1, 131.0, 130.8, 130.7, 129.3, 126.5, 113.9, 55.6, 52.7, 21.3; LR-MS (EI, 70 eV): *m/z* (%) = 223.9 (100), 303 (95), 238 (93), 207 (90); HR-MS (ESI): *m/ z*=320.0940, calcd. for C₁₆H₁₈NO₄S (M+H)⁺: 320.0951.

Adv. Synth. Catal. 0000, 000, 0-0

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! **77**

2-[(4-Chlorophenyl)sulfonyl]-1-(p-tolyl)ethan-1-one

oxime (3ad): yield: 40.7 mg (63%); white solid; mp 165.9– 167.3 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.46 (s, 1H), 7.73 (d, *J*=7.6 Hz, 2H), 7.47 (d, *J*=8.0 Hz, 2H), 7.39 (d, *J*=8.4 Hz, 2H), 7.17 (d, *J*=8.0 Hz, 2H), 4.72 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 147.6, 140.6, 140.4, 137.7, 130.5, 130.0, 129.4, 129.0, 126.5, 52.7, 21.3; LR-MS (EI, 70 eV): *m/z* (%)=307 (1), 119 (100), 91 (24), 117 (13); HR-MS (ESI): *m/z*=324.0447, calcd. for C₁₅H₁₅³⁵ClNO₃S (M+H)⁺: 324.0456.

2-[(4-Bromophenyl)sulfonyl]-1-(p-tolyl)ethan-1-one

oxime (3ae): yield: 52.7 mg (72%); white solid; mp 174.9– 175.3 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (s, 1H), 7.66 (d, *J*=8.0 Hz, 2H), 7.56 (d, *J*=8.0 Hz, 2H), 7.48 (d, *J*=7.6 Hz, 2H), 7.18 (d, *J*=8.0 Hz, 2H), 4.72 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 147.6, 140.4, 138.2, 132.0, 130.4, 130.1, 129.4, 129.2, 126.5, 52.6, 21.3; LR-MS (EI, 70 eV): *m/z* (%)=318 (71), 254 (12), 207 (77), 253 (59); HR-MS (ESI): *m/z*=367.9943, calcd. for C₁₅H₁₅⁷⁹BrNO₃S (M+H)⁺: 367.9951.

2-[(4-Nitrophenyl)sulfonyl]-1-(*p***-tolyl)ethan-1-one oxime (3af):** yield: 40.7 mg (61%); white solid; mp 181.9–183.3 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ =8.27 (d, *J*=8.4 Hz, 2H), 8.01 (d, *J*=8.4 Hz, 2H), 7.51 (d, *J*=8.0 Hz, 2H), 7.19 (d, *J*=8.0 Hz, 2H), 4.78 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =150.9, 147.4, 144.6, 140.8, 130.2, 130.1, 129.5, 126.5, 123.8, 52.6, 21.3; LR-MS (EI, 70 eV): *m/z* (%)=352 (41), 206 (100), 286 (57), 289 (55); HR-MS (ESI): *m/z*=335.0688, calcd. for C₁₅H₁₅N₂O₅S (M+H)⁺: 335.0696.

2-[(2-Bromophenyl)sulfonyl]-1-(p-tolyl)ethan-1-one

oxime (3ag): yield: 40.3 mg (55%); white solid; mp 179.9–180.7 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (s, 1 H), 7.96–7.93 (m, 1 H), 7.71–7.69 (m, 1 H), 7.48 (d, J = 8.0 Hz, 2 H), 7.40–7.34 (m, 2 H), 7.12 (d, J = 8.0 Hz, 2 H), 5.03 (s, 2 H), 2.24 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 147.7$, 140.0, 139.4, 135.2, 134.5, 132.2, 130.9, 129.2, 127.7, 126.6, 121.3, 50.4, 21.3; LR-MS (EI, 70 eV): m/z (%)=317 (100), 301 (99), 260 (27), 318 (25); HR-MS (ESI): m/z = 367.9956, calcd. for C₁₅H₁₅⁷⁹BrNO₃S (M+H)⁺: 367.9951.

1-Phenyl-2-(phenylsulfonyl)ethan-1-one oxime (3ba): yield: 37.4 mg (68%); white solid; mp 165.9–166.6 °C (uncorrected); ¹H NMR (400 MHz, acetone- d_6): $\delta = 10.9$ (s, 1H), 7.83 (m, J = 8.0 Hz, 2H), 7.72–7.71 (m, 2H), 7.70–7.66 (m, 1H), 7.57–7.53 (m, 2H), 7.36–7.32 (m, 3H), 4.90 (s, 2H); ¹³C NMR (100 MHz, acetone- d_6): $\delta = 146.5$, 140.5, 134.8, 133.7, 129.1, 128.9, 128.2 (2C), 126.6, 51.7; LR-MS (EI, 70 eV): m/z (%) = 259 (66), 194 (100), 195 (79), 91 (57); HR-MS (ESI): m/z = 276.0680, calcd. for C₂₂H₁₉N₂O₄ (M+H)⁺: 276.0689.

1-(4-Methoxyphenyl)-2-(phenylsulfonyl)ethan-1-one

oxime (3ca): yield: 42.1 mg (69%); white solid; mp 167.9–168.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.84 (d, J = 7.6 Hz, 2 H), 7.61–7.57 (m, 3 H), 7.48–7.44 (m, 2 H), 6.88 (d, J = 9.2 Hz, 2 H), 4.72 (s, 2 H), 2.84 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 161.0, 147.4, 139.4, 133.8, 128.8, 128.5, 128.1, 126.0, 114.0, 55.3, 52.5; LR-MS (EI, 70 eV): m/z (%) = 289 (4), 135 (100), 77 (23), 133 (22); HR-MS (ESI): m/z = 306.0787, calcd. for C₁₅H₁₆NO₄S (M+H)⁺: 306.0795.

1-[4-(Chloromethyl)phenyl]-2-(phenylsulfonyl)ethan-1one oxime (3da): yield: 42.6 mg (66%); white solid; mp 156.9–158.1 °C (uncorrected); ¹H NMR (400 MHz, acetoned₆): δ=10.99 (s, 1H), 7.83 (d, J=8.0 Hz, 2H), 7.73 (d, J= 8.4 Hz, 2H), 7.70–7.76 (m, 1H), 7.57–7.53 (m, 2H), 7.43 (d, J=8.0 Hz, 2H), 4.90 (s, 2H), 4.73 (s, 2H); ¹³C NMR (100 MHz, acetone-d₆): δ=146.1, 140.4, 138.9, 134.8, 133.7, 128.9, 128.6, 128.3, 126.9, 51.7, 45.5; LR-MS (EI, 70 eV): m/z(%)=223 (100), 286 (86), 194 (75), 77 (70); HR-MS (ESI): m/z=324.0468, calcd. for C₁₅H₁₅³⁵CINO₃S (M+H)⁺ 324.0456.

1-(4-Chlorophenyl)-2-(phenylsulfonyl)ethan-1-one oxime (**3ea**): yield: 34.6 mg (56%); white solid; mp 166.9–167.8 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ = 8.18 (s, 1 H), 7.84 (d, *J* = 7.6 Hz, 2 H), 7.61–7.57 (m, 3 H), 7.50–7.46 (m, 2 H), 7.33 (d, *J* = 8.0 Hz, 2 H), 4.71 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ = 146.9, 139.3, 136.1, 134.0, 132.0, 128.9, 128.8, 128.4, 127.9, 52.5; LR-MS (EI, 70 eV): *m/z* (%) = 293 (1), 139 (100), 141 (13), 77 (39); HR-MS (ESI): *m/z* = 310.0375, calcd. for C₁₄H₁₃³⁵ClNO₃S (M+H)⁺: 310.0299.

1-(4-Bromophenyl)-2-(phenylsulfonyl)ethan-1-one oxime **(3fa):** yield: 36.6 mg (52%); white solid; mp 188.9–189.6 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ =11.07 (s, 1H), 7.84–7.82 (m, 2H), 7.72–7.66 (m, 3H), 7.59–7.53 (m, 4H), 4.90 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =145.7, 140.3, 134.1, 133.8, 131.3, 128.9, 128.5, 128.3, 122.9, 51.5; LR-MS (EI, 70 eV): *m/z* (%)=338 (37), 193 (100), 117 (61), 273 (51); HR-MS (ESI): *m/z*=353.9786, calcd. for C₁₄H₁₃⁷⁹BrNO₃S (M+H)⁺: 353.9794.

4-[1-(Hydroxyimino)-2-(phenylsulfonyl)ethyl]benzonitrile (**3ga):** yield: 40.2 mg (67%); white solid; mp 173.9–174.7 °C (uncorrected); ¹H NMR (400 MHz, acetone- d_6): $\delta = 11.41$ (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.73–6.69 (m, 1H), 7.60–7.56 (m, 2H), 4.96 (s, 2H); ¹³C NMR (100 MHz, acetone- d_6): $\delta = 145.5$, 140.1, 139.0, 133.9, 132.0, 129.0, 128.2, 127.3, 118.2, 112.4, 51.3; LR-MS (EI, 70 eV): m/z (%) = 284 (1), 130 (100), 77 (70), 221 (48); HR-MS (ESI): m/z = 301.0633, calcd. for C₁₅H₁₃N₂O₃S (M+H)⁺: 301.0641.

1-(4-Nitrophenyl)-2-(phenylsulfonyl)ethan-1-one oxime (**3ha**): yield: 46.1 mg (72%); white solid; mp 155.9–157.3 °C (uncorrected); ¹H NMR (400 MHz, acetone- d_6): $\delta = 11.52$ (s, 1H), 8.23 (d, J = 8.8 Hz, 2H), 8.00 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.73–7.70 (m, 1H), 7.60–7.56 (m, 2H), 5.00 (s, 2H); ¹³C NMR (100 MHz, acetone- d_6): $\delta = 148.1$, 145.4, 140.9, 140.1, 133.9, 129.0, 128.3, 127.7, 123.3, 51.4; LR-MS (EI, 70 eV): m/z (%)=304 (81), 240 (100), 193 (73), 77 (55); HR-MS (ESI): m/z = 321.0541, calcd. for C₁₄H₁₃N₂O₅S (M+H)⁺: 321.0540.

1-(3-Methoxyphenyl)-2-(phenylsulfonyl)ethan-1-one

oxime (3ia): yield: 33.6 mg (55%); white solid; mp 157.9– 158.6 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): δ = 8.58 (s, 1 H), 7.84 (d, *J*=7.6 Hz, 2 H), 7.58–7.55 (m, 1 H), 7.46–7.42 (m, 2 H), 7.28–7.24 (m, 1 H), 7.17 (d, *J*=7.2 Hz, 2 H), 6.94–6.92 (m, 1 H), 4.73(s, 2 H), 3.80(s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ =159.6, 147.6, 139.4, 134.9, 133.8, 129.6, 128.8, 128.4, 119.2, 115.9, 111.8, 55.3, 52.8; LR-MS (EI, 70 eV): *m/z* (%)=289 (29), 135 (100), 77 (36), 107 (25); HR-MS (ESI): *m/z*=306.0782, calcd. for C₁₅H₁₆NO₄S (M+ H)⁺: 306.0795.

1-(3-Chlorophenyl)-2-(phenylsulfonyl)ethan-1-one oxime (3ja): yield: 38.9 mg (63%); white solid; mp 161.9-163.4 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.72$ (s, 1 H),

Adv. Synth. Catal. 0000, 000, 0-0

These are not the final page numbers! **77**

7.84 (m, J=7.6 Hz, 2H), 7.61-7.57 (m, 1H), 7.56 (s, 1H), 7.52–7.48 (m, 1 H), 7.45 (d, J = 7.6 Hz, 2 H), 7.34 (d, J =8.0 Hz, 1H), 7.30–7.26 (m, 1H), 4.71 (s, 3H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = 146.5, 139.2, 135.4, 134.6, 134.0,$ 129.9, 129.8, 128.3, 126.5, 124.8, 52.5; LR-MS (EI, 70 eV): m/z (%)=293 (88), 229 (100), 193 (89), 228 (66); HR-MS (ESI): m/z = 310.0375, calcd. for $C_{22}H_{19}N_2O_4$ (M+H)⁺: 310.0299.

1-(2-Methoxyphenyl)-2-(phenylsulfonyl)propan-1-one oxime (3ka): yield: 25.0 mg (41%); white solid; mp 166.9-167.8 °C (uncorrected); ¹H NMR (400 MHz, acetone- d_6): $\delta =$ 10.87 (s, 1 H), 7.68 (d, J=8.0 Hz, 2 H), 7.62-7.59 (m, 1 H), 7.49–7.45 (m, 2H), 7.32–7.28 (m, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.94–6.90 (m, 1H), 6.81 (d, J=8.4 Hz, 1H), 4.96 (s, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6): $\delta =$ 157.3, 147.1, 140.4, 133.3, 130.9, 130.6, 128.7, 128.0, 123.8, 120.3, 110.8, 54.8, 52.6; LR-MS (EI, 70 eV): m/z (%)=289 (13), 134 (100), 148 (64), 147 (41); HR-MS (ESI): m/z =306.0781. calcd. for $C_{15}H_{16}NO_4S (M+H)^+$: 306.0795.

1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethan-1-one oxime (3la): yield: 35.8 mg (55%); white solid; mp 177.9-178.9 °C (uncorrected); ¹H NMR (400 MHz, acetone- d_6): $\delta = 11.04$ (s, 1H), 8.20 (s, 1H), 7.92–7.88 (m, 3H), 7.87–7.84 (m, 3H), 7.65-7.62 (m, 1H), 7.54-7.51 (m, 4H), 5.04 (s, 2H); ¹³C NMR (100 MHz, acetone- d_6): $\delta = 146.5$, 140.5, 133.7 (2C), 133.1, 132.2, 128.9, 128.6, 128.3, 127.8, 127.6, 127.0, 126.7, 126.4, 123.6, 51.6; LR-MS (EI, 70 eV): m/z (%)=309 (89), 244 (100), 245 (84), 141 (52); HR-MS (ESI): m/z =326.0837, calcd. for $C_{18}H_{16}NO_3S (M+H)^+$: 326.0845.

1-(4-Methoxyphenyl)-2-(phenylsulfonyl)propan-1-one oxime (3ma): yield: 39.6 mg (62%); white solid; mp 179.9-180.7 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.16 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.63–7.59 (m, 1H), 7.52–7.48 (m, 2H), 7.35 (d, J = 12 Hz, 2H), 6.88 (d, J =12 Hz, 2H), 4.35–4.30 (m, 1H), 3.82 (s, 3H), 1.62(d, J =8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 160.1$, 151.9, 137.4, 133.7, 129.8, 129.3, 128.9, 124.1, 113.6, 66.3, 55.3, 13.9, 52.6; LR-MS (EI, 70 eV): m/z (%) = 288 (13), 107 (100), 147 (63), 77 (45); HR-MS (ESI): m/z = 320.0943, calcd. for $C_{16}H_{18}NO_4S (M+H)^+: 320.0951.$

3-Chloro-1-phenyl-2-(phenylsulfonyl)propan-1-one oxime (3na): yield: 32.9 mg (51%); white solid; mp 161.9-162.7 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.69$ (d, J =8.0 Hz, 2H), 7.64-7.61 (m, 3H), 7.46-7.36 (m, 5H), 5.27-5.24 (m, 1H), 5.15–5.12 (m, 1H), 4.66–4.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.5$, 135.6, 134.7, 130.8, 129.1, 128.9, 128.7, 127.7, 127.1, 72.8, 72.6; LR-MS (EI, 70 eV): m/z (%)=307 (13), 104 (100), 141 (45), 77 (67); HR-MS (ESI): m/z = 324.0470, calcd. for $C_{15}H_{15}^{35}$ ClNO₃S $(M+H)^+: 324.0456.$

Acknowledgements

We thank the NSFC (Nos. 21402046 and 21472039) and Hunan Provincial Natural Science Foundation of China (No. 13 JJ2018) for financial support. Dr R.- J. Song. also thanks the Fundamental Research Funds for the Central Universities and Hunan Province Science and Technology Project (grant number 2015JC3052).

Adv. Synth. Catal. 0000, 000, 0-0

References

asc.wiley-vch.de

- [1] For selected reviews, see: a) G. Li, T.-T. Chang, B. K. Sharpless, Angew. Chem. 1996, 108, 449; Angew. Chem. Int. Ed. 1996, 35, 451; b) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292; Angew. Chem. Int. Ed. 2006, 45, 7134; c) V. Kotov, C. C. Scarborough, S. S. Stahl, Inorg. Chem. 2007, 46, 1910; d) S. R. Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153; e) J. P. Wolfe, Synlett 2008, 2913; f) D. M. Schultz, J. P. Wolfe, Synthesis 2012, 351; g) J. P. Wolfe, Angew. Chem. 2012, 124, 10370; Angew. Chem. Int. Ed. 2012, 51, 10224; h) K. H. Jensen, M. S. Sigman, Org. Biomol. Chem. 2008, 6, 4083; i) E. Merino, C. Nevado, Chem. Soc. Rev. 2014, 43, 6598; j) R. M. Romero, T. H. Wöste, K. Muñiz, Chem. Asian J. 2014, 9, 972; k) J.-R. Chen, X.-Y. Yu, W.-J. Xiao, Synthesis 2015, 47, 604; 1) S. Tang, K. Liu, C. Liu, A. Lei, Chem. Soc. Rev. 2015, 44, 1070.
- [2] a) J. Barluenga, F. J. Faiiands, J. Villamafia, M. Yus, J. Org. Chem. 1982, 47, 1560; b) B. Luisa, P.-C. Montevecchi, P. Spacnolo, Tetrahedron Lett. 1986, 42, 1345; c) A. de Meijere, F. E. Meyer, Angew. Chem. 1994, 106, 2473; Angew. Chem. Int. Ed. 1994, 33, 2379; d) The Mizoroki-Heck Reaction, (Ed.: M. Oestrich,) John Wiley & Sons, West Sussex, U.K., 2009; e) M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116, 3448; Angew. Chem. Int. Ed. 2004, 43, 3368; f) G. Liu, Y. Wu, Top. Curr. Chem. 2010, 292, 195; g) R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981; h) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464; i) W. Wu, H. Jiang, Acc. Chem. Res. 2012, 45, 1736; j) W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu, M. Hu, P. Xie, J.-H. Li, Angew. Chem. 2013, 125, 3726; Angew. Chem. Int. Ed. 2013, 52, 3638; k) J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Angew. Chem. 2014, 126, 6768; Angew. Chem. Int. Ed. 2014, 53, 6650; 1) Y. Shimizu, M. Kanai, Tetrahedron Lett. 2014, 55, 3727; m) X. Sun, X.-Y. Li, S. Song, Y.-C. Zhu, Y.-F. Liang, N. Jiao, J. Am. Chem. Soc. 2015, 137, 6059; n) K. Wittsyein, K. Kumar, H. Waldmann, Angew. Chem. 2011, 123, 9242; Angew. Chem. Int. Ed. 2011, 50, 9076; o) W. Wei, X.-X. Liu, M.-Y. Guo, R.-M. Dong, H. Wang, J. Org. Chem. 2014, 79, 4225; p) X.-Q. Li, X.-S. Xu, P.-Z. Hu, X.-Q. Xiao, C. Zhou, J. Org. Chem. 2013, 78, 7343; q) W. Wei, J.-W. Wen, D.-S. Yang, J. Du, J.-M. You, H. Wang, Green Chem. 2014, 16, 2988; r) C.-L. Liu, M.-H. Zhu, W. Wei, D.-S. Yang, H. Cui, X.-X. Liu, H. Wang, Org. Chem. Front. 2015, 2, 1356; s) X.-H. Ouyang, R.-J. Song, M. Hu, Y. Yang, J.-H. Li, Angew. Chem. 2016, 128, 3239; Angew. Chem. Int. Ed. 2016, 55, 3187.
- [3] a) W.-W. Li, Y.-L. Lam, J. Comb. Chem. 2005, 7, 644; b) B. Skillinghaug, C. Sköld, J. Rydfjord, F. Svensson, M. Behrends, J. Sävmarker, R. Sjöberg, M. Larhed, J. Org. Chem. 2014, 79, 12018; c) M. Ochiai, Y. Kitagawa, M. Toyonari, K. Uemura, K. Oshima, M. Shiro, J. Org. Chem. 1997, 62, 8001; d) M. Ochiai, K. Miyamoto, T. Suefuji, S. Sakamoto, K. Yamaguchi, M. Shiro, Angew. Chem. 2003, 115, 2241; Angew. Chem. Int. Ed. 2003, 42, 2191; e) Q.-Q. Lu, J. Zhang, F.-L. Wei, Y. Qi, H.-M. Wang, Z.-L. Liu, A. Lei, Angew. Chem. 2013, 125,

These are not the final page numbers! **77**

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

6

7297; Angew. Chem. Int. Ed. 2013, 52, 7156; f) F. Zhao, Qi. Tan, F.-H. Xiao, S.-F. Zhang, G.-J. Deng, Org. Lett. 2013, 15, 7.

- [4] a) H.-S. Li, G. Liu, J. Org. Chem. 2014, 79, 509; b) F.-H. Xiao, H. Chen, H. Xie, S.-Q. Chen, L. Yang, G.-J. Deng, Org. Lett. 2014, 16, 50; c) H.-W. Zhang, W.-Y. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Li, Q. Zhang, Angew. Chem. 2013, 125, 2589; Angew. Chem. Int. Ed. 2013, 52, 2529; d) S. Kramer, T. Skrydstrup, Angew. Chem. 2012, 124, 4759; Angew. Chem. Int. Ed. 2012, 51, 4681; e) E. L. Ingalls, P. A. Sibbald, W. Kaminsky, F. E. Michael, J. Am. Chem. Soc. 2013, 135, 8854; f) X.-Q. Li, X.-S. Xu, P.-Z. Hu, X.-Q. Xiao, C. Zhou, J. Org. Chem. 2013, 78, 7343; g) K. Kaneko, T. Yoshino, S. Matsunaga, M. Kanai, Org. Lett. 2013, 15, 2502; h) N. Liu, P. Yin, Y. Chen, Y. Deng, L. He, Eur. J. Org. Chem. 2012, 80, 2711.
- [5] For papers on oxysulfonylation, see: a) A. K. Singh, R. Chawla, L. D. S. Yadav, Tetrahedron Lett. 2014, 55, 4742; b) R. Chawla, A. K. Singh, L. D. S. Yadav, Eur. J. Org. Chem. 2014, 2032; c) A. K. Singh, R. Chawla, T. Keshari, V. K. Yadav, L. D. S. Yadav, Org. Biomol. Chem. 2014, 12, 8550; d) W. Wei, J.-W. Wen, D.-S. Yang, M. Wu, J.-M. You, H. Wang, Org. Biomol. Chem. 2014, 12, 7678; e) Q.-Q. Lu, J. Zhang, P. Peng, G.-H. Zhang, Z.-L. Huang, H. Yi, J. T. Miller, A. Lei, Chem. Sci. 2015, 6, 4851; f) W. Wei, C.-L. Liu, D.-S. Yang, J.-W. Wen, J.-M. You, Y.-R. Suo, H. Wang, Chem. Commun. 2013, 49, 10239; g) Q.-Q. Lu, J.-Y. Chen, C. Liu, Z.-Y. Huang, P. Peng, H.-M. Wang, A. Lei, RSC Adv. 2015, 5, 24494; h) R. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 8069; i) N. Taniguchi, J. Org. Chem. 2015, 80, 7797.
- [6] For papers on halosulfonylation, see: a) W. Wei, X.-X. Liu, D.-S. Yang, R.-M. Dong, Y. Cui, F. Yuan, H. Wang, *Tetrahedron Lett.* 2015, 56, 1808; b) R. R. Wolff, V. Basava, R. M. Giuliano, W. J. Boyko, J. H. Schaubl, *Can. J. Chem.* 2006, 84, 667; c) L. M. Harwod, M. Julid, G. L. Thuillier, *Tetrahedron Lett.* 1979, 36, 2483; d) Z.-L. Yuan, H.-Y. Wang, X. Mu, P.-H. Chen, Y.-L. Guo, G.-S. Liu, J. Am. Chem. Soc. 2015, 137, 2468; e) V. I. Timokhin, S. Gastaldi, M. P. Bertrand, C. Chatgilialoglu, J. Org. Chem. 2003, 68, 3532; f) K. Sun, Y.-H. Lv, Z.-H. Zhu, Y.-Q. Jiang, J.-J. Qi, H.-K. Wu, Z.-G. Zhang, G.-S. Zhang, X. Wang, RSC Adv. 2015, 5, 50701; g) S. Reddy, S. Thadkapally, M. Mamidyala, J. B. Nanubolu, R. S. Menon, RSC Adv. 2015, 5, 8199.
- [7] a) H. A. Abdel-Aziz, K. A. Al-Rashood, K. E. H. ElTahir, G. M. Suddek, *Eur. J. Med. Chem.* 2014, 80, 416;

b) H. A. Abdel-Aziz, H. A. Ghabbour, M. A. Bhat, H.-K. Fun, *J. Chem.* **2014**, *6*; c) J. Xiang, M. Ipek, V. Suri, M. Tam, Y.-Y. Zhang, J. Tobin, T. S. Mansour, J. Mckew, *Bioorg. Med. Chem.* **2007**, *15*, 4396.

- [8] a) X.-D. Tang, L.-B. Huang, Y.-L. Xu, J.-D. Yang, W.-Q. Wu, H.-F. Jiang, Angew. Chem. 2014, 126, 4289; Angew. Chem. Int. Ed. 2014, 53, 4205; b) H.-S. Li, G. Liu, J. Org. Chem. 2014, 79, 509; c) N. Taniguchi, J. Org. Chem. 2015, 80, 1764; d) Q. Taniguchi, J.-B. Xu, J. Jia, A. Zhao, Y.-R. Zhao, Y.-Y. Li, N.-N. He, C.-C. Guo, J. Org. Chem. 2014, 79, 7372; e) N. Taniguchi, Synlett 2011, 9, 1308.
- [9] For selected reviews and papers on the nitration reaction using t-BuONO, see: a) D. Koley, O. C. Colón, S. N. Savinov, Org. Lett. 2009, 11, 4172; b) T. Taniguchi, A. Yajima, H. Ishibashi, Adv. Synth. Catal. 2011, 353, 2643; c) S. Kilpatrick, S. Arns, Chem. Commun. 2013, 49, 514; d) S. Manna, S. Jana, T. Saboo, A. Maji, D. Maiti, Chem. Commun. 2013, 49, 5286; e) S. Maity, T. Naveen, U. Sharma, D. Maiti, Org. Lett. 2013, 15, 3384; f) T. Shen, Y. Yuan, N. Jiao, Chem. Commun. 2014, 50, 554; g) D. Fang, Q.-R. Shi, K. Gong, Z.-L. Lu, C.-X. Lü, Chin. J. Energ. Mater. 2008, 16, 103; h) J. Song, Z. Zhou, Sci.-Tech. Rev. 2013, 31, 69; i) S. Prateeptongkum, I. Jovel, R. Jackstell, N. Vogl, C. Weckbecker, M. Beller, Chem. Commun. 2009, 1990.
- [10] a) M. P. Doyle, J. W. Terpstra, R. A. Pickering, D. M. LePoire, J. Org. Chem. 1983, 48, 3379; b) J.-Y. Park, Y.-N. Lee, J. Phy. Chem. 1988, 92, 6294; c) S. Rangana-than, S. K. Kar, J. Org. Chem. 1970, 35, 3962.
- [11] CCDC 1424789 (3aa) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.

Adv. Synth. Catal. **0000**, 000, 0-0

COMMUNICATIONS

8 Copper-Mediated 1,2-Difunctionalization of Styrenes with Sodium Arylsulfinates and *tert*-Butyl Nitrite: Facile Access to α-Sulfonylethanone Oximes

Adv. Synth. Catal. 2016, 358, 1-8

Ji Yang, Yan-Yun Liu, Ren-Jie Song, Zhi-Hong Peng,* Jin-Heng Li*

