©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS, 32(12), 1859–1865 (2002)

PREPARATION OF NEW CHLORAMBUCIL ANALOGS BY *BIS*-S_{RN}1 METHODOLOGY

Kamel Benakli,* Thierry Terme, and Patrice Vanelle[†]

Laboratoire de Chimie Organique, CNRS-UMR 6517, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France

ABSTRACT

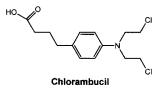
Three series of chlorambucil analogs were prepared by an original reaction of 1-(3-chloro-2-chloromethylpropenyl)-4-nitrobenzene with various nitronate anions under electron transfer reaction conditions.

Chronic lymphocytic leukaemia is the most common form of leukaemia in Western countries. Its chemotherapy has been based on the use of N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid (chlorambucil) for more than 30 years.^[1] Chlorambucil is a bis-alkylating agent that is known to bind covalently to many types of cellular molecules, such as DNA, RNA, and proteins.^[2] Its mode of action has not, as yet, been entirely clarified. Previously researchers attributed chlorambucil's cytotoxicity solely to its inhibitors effects on DNA synthesis.^[3] More recent studies have revealed

1859

Copyright © 2002 by Marcel Dekker, Inc.

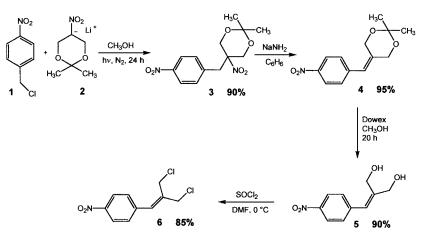
www.dekker.com


^{*}Current address: Department of Pharmaceutical Sciences, Wayne State University, 223 Shapero Hall, Detroit, MI 48202.

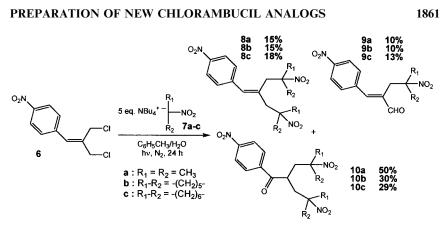
[†]Corresponding author. E-mail: patrice.vanelle@pharmacie.univ-mrs.fr

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1860


BENAKLI, TERME, AND VANELLE

that chlorambucil indirectly affects the synthesis of DNA.^[4] Biochemical studies have found that chlorambucil affects other cellular constituents as well,^[5] especially nuclear proteins.^[6]


To go further into our survey of bioreductive alkylating agents in electron transfer reactions^[7] and into the development of new analogs of chlorambucil as anticancer agents, we report herein the synthesis of a *p*-nitrobenzyl *bis*-alkylating agent **6** and the study of its reactivity with various nitronate anions under S_{RN} 1 reaction conditions.

The *bis*-chloride **6** was prepared in a four-step reaction. Firstly, we have realized an $S_{RN}1$ reaction between *p*-nitrobenzyl chloride **1** and the dioxane salt **2**, as described previously,^[8] leading to the *C*-alkylated derivative **3** in 90% yield. The treatment of the latter compound **3** with sodium amide induced a nitrous acid elimination to give the ethylenic derivative **4** in 95% yield. Ring opening of compound **4** was easily effected in refluxing methanol in the presence of an ion exchange resin (Dowex 50x8-50) to give the corresponding diol **5** in 90% yield.^[9] Finally, we obtained the required *bis*-alkylating agent **6** in 85% yield by treating the diol **5** with an excess of thionyl chloride in dimethylformamide at 0°C (Scheme 1).

Scheme 1.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Scheme 2.

The *bis*-chloride **6** reacted with 5 equivalents of the nitronate anion **7a–c** under $S_{RN}1$ reaction conditions (inert atmosphere, light catalysis) and in phase-transfer system (40% tetrabutylammonium hydroxide in water and toluene) for 24 h to give three products: the *bis-C*-alkylated product **8a–c**, the aldehyde **9a–c** and the ketone **10a–c** (Scheme 2).

As reported previously in the nitroimidazole series,^[10] derivatives **8a–c** resulted from a classical *bis*-S_{RN}1 mechanism, whereas **9a–c** were formed by a consecutive S_{RN}1 (*C*-alkylation) and S_N2 (*O*-alkylation) reaction, while **10a–c** were obtained by an S_{RN}1 reaction followed by an S_N2' and a Michael addition of nitronate anion.

In conclusion, we have demonstrated an original synthesis of new analogs of chlorambucil by bis-S_{RN}1 methodology. The study of the antitumor activity of these compounds is under active investigation.

EXPERIMENTAL

Melting points were determined on Büchi B-540 and are uncorrected. Elemental analyses were performed by the Centre de Microanalyses of the University of Aix-Marseille 3. Both ¹H and ¹³C NMR spectra were determined on Bruker ARX 200 spectrometer. The ¹H chemical shifts were reported as part per million downfield from tetramethylsilane (Me₄Si), and the ¹³C chemical shifts were referenced to the solvent peaks: CDCl₃ (76.9 ppm). The following adsorbent was used for column chromatography: silica gel 60 (Merck, 230–400 mesh). Thin-layer chromatography was performed with silica gel Merck 60F-254 (0.25 mm layer thickness).

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1862

BENAKLI, TERME, AND VANELLE

2,2-Dimethyl-5-[nitro-(4-nitrophenyl)-methyl]-1,3-dioxane **3**, 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane **4** and 2-(4-nitrobenzylidene)propane-1,3-diol **5** were prepared as previously described.^[9] Nitrocyclohexane was commercially available, nitrocycloheptane was prepared by oxidation of the corresponding amine with *m*-chloroperbenzoic acid in refluxing 1,2-dichloroethane by Gilbert and Borden procedure.^[11]

1-(3-Chloro-2-chloromethylpropenyl)-4-nitrobenzene (6): Thionyl chloride (5.27 ml, 63 mmol) was added dropwise to a solution of **5** (2.51 g, 12 mmol) in dimethylformamide (50 ml) in a round-bottomed flask equipped with reflux condenser surmounted by a calcium chloride drying tube. After stirring at 0°C for 24 h, the reaction mixture was evaporated under reduced pressure. The residue was dissolved in benzene (25 ml), washed with water (3 × 20 ml), dried over MgSO₄ and the solvent was removed under reduced pressure. Recrystallization from ethanol gave 2.51 g (85% yield) of 1-(3-chloro-2-chloromethylpropenyl)-4-nitrobenzene (**6**)–pale yellow needles, m.p. 65°C. ¹H NMR (CDCl₃): δ 4.28 (s, 2H), 4.35 (s, 2H), 6.84 (s, 1H), 7.52 (d, J = 8.8 Hz, 2H), 8.26 (d, J = 8.8 Hz, 2H). ¹³C NMR (CDCl₃): δ 39.6, 46.4, 123.9, 129.5, 131.7, 137.1, 141.5, 147.3. Anal. calcd for C₁₀H₉NO₂Cl₂: C, 48.81; H, 3.69; N, 5.69; Cl, 28.81. Found: C, 48.85; H, 3.70; N, 5.75; Cl, 28.75.

General procedure for bis-S_{RN}1 reaction with aliphatic and cyclic nitronate anions: Under nitrogen atmosphere, a solution of tetrabutylammonium hydroxide (40% in water, 6.7 mol, 10 mmol) was treated with nitroalkane (10 mmol) for 1 h. A solution of 1-(3-chloro-2-chloromethylpropenyl)-4nitrobenzene 6 (0.50 g, 2 mmol) in toluene (20 ml) was added and the mixture was irradiated with a 300 W sun lamp for 24 h at room temperature under an inert atmosphere. The organic layer was separated and the aqueous layer was extracted with toluene (3 × 10 ml). The combined organic layers were washed twice with water (30 ml), dried over MgSO₄ and removed under reduced pressure. Purification by chromatography on silica gel eluting with chloroform and recrystallization from isopropanol led to the corresponding products 8a-c, 9a-c, 10a-c.

1-[4-Methyl-2-(2-methyl-2-nitropropyl)-4-nitropent-1-enyl]-4-nitrobenzene (8a): White needles, m.p. 80°C. ¹H NMR (CDCl₃): δ 1.37 (s, 6H), 1.65 (s, 6H), 2.60 (s, 2H), 2.92 (s, 2H), 6.53 (s, 1H), 7.29 (d, J=8.5 Hz, 2H), 8.20 (d, J=8.5 Hz, 2H). ¹³C NMR (CDCl₃): δ 26, 26.2, 40.9, 46.3, 87.6, 88.7, 123.8, 129.6, 133.9, 134.2, 143.5, 146.8. Anal. calcd for C₁₆H₂₁N₃O₆: C, 54.70; H, 6.02; N, 11.96. Found: C, 54.65; H, 6.04; N, 12.02.

2-(2-Methyl-2-nitropropyl)-3-(4-nitrophenyl)-propenal (9a): White needles, m.p. 116°C. ¹H NMR (CDCl₃): δ 1.40 (s, 6H), 3.24 (s, 2H), 7.25 (s, 1H), 7.55 (d, J = 8.2 Hz, 2H), 8.25 (d, J = 8.2 Hz, 2H), 9.60 (s, 1H). ¹³C NMR (CDCl₃): δ 26, 33.5, 87.5, 124, 129.5, 139.7, 140.4, 148, 150.6, 193.7. Anal.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PREPARATION OF NEW CHLORAMBUCIL ANALOGS

1863

calcd for C₁₃H₁₄N₂O₅: C, 56.11; H, 5.07; N, 10.07. Found: C, 56.07; H, 5.12; N, 10.02.

4-Methyl-2-(2-methyl-2-nitropropyl)-4-nitro-1-(4-nitrophenyl)-pentan-1-one (**10a**): White needles, m.p. 134°C. ¹H NMR (CDCl₃): δ 1.43 (s, 6H), 1.59 (s, 6H), 2.10 (dd, J=4.3 Hz and J=15.2 Hz, 2H), 2.43 (dd, J=7.1 Hz and J=15.2 Hz, 2H), 3.30 (tt, J=4.3 Hz and J=7.1 Hz, 1H), 8.04 (d, J=8.7 Hz, 2H), 8.33 (d, J=8.7 Hz, 2H). ¹³C NMR (CDCl₃): δ 26, 26.8, 38.2, 43, 87.2, 124.2, 129.6, 140, 150.7, 199.8. Anal. calcd for C₁₆H₂₁N₃O₇: C, 52.31; H, 5.76; N, 11.44. Found: C, 52.76; H, 5.95; N, 11.70.

1-Nitro-4-[3-(1-nitrocyclohexyl)-2-(1-nitrocyclohexylmethyl)-propenyl]benzene (8b): White needles, m.p. 112°C. ¹H NMR (CDCl₃): δ 1.20 (m, 6H), 1.30 (m, 2H), 1.45 (m, 2H), 1.60–180 (m, 6H), 2.30 (m, 2H), 2.45 (s, 2H), 2.55 (m, 2H), 2.75 (s, 2H), 6.47 (s, 1H), 7.30 (d, J=8.2 Hz, 2H), 8.20 (d, J=8.2 Hz, 2H). ¹³C NMR (CDCl₃): δ 22, 22.3, 24.2, 24.5, 34.5, 41.6, 47.3, 91, 92.3, 123.8, 129.8, 132.9, 133.7, 143.7, 146.7. Anal. calcd for C₂₂H₂₉N₃O₆: C, 61.24; H, 6.77; N, 9.74. Found: C, 61.30; H, 6.80; N, 9.80.

2-(1-Nitrocyclohexylmethyl)-3-(4-nitrophenyl)-propenal (9b): White needles, m.p. 115°C. ¹H NMR (CDCl₃): δ 1.60 (m, 6H), 2.40 (m, 4H), 3.20 (s, 2H), 7.40 (s, 1H), 7.60 (d, J=8.2 Hz, 2H), 8.30 (d, J=8.2 Hz, 2H), 9.70 (s, 1H). ¹³C NMR (CDCl₃): δ 22.1, 24.2, 34.2, 34.4, 90.8, 123.9, 129.5, 139.3, 140.3, 148, 150.8, 193.6. Anal. calcd for C₁₆H₁₈N₂O₅: C, 60.37; H, 5.70; N, 8.80. Found 60.35; H, 5.72; N, 8.85.

3-(1-Nitrocyclohexyl)-2-(1-nitrocyclohexylmethyl)-1-(4-nitrophenyl)-propan-1-one (10b): White needles, m.p. 120°C. ¹H NMR (CDCl₃): δ 1.25–1.45 (m, 8H), 1.50–1.70 (m, 8H), 1.90 (dd, J=4.5 Hz and J=15.1 Hz, 2H), 2.25 (m, 2H), 2.30 (dd, J=6.8 Hz and J=15.2 Hz, 2H), 2.50 (m, 2H), 3.60 (tt, J=4.5 and J=6.8 Hz, 1H), 8.05 (d, J=8.2 Hz, 2H), 8.35 (d, J=8.2 Hz, 2H). ¹³C NMR (CDCl₃): δ 22.1, 24.4, 34.3, 34.9, 36.3, 42.8, 90.3, 124.1, 129.6, 139.9, 150.7, 193.2. Anal. calcd for C₂₂H₂₉N₃O₇: C, 59.05; H, 6.53; N, 9.39. Found: C, 59.07; H, 6.60; N, 9.50.

1-Nitro-4-[3-(1-nitrocycloheptyl)-2-(1-nitrocycloheptylmethyl)-propenyl]benzene (8c): White needles, m.p. 96°C. ¹H NMR (CDCl₃): δ 1.30–1.50 (m, 16H), 1.80 (dd, J=8.5 Hz and J=15.3 Hz, 4H), 2.40 (dd, J=8.5 Hz and J=15.3 Hz, 4H), 2.51 (s, 2H), 2.80 (s, 2H), 6.51 (s, 1H), 8.03 (d, J=8.1 Hz, 2H), 8.32 (d, J=8.1 Hz, 2H). Anal. calcd for C₂₄H₃₃N₃O₆: C, 62.73; H, 7.24; N, 9.14. Found: C, 62.68; H, 7.30; N, 9.20.

2-(1-Nitrocycloheptylmethyl)-3-(4-nitrophenyl)-propenal (9c): White needles, m.p. 100°C. ¹H NMR (CDCl₃): δ 1.30–1.50 (m, 8H), 1.80 (dd, J = 8.5 Hz and J = 15.3 Hz, 2H), 2.40 (dd, J = 8.5 Hz and J = 15.3 Hz, 2H), 3.20 (s, 2H), 7.40 (s, 1H), 7.50 (d, J = 8.2 Hz, 2H), 8.30 (d, J = 8.2 Hz, 2H), 9.61 (s, 1H). ¹³C NMR (CDCl₃): δ 22.6, 29.3, 34.3, 36.8, 94.8, 123.9, 129.4, 139.8,

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

1864

BENAKLI, TERME, AND VANELLE

140.4, 148, 150.4, 193.7. Anal. calcd for $C_{17}H_{20}N_2O_5\!\!:C,\,61.44;\,H,\,6.07;\,N,$ 8.43. Found: C, 61.50; H, 5.92; N, 8.52.

3-(1-Nitrocycloheptyl)-2-(1-nitrocycloheptylmethyl)-1-(4-nitrophenyl)propan-1-one (10c): White needles, m.p. 102° C. ¹H NMR (CDCl₃): δ 1.30–1.61 (m, 16H), 1.90 (dd, J=8.2 Hz and J=15.1 Hz, 4H), 1.95 (dd, J=4.3 Hz and J=15.2 Hz, 2H), 2.30 (dd, J=8.2 Hz and J=15.1 Hz, 4H), 2.40 (dd, J=4.3 Hz and J=15.2 Hz, 2H), 3.50 (tt, J=4.3 Hz and J=8.2 Hz, 1H), 8.05 (d, J=8.1 Hz, 2H), 8.35 (d, J=8.1 Hz, 2H). ¹³C NMR (CDCl₃): δ 22.7, 29.5, 36.9, 37.5, 37.7, 43.8, 94.6, 124.1, 129.5, 140.2, 150.6, 199.8. Anal. calcd for C₂₄H₃₃N₃O₇: C, 60.62; H, 6.99; N, 8.84. Found: C, 60.61; H, 7.04; N, 8.81.

ACKNOWLEDGMENT

This work has been supported by the Centre National de la Recherche Scientifique and the Universities of Aix-Marseille. We express our thanks to M. Noailly for ¹H and ¹³C NMR spectra recording. T. Terme thanks the President of the Université de la Méditerranée for his appointment as ATER at Université de la Méditerranée.

REFERENCES

- 1. Faguet, C.B. J. Clin. Oncol. 1994, 12, 1974.
- Cheson, B.D. Scientific Advances and Clinical Developments; Marcel Dekker, Ed.: New York, 1993.
- 3. Bank, B.B.; Kanganis, D.; Liebes, L.F.; Silber, R. Cancer Res. **1989**, *49*, 554.
- 4. Sourlingas, T.G.; Aleporou-Marinou, V.; Pataryas, T.A.; Sekeri-Pataryas, K.E. Biochem. Blophys. Acta **1991**, *1092*, 298.
- 5. Hathout, Y.; Ellis, T.; Fabris, D.; Fenselau, C. Chem. Res. Toxic. **1996**, *9*, 1044.
- 6. Sourlingas, T.G.; Sekeri-Pataryas, K.E. Biochem. Mol. Biol. Int. 1997, 42, 1103.
- a) Vanelle, P.; Crozet, M.P. Recent Res. Devel. Organic Chem. 1998, 2, 547; b) Vanelle, P.; Terme, T.; Giraud, L.; Crozet, M.P. Recent Res. Devel. Organic Chem. 2000, 4, 1.
- 8. Linden, G.B.; Gold, M.H. J. Org. Chem. 1956, 21, 1175.
- 9. Vanelle, P.; Maldonado, J.; Crozet, M.P.; Senouki, K.; Delmas, F.; Gasquet, M.; Timon-David, P. Eur. J. Med. Chem. **1991**, *26*, 709.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

PREPARATION OF NEW CHLORAMBUCIL ANALOGS

1865

- a) Vanelle, P.; Benakli, K.; Maldonado, J.; Roubaud, C.; Crozet, M.P. Heterocycles 1996, 43, 731; b) Vanelle, P.; Benakli, K.; Maldonado, J.; Crozet, M.P. Heterocycles 1998, 48, 181.
- 11. Gilbert, K.E.; Borden, W.T. J. Org. Chem. 1979, 44, 659.

Received in the Netherlands June 20, 2001