J. Iran. Chem. Soc., Vol. 7, No. 3, September 2010, pp. 597-602.

JOURNAL OF THE Iranian Chemical Society

Design and Synthesis of Novel Dinucleotide Analogs

F. Valiyev^{a,c,*}, V. Abbasov^c, H.J. Liu^{a,b} and F.Y. Tsai^d

^aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan ^bDepartment of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan ^cInstitute of Petrochemical Processes of Azerbaijan NAS, Baku, Azerbaijan ^dCenter for General Education, Chang Gung University, Tao-Tuan 333, Taiwan

(Received 19 June 2009, Accepted 29 August 2009)

Syntheses of dinucleotide analogs, (S,R) *cis*-(4-((4-amino-2-oxopyrimidin-1(2H)-yl)methyl)-1,3-dioxolan-2-yl)methyl (2*R*, 3*R*, 5*R*)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-tetrahydrofuran-3-yl hydrogen phosphate (**5a**) and (S,R) *cis*-(5-((4-amino-2-oxopyrimidin-1(2H)-yl)methyl)-1,3-oxathiolan-2-yl)methyl (2*R*, 3*R*, 5*R*)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydrofuran-3-yl hydrogen phosphate (**5b**), were accomplished by the use of a new strategy. The use of phenyldichlorophosphate (Method A) as the coupling reagent was shown to possess superiority relative to the reported use of di(1H-benzo[d][1,2,3]triazol-1-yl)phenyl phosphonate (Method B).

Keywords: Nucleosides, Dinucleotides, Antivirals, Anti-HIV, Phosphorotriesters

INTRODUCTION

The gene of HIV encodes three key viral enzymes for the replication of this virus that can be exploited for the development of chemotherapeutic agents [1-6]. Two of these enzymes, HIV reverse transcriptase and HIV protease, have received much attention in terms of the development of clinically useful inhibitors [4-10]. On the contrary, the third enzyme of the pol gene, HIV integrase [2,3,11-13] has received relatively less attention in terms of inhibitors, in large part because of the difficulty associated with the discovery of therapeutically significant inhibitors [14-16].

On the other hand, some oligo nucleotides are known to inhibit HIV-1 integrase [17]. Pommier and coworkers investigated natural dinucleotides and Nair and coworkers designed and studied non-natural dinucleotides as potential anti-HIV integrase inhibitors by multistep procedures including *N*-protection and deprotection steps [18-22].

Our earlier findings [23] prompted us to synthesize dinucleotide analogues **5a** and **5b** to examine their antiviral activities. We used synthetic strategy shown in Scheme 1 to synthesize the target molecules **5a** and **5b** *via* the corresponding intermediates **3a** and **3b**, which were prepared using new synthetic methodology to give 3'-5'-phosphorotriester linkages with phenyldichlorophosphate as a coupling reagent.

EXPERIMENTAL

General

All starting materials were purchased from Aldrich, TCI and Across. THF was distilled from sodium benzophenone ketyl. ¹H NMR spectra were recorded with Bruker AMX400, proton chemical shifts (δ) are reported in parts per million

^{*}Corresponding author. E-mail: famil2002@hotmail.com

Valiyev et al.

(ppm) relative to the methine singlet at 7.24 ppm for the residual CHCl₃ in the deuteriochloroform, or the methyl pentet at 2.49 ppm for the residual $(CD_3)_2SO$ in the DMSO-d₆. Carbon chemical shifts are reported in parts per million relative to the internal ¹³C signals in CDCl₃ (77.0 ppm) or DMSO-d₆ (39.5 ppm). Mass spectra were obtained with a FAB JMS-700 double focusing mass spectrometer (JEOL, Tokyo, Japan).

Purification on silica gel refers to gravity column chromatography on Merck silica gel 60 (particle size 230-400 Mesh). Analytical TLC was performed on precoated plates purchased from Merck (Silica gel 60 F_{254}). Compounds were visualized by the use of UV light.

Synthesis of Compounds (1), 2a and 2b

1-((2R,4R,5R)-5-((*tert*-Butyldimethylsilyloxy)methyl)-4hydroxy-tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4

(1H,3H)-dione (1). To a stirred solution of 0.92 g (4 mmol) of thymidine in 10 ml dry pyridine was added dropwise a solution of 0.66 g (4.4 mmol) of *tert*-butyl-chlorodimethyl silane in 5 ml dry pyridine at room temperature. The reaction

mixture was stirred for 24 h. Then, pyridine was removed by co-evaporation with toluene under reduced pressure. The residue was purified by column chromatography on silica gel using CH₂Cl₂-MeOH (20:1), to give 1.17 g, 85% yield of compound **1** as white crystals. m.p.: 193-195 °C. ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 10.06 (s, 1H), 7.53 (s, 1H), 6.38-6.34 (dd, 1H, J = 5.56 and 5.6 Hz), 4.39-4.38 (d, 1H, J = 5.4 Hz), 4.05-4.04 (d, 1H, J = 1.4 Hz), 3.87-3.75 (dddd, 3H, J = 2.1, 1.8, 2.0 and 2.1 Hz), 2.40-2.35 (dd, 1H, J = 4.6 and 5.2 Hz), 2.07-1.97 (m, 1H), 1.85 (s, 3H), 0.86 (s, 9H), 0.05 (s, 6H).

(*S*,*R*) *cis*-4-amino-1-((2-(hydroxymethyl)-1,3-dioxolan-4-yl)methyl)pyrimidin-2(1H)-one (2a) and (S,R) *cis*-4amino-1-((2-(hydroxymethyl)-1,3-oxathiolan-5-yl)methyl) pyrimidin-2(1H)-one (2b). Synthesis of compounds 2a and 2b were described before [23].

General Procedures for the Synthesis of 3a,b

Method A. A mixture of compound **1** (1 mmol) and compound **2** in 5 ml dry *N*-methylimidazole was placed in a flame-dried 50 ml two-neck round bottom flask equipped with

a stirrer. One equivalent (1 mmol) of phenyldichlorophosphate in anhydrous THF (5 ml) was added dropwise at 0 °C and the reaction mixture was stirred at room temperature for 3 h. Water (30 ml) was added and the mixture was stirred for 30 min. Solids were isolated by filtration, dissolved in dichloromethane and dried over MgSO₄. Then, the solvent was evaporated and the residue was purified by column chromatography on silica gel using CH₂Cl₂-MeOH (10:1) as eluant.

Method B. A solution of phenyldichlorophosphate (1 mmol) in anhydrous THF (2 ml) was added dropwise to a solution of 1-hydroxybenzotriazole (2 mmol) and anhydrous pyridine (2 mmol) in dry THF (6 ml) at room temperature. The reaction mixture was then stirred for 1 h at the same temperature and the precipitate was filtered. The volume was reduced to 2 ml and added to a stirred solution of compound 1 (0.22 mmol) in 5 ml dry THF. The reaction mixture was stirred for 2 h. Then, compound **2** (0.22 mmol) in 5 ml dry *N*-methylimidazole (NMI) was added and the reaction mixture was stirred for another 3 h. A few drops of water were added to the reaction mixture and NMI was removed in vacuum; the residue was purified by column chromatography on silica gel using CH₂Cl₂-MeOH (10:1) as eluant.

(*S*,*R*) *cis*-((4-Amino-2-oxopyrimidin-1(2H)-yl)methyl)- **1,3-dioxolan-2-yl)methyl** (*2R,3R,5R*)-2-((*tert* **butyldimethylsilyloxy)methyl)-5-(5-methyl-2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)-tetrahydrofuran-3-yl phenyl phosphate (3a). was obtained in 62% yield as a white crystals by using Method A. m.p.: 200 °C (dec.). ¹H NMR (300 MHz, CDCl₃) \delta = 7.45-7.42 (d, 1H, J = 8.5 Hz), 7.38-7.17 (m, 6H), 6,36-6.32 (dd, 1H, J = 4.9 and 4.4 Hz), 5.84 (br. 1H), 5.08 (br, s, 1H), 5.06-4.95 (m, 1H), 4.5-4.44 (m, 1H), 4.33-3.60 (m, 9H), 2.59- 2.41 (dddd, 1H, J = 4.9, 4.8, 5.1 and 4.4 Hz), 2.12-1.96 (m, 1H), 1.87 (s, 3H), 0.87 (s, 9H), 0.07 (s, 6H), HRMS-FAB: for C₃₁H₄₄N₅O₁₁PSi (M+H)⁺ = 722.25.**

(*S*,*R*) cis-(5-((4-Amino-2-oxopyrimidin-1(2H)-yl) methyl)-1,3-oxathiolan-2-yl)methyl (2*R*,3*R*,5*R*)-2-((*tert*butyldimethylsilyloxy)methyl)-5-(5-methyl-2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)-tetrahydrofuran-3-yl phenyl phosphate (3b). was obtained in 46% yield as a white crystals by using Method B. m.p.: 200 °C (dec.). ¹H NMR (400 MHz, DMSO-d₆) δ = 11.4 (s, 1H), 7.46-7.24 (m, 7H), 7.14 (br, 1H), 7.07 (br, 1H), 6,2-6.17 (d, 1H, J = 3.7 Hz), 5.64-5.59 (t, 1H, J = 7.7 Hz, 5.32 (br, s, 1H), 5.02 (br, 1H), 4.30-3.65 (m, 7H), 3.08 (br, 1H), 2.75- 2.70 (t, 1H, J = 8.9 Hz), 2.48-2.33 (m, 2H), 1.78 (s, 3H), 0.86 (s, 9H), 0.06 (s, 6H). HRMS-FAB: for $C_{31}H_{44}N_5O_{10}PSSi (M+H)^+ = 738.23.$

cis-(4-((4-Amino-2-oxopyrimidin-1(2H)-yl) (S,R)methyl)-1,3-dioxolan-2-yl)methyl (2R,3R,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1 (2H)-yl)-tetrahydrofuran-3-yl phenyl phosphate(4a). To a solution of 65 mg (0.09 mmol) of compound 3a in 5 ml THF was added 5 ml solution of 2% HCl in EtOH at room temperature and the reaction was stirred for 1 h. Reaction mixture was evaporated to dryness and residue was purified by column chromatography on silica gel using CH₂Cl₂-MeOH (10:1) to give 46.5 mg (85% yield) of compound 4a as white crystals. m.p.: 200 °C (dec.). ¹H NMR (400 MHz, DMSO-d₆) $\delta = 11.32$ (s, 1H), 7.69 (s, 1H), 7.47-7.23 (m, 6H), 7.12 (br, 1H), 6.95 (br, 1H), 621-6.16 (dd, 1H, J = 6.3 and 6.9 Hz), 5.64-5.62 (d, 1H, J = 7.1 Hz), 5.31 (br, 1H), 5.11-5.07 (m, 2H), 4.35-4.28 (m, 1H), 4.19-3.51 (m, 9H), 2.44-2.31 (m, 2H), 1.78 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ = 166.03; 163.67; 155.95; 150.46; 149.49; 145.6; 135.85; 130.06 (2C); 125.51; 119.99 (2C); 109.75; 101.2; 93.18; 85.10; 83.61; 79.40; 74.25; 67.17; 67.10; 60.89; 50.67; 37.37; 12.25. HRMS-FAB for $C_{25}H_{30}N_5O_{11}P(M+H)^+ = 608.17$.

(5-((4-Amino-2-oxopyrimidin-1(2H)-yl) (S,R)cismethyl)-1,3-oxathiolan-2-yl)methyl (2R,3R,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1 (2H)-yl)-tetrahydrofuran-3-yl phenyl phosphate (4b). The procedure was similar to the one used for preparation of compound 4a. Compound 4b was isolated (53 mg, 85% yield) as white crystals. m.p.: 200 °C (dec.). ¹H NMR (400 MHz, DMSO-d₆) $\delta = 11.34$ (s, 1H), 7.69 (s, 1H), 7.51-7.20 (m, 6H), 7.16 (br, 1H), 7.02 (br, 1H), 6.20 (br, 1H), 5.65-5.60 (t, 1H, J = 6.6 Hz), 5.31 (br, 2H), 5.09 (br, 1H), 4.30-3.61 (m, 8H), 3.07 (br, 1H), 2.74-2.69 (t, 1H, J = 8.9 Hz), 2.44-2.34 (m, 2H), 1.77 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 165.75$; 163.59; 155.49; 150.39; 149.90; 146.45; 135.77; 129.96 (2C); 125.40; 119.93 (2C); 109.68; 93.23; 85.02; 83.58; 82.54; 82.14; 79.14; 69.35; 60.86; 50.38; 37.34; 33.65; 12.19. HRMS-FAB for $C_{25}H_{30}N_5O_{10}PS(M+H)^+ = 624.15$.

(*S*,*R*) *cis*-(4-((4-amino-2-oxopyrimidin-1(2H)-yl) methyl)-1,3-dioxolan-2-yl)methyl (*2R*,*3R*,*5R*)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1

Fig. 1. 400 MHz ¹H NMR, ¹³C NMR, DEPT 135 and DEPT 90 H NMR spectra of 4a.

(2H)-yl)-tetrahydrofuran-3-yl hydrogen phosphate (5a). To a solution of 30.5 mg (0.05 mmol) of compound 4a in 5 ml THF was added 20 ml of ammonium water (28%), and reaction mixture was shaken for a few minutes until the mixture had become almost clear (3 h). The solution was evaporated to dryness and residue was purified by short column chromatography on silica gel using CH₂Cl₂-MeOH (4:1) to give 20 mg (75% yield) of compound 5a as white crystals. m.p.: 200 °C (dec.). ¹H NMR (400 MHz, DMSO-d₆) $\delta = 11.28$ (s, 1H), 7.76 (s, 1H), 7.57 (br, 1H), 7.25 (br, 1H), 6.94 (br, 1H), 6.14 (br, 1H), 5.69 (br, 1H), 5.4 (br, 1H), 4.97 (br,1H), 4.68 (br, 1H), 4.28 (br, 1H), 3.99-3.49 (m, 9H), 2.3-2.01 (m, 2H), 1.77 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ = 166.13; 162.65; 152.96; 147.46; 141.64; 132.85; 110.75;98.22; 91.18; 86.10; 81.71; 76.40; 72.28; 66.18; 65.90; 60.52; 51.07; 36.85; 11.96. HRMS-FAB for $C_{19}H_{26}N_5O_{11}P(M+H)^+ =$ 532.14.

(*S*,*R*) *cis*-(5-((4-amino-2-oxopyrimidin-1(2H)-yl) methyl)-1,3-oxathiolan-2-yl)methyl (*2R*,*3R*,*5R*)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1

(2H)-yl)-tetrahydrofuran-3-yl hydrogen phosphate (5b). Compound 5b was prepared like compound 5a (20 mg, 74.7% yield) as white crystals. m.p.: 200 °C (dec.). ¹H NMR (400 MHz, D₂O) δ = 7.52-7.49 (br, 2H), 6.14-6.11 (t, 1H, J = 6.9 Hz), 5.83 (br, 1H), 5.22 (br, 1H), 4.27 (br, 1H), 4.10-3.52 (m, 8H), 3.06-3.02 (dd, 1H, J = 4.7 and 5.2 Hz), 2.70-2.66 (t, 1H, J = 10.1 Hz), 2.40-2.26 (m, 2H), 1.73(s, 3H). ¹³C NMR (125 MHz, D₂O) δ = 166.36; 151.54; 147.74; 137.39; 137.30; 111.50; 95.42; 85.02; 83.65; 82.00; 81.94; 75.20; 75.00; 67.58; 61.10; 51.50; 37.54; 33.39; 11.53. HRMS-FAB for C₁₉H₂₆N₅O₁₀PS (M+H)⁺ = 546.11.

RESULTS AND DISCUSSION

As shown in Scheme 1, compounds **5a** and **5b** were synthesized as racemates to allow access to all stereoisomers. Compound **1** obtained in 85% yield in the reaction of thymidine with *tert*-butyl-chlorodimethyl silane in pyridine [24]. Coupling reaction of the 5'-protected thymidine, individually, with the racemates of both *cis*-4-amino-1-((2-(hydroxymethyl)-1,3-dioxolan-4-yl)methyl)pyrimidin-2(1H)-one (**2a**) and *cis*-4-amino-1-((2-(hydroxymethyl)-1,3-oxathiolan-5-yl)methyl)pyrimidin-2(1H)-one (**2b**) [23], using

phenyldichlorophosphate as the coupling reagent in the presence of *N*-methylimidazole in THF afforded the respective compounds **3a** and **3b** in 60-65% yields (Method A). For the selective introduction of a 3'-5'-phosphorotriester linkage between 5'-protected deoxyribonucleoside (1) and dioxalane or oxathiolane nucleosides (**2a,b**), the coupling reagent dichlorophosphate could be applied, without formation of 3'-, or 5'- phosphorodiester intermediates. It should be noted that the compounds **3a,b** were found in 45-50% yield (Method B) by the use of a bifunctional phosphorylating agent, di(1H-benzo[d][1,2,3]triazol-1-yl)phenyl phosphonate [25].

The formation of compounds **3a** and **3b** was confirmed by their NMR and HRMS data. Deprotections with 2% hydrochloric acid in ethanol gave **4a** and **4b** in about 85% yield, which were characterized by ¹H NMR, ¹³C NMR, DEPT 135, DEPT 90 (Fig. 1) and HRMS data.

Further deprotection of **4a** and **4b** with 28% NH_4OH solution in water afforded target molecules **5a** and **5b** in about 75% yield. Structures of **5a** and **5b** were characterized by ¹H NMR, ¹³C NMR, and HRMS data. Compounds **5a** and **5b** will be evaluated for their antiviral activities; results will be reportedelsewhere.

In summary, we described high yield syntheses of novel nucleotide analogues **5a** and **5b** *via* the intermediates **3a** and **3b**, which in turn were prepared using the coupling reagent, phenyl dichlorophosphate.

ACKNOWLEDGMENTS

The authors thank the National Science Council of Taiwan, Republic of China, and Academia Sinica for their financial support.

REFERENCES

- [1] A.S. Fauci, Science 239 (1988) 617.
- [2] R.A. Katz, A.M. Skalka, Annu. Rev. Biochem. 63 (1994) 133.
- [3] A.D. Frankel, J.A.T. Young, Annu. Rev. Biochem. 67 (1998) 1.
- [4] E. De Clercq, Nat. Rev. Drug Discov. 1 (2002) 13.
- [5] S.C. Johnson, J.G. Gerber, Adv. Intern. Med. 45 (2000)1.

- [6] E. De Clercq, J. Med. Chem. 48 (2005) 1297.
- [7] V. Nair, M.H. St. Clair, J.E. Reardon, H.C. Krasny, R.J. Hazen, M.T. Paff, L.R. Boone, M. Tisdale, I. Najera, R.E. Dornsife, Antimicrob. Agents Chemother. 39 (1995) 1993.
- [8] T.M. Dando, L.J. Scott, Drugs 65 (2005) 285.
- [9] S. Broder, Med. Res. Rev. 10 (1990) 419.
- [10] J. Melroy, V. Nair, Curr. Pharm. Des. 11 (2005) 3847.
- [11] E. Asante-Appiah, A.M. Skalka, Adv. Virus Res. 52 (1999) 351.
- [12] D. Esposito, R. Craigie, Adv. Virus. Res. 52 (1999) 319.
- [13] F. Dyda, A.B. Hickman, T.M. Jenkins, A. Engelman, R. Craigie, D.R. Davies, Science 266 (1994) 1981.
- [14] M.D. Miller, D.J. Hazuda, Curr. Opin. Microbiol. 4 (2001) 535.
- [15] Y. Pommier, A.A. Johnson, C. Marchand, Nat. Rev. Drug Discov. 4 (2005) 236.
- [16] V. Nair, Rev. Med. Virol 12 (2002) 179.
- [17] J.O. Ojwang, R.W. Buckheit, Y. Pommier, A. Mazumder, K. De Vreese, J.A. Este, D. Reymen, L.A. Pallansch, C. Lackman-Smith, T.L. Wallace, E. De

Clercq, M.S. Mcgrath, R.F. Randol, Antimicrob. Agents Chemother. 39 (1995) 2426.

- [18] A. Mazumder, H. Uchida, N. Neamati, S. Sunder, M. Jaworska-Maslanka, E. Wickstrom, F. Zeng, R.A. Jones, R.F. Mandes, H.K. Chenault, Y. Pommier, Mol. Pharmacol. 51 (1997) 567.
- [19] M. Taktakishvili, N. Neamati, Y. Pommier, V. Nair, J. Am. Chem. Soc. 122 (2000) 5671.
- [20] M. Taktakishvili, N. Neamati, Y. Pommier, V. Nair, Bioorg. Med. Chem. Lett. 10 (2000) 249.
- [21] M. Taktakishvili, N. Neamati, Y. Pommier, V. Nair, Bioorg. Med. Chem. Lett. 11 (2001) 1433.
- [22] V. Nair, M. Taktakishvili, N. Neamati, Y. Pommier, Antiviral Res. 46 (2000) A44.
- [23] F. Valiyev, F.Y. Tsai, A.A. Saboury, H.J. Liu, A.A. Moosavi Movahedi, G.H. Hakimelahi, J. Iran. Chem. Soc. 5 (2008) 228.
- [24] K.K. Ogilvie, D.J. Iwacha, Tetrahedron Lett. 4 (1973) 317.
- [25] C.T.J. Wreesmann, A. Fidder, G.A. van der Marel, H. van Boom, Nucleic Acids Res. 11 (1983) 8389.