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1. Introduction 

The present work lies at the intersection of important areas of 
organic chemistry, such as the chemistry of O-centered radicals, 
oxidative transformations under the action of cerium(IV) 
ammonium nitrate, and radical reactions involving C=C bonds.

Radicals with an unpaired electron localized on an N-O 
fragment, namely, N-oxyl radicals are widely used in organic and 
biological chemistry, the development of organic radical batteries 
and material design.1 In organic synthesis, more stable nitroxyl 
radicals are employed as free radical scavengers1 and catalysts 
for the oxidation of alcohols.2-7 Less stable imide-N-oxyl radicals 
have found application as mediators of hydrogen atom 
abstraction for the subsequent formation of C-C, C-O, C-S, and 
C-N bonds.2, 6, 8-13 Phthalimide-N-oxyl (PINO) generated from 
inexpensive N-hydroxyphthalimide (NHPI) is widely employed 
in the aerobic oxidation of bulk chemicals.8, 9, 14, 15

The main approach for the generation of imide-N-oxyl 
radicals is the oxidation of N-hydroxyimides under the action of 
transition metal salts or hypervalent iodine compounds. Among 
the metal-based reagents, cerium(IV) ammonium nitrate (CAN) 
is widely used due to its commercial availability, ease of 
handling, low toxicity and high solubility in organic solvents. 
Using a combination of NHPI and CAN, a number of C-H 
functionalization12, 16 and oxidation17 processes have been 
developed. 

In the last decade, the selective functionalization of alkenes 
with N-oxyl radicals has become a prominent area of modern 
organic chemistry. In the reactions of styrenes with NHPI, 

bifunctional products with C-O,18-21

C-C,22, 23 C-N24, 25 and C-I26, 27 bonds were obtained. Recently, we 
developed an approach for the selective radical 
difunctionalization of styrenes under the action of NHPI and 
CAN.28

Vinyl azides possess a rich spectrum of reactivity, and have 
therefore gained growing interest as versatile precursors for 
organic synthesis.29-31 Reactions of ArSO2∙,32-34 CF3∙,35-39 SCN∙,40 
NO2∙,34 ArC(O)∙34, 41 and various C-centered radicals42-44 with 
vinyl azides have been reported. In general, such processes are 
accompanied by the addition of a radical species to the terminal 
atom of the C=C bond of vinyl azides with the release of nitrogen 
and the formation of an iminyl radical. Depending on the reaction 
conditions, the formation of ketones and enamines can occur. To 
date, no intermolecular addition reactions of such iminyl radicals 
have been reported.

In the present work, the selective coupling of PINO radical 
with vinyl azides, followed by recombination with iminyl 
radicals was carried out to form O-substituted oximes containing 
two phthalimide-N-oxyl fragments (Scheme 1).
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Scheme 1. The present work in the context of the iminyl 
radical mediated transformations of vinyl azides.
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O-Phthalimide oximes with an N-O-N fragment were synthesized in high yields via the reaction 
of vinyl azides with phthalimide-N-oxyl radicals derived from N-hydroxyphthalimide under the 
action of cerium(IV) ammonium nitrate. The disclosed process is based on the radical 
transformation of vinyl azides with the elimination of nitrogen and the formation of iminyl N-
radicals. The developed approach exploited the dual reactivity of imide-N-oxyl radicals. They 
act as O-components for oxidative C-O coupling with vinyl azides and participate in subsequent 
formation of the N-O bond via their recombination with intermediate iminyl radicals.
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2. Results and Discussion

In the present work we report the reaction of substituted vinyl 
azides 1a-l and NHPI 2 under the action of CAN with the 
formation of O-phthalimide oximes 3a-l (Scheme 2).
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Scheme 2. Reaction of vinyl azides 1a-l, NHPI 2 and CAN to 
give O-phthalimide oximes 3a-l.

An important feature of this work is that formation of the N-
O-N fragment proceeds through the recombination of N-centered 
iminyl and O-centered PINO radicals.

Initially, we studied the model transformation of vinyl azide 
1a under the action of NHPI 2 and CAN (Table 1).

Table 1.
Optimization of the CAN-mediated reaction of vinyl azide 1a 
with NHPI 2.
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Solvent

rt, 0.5-2 h1a 2 3a

Entrya
Molar
ratio
1a:2:CAN

Solvent Time 
(h)

Yield
3a (%)b

1 1:2:2 MeOH 1 88 (85)
2 1:2:2 CH3CN 1 74
3 1:2:2 Acetone 1 70
4 1:2:2 THF 1 76
5 1:2:2 CH2Cl2/H2O (3:2) 1 78
6 1:2:2 EtOAc/H2O (3:2) 1 81
7 1:3:3 MeOH 1 85
8 1:2:3 MeOH 1 87
9 1:2:2 MeOH 0.5 80
10 1:2:2 MeOH 2 84

a Reagents and conditions: CAN (1.0-1.5 mmol) was added to a mixture of 
vinyl azide 1a (0.5 mmol) and NHPI 2 (1.0 mmol) in solvent (5 mL), and 
stirred at 20-25 °C for 0.5-2 h under an air atmosphere. For entries with a 
mixture of solvents, the v/v ratio is in parentheses. b NMR yields; isolated 
yields are given in parentheses.

The effect of the solvent nature on the yield of O-phthalimide 
oxime 3a was evaluated in Entries 1-6. In an initial experiment 
using MeOH as the solvent, target product 3a was obtained in 
88% yield. Carrying out the reaction in CH3CN, acetone or THF, 
as well as in two-phase systems (CH2Cl2/H2O, EtOAc/H2O) led 
to a decrease in the yield of 3a (Entries 2-6, 70-81%). Therefore, 
MeOH proved to be the best solvent for the process under study, 
and was chosen for further optimization.

Increasing the amount of NHPI 2 and CAN led to a slight 
decrease in the yield of 3a (Entry 7, 85%). The increase in 

CAN/NHPI 2 molar ratios from 1 to 1.5 did not improved the 
yield of the target product (Entry 8, 87%). The optimal reaction 
time was 1 h, since carrying out the reaction for 30 min resulted 
in decrease in the yield of the imide oxime 3a (Entry 9, 80%). 
Prolonging the reaction time to 2 h reduced the yield of 3a (Entry 
10, 84%).

With the optimized conditions (Table 1, Entry 1) in hand, the 
synthesis of O-phthalimide oximes 3a-l from various vinyl azides 
1a-l was performed in order to study the scope of the discovered 
process (Table 2).

Table 2.
Scope of O-phthalimide oximes 3a-l synthesized from vinyl 
azides 1a-l and NHPI 2.a
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a Reagents and conditions: CAN (1.0 mmol, 548 mg) was added to a mixture 
of vinyl azide 1a-l (0.5 mmol, 73-107 mg) and NHPI 2 (1.0 mmol, 163 mg) in 
MeOH (5 mL), and stirred at 20-25 °C for 1 h under an air atmosphere; 
isolated yields.

The reaction proceeded in high yields with vinyl azides 
1b,c,i,k, containing weakly electron-donating alkyl substituents 
on the aromatic ring (3b,c,i,k, 79-88%). The reactions with vinyl 
azides 2d,e,h possessing moderately electron-withdrawing 
groups (F, Cl, CF3) yielded O-phthalimide oximes 3d,e,h with 
slightly diminished yields (73-75%). Vinyl azides bearing 
strongly electron-donating (MeO) or -withdrawing (NO2) 
substituents gave products 3f,g,j,l with the lowest yields of 54-
69%.

Based on the literature data concerning the generation of 
PINO radicals from NHPI under the action of CAN45 and the 
addition of radical species to vinyl azides,29-31 we proposed a 
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mechanism for the synthesis of O-phthalimide oximes from vinyl 
azides under the action of NHPI and CAN (Scheme 3). 
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Scheme 3. Proposed mechanism for the CAN-mediated 
synthesis of O-phthalimide oxime 3 from vinyl azide 1 and 
NHPI 2.

The reaction begins with the formation of PINO radical from 
NHPI 2 under the action of CAN, followed by addition to the 
terminal carbon atom of the C=C bond of vinyl azide 1. Nitrogen 
elimination from the resulting radical A occurs with the 
formation of iminyl radical B. At the last stage radical B is 
intercepted by the PINO radical to form product 3.

3. Conclusion

In summary, we have disclosed the reaction between various 
vinyl azides and N-hydroxyphthalimide resulting in the formation 
of O-phthalimide oximes with an N-O-N fragment. The reaction 
proceeds under the action of cerium(IV) ammonium nitrate 
which acts as an oxidizing agent for the formation of the 
phthalimide-N-oxyl radical from NHPI. The radical pathway 
starts with the addition of the PINO radical to the C=C bond of 
the vinyl azide which triggers a cascade of radical 
transformations, including generation of the iminyl radical and its 
recombination with the PINO radical. The developed approach 
was successfully extended to various substituted vinyl azides. As 
a result, a wide range of O-phthalimide oximes was obtained with 
the yields ranging from 54-88%.
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