## **Catalytic C–F Bond Activation of Hexafluoropropene by Rhodium:** Formation of (3,3,3-Trifluoropropyl)silanes\*\*

Thomas Braun,\* Falk Wehmeier, and Kai Altenhöner

Dedicated to Professor Helge Willner on the occasion of his 60th birthday

The activation of carbon-fluorine bonds by transition-metal centers is an established process in organometallic chemistry.<sup>[1]</sup> Current interests include the development of new routes to higher-value fluorinated compounds from easily accessible precursors. The strategy involves the selective cleavage of a C-F bond in a highly fluorinated substrate to obtain fluorinated building blocks that then can be functionalized further in the coordination sphere of the metal.<sup>[1,2]</sup> There have been striking advances in the synthesis of fluorinated molecules using C-F activation reactions, but catalytic reactions are still rare. The transformations include a very limited number of cross-coupling reactions.<sup>[3,4]</sup> In another exceptional example, carbon-silicon bonds are formed by catalytic conversions of functionalized fluorobenzenes, such as fluoroacetophenones or (fluorophenyl)oxazolines, with hexamethyldisilane using  $[Rh(cod)_2]BF_4$  as catalyst (cod = cyclooctadiene).<sup>[5]</sup> Most of the other examples that have been reported involve simple hydrodefluorination steps.<sup>[1,2]</sup>

Very little has been reported on stoichiometric or even catalytic transformations that involve the cleavage of a C–F bond in a fluorinated olefin.<sup>[1,4,6-8]</sup> Again, almost all of the reactions involve hydrodefluorinations. The only exception involves a palladium-catalyzed cross-coupling reaction of 1,1-difluoro-2-naphtylpropene with [(tolyl)ZnCl] to give monoand ditolyl derivatives.<sup>[4]</sup> Holland and co-workers showed that hexafluoropropene can be converted catalytically into a mixture of pentafluoropropenes with a turnover number (TON) of 9.8.<sup>[7]</sup> Here, a diketiminate iron(II) fluoro complex served as the catalyst. In a very recent example, Peterson and McNeill reported on the rhodium-catalyzed hydrodehalogenation of vinylfluoride or chlorofluoroethylenes in the presence of  $HSiEt_3$  to give ethane with comparable TONs.<sup>[8]</sup>

[\*] Prof. Dr. T. Braun
 Institut für Chemie, Humboldt Universität zu Berlin
 Brook-Taylor-Str. 2, 12489 Berlin (Germany)
 Fax: (+49) 30-2093-6939
 E-mail: thomas.braun@chemie.hu-berlin.de

F. Wehmeier, K. Altenhöner Fakultät für Chemie, Universität Bielefeld Postfach 100131, 33501 Bielefeld (Germany)

- [\*\*] We would like to acknowledge the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. We are also grateful to Prof. P. Jutzi (Bielefeld) for his support, to M. Ahijado and S. Hinze (Berlin) for experimental assistance, and to Dr. D. Noveski (Bielefeld) for performing preliminary experiments.
  - Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Angew. Chem. Int. Ed. 2007, 46, 5321–5324

We have already shown that hexafluoropropene can be converted into 1,1,1-trifluoropropene by using dihydrogen as hydrogen source, but the transformation was not catalytic.<sup>[9,10]</sup> The hydrodefluorination reaction is based on the activation of hexafluoropropene by  $[RhH(PEt_3)_3]$  (**1a**) to yield the rhodium derivative  $[Rh\{(Z)-CF=CF(CF_3)\}(PEt_3)_3]$  (**2**). The latter complex reacts with dihydrogen to give 1,1,1-trifluoropropene and the fluoro complex  $[RhF(PEt_3)_3]$  (**3**).

Herein we present our results on the reactivity of **2** with tertiary silanes. The studies led to the development of a catalytic process for the conversion of hexafluoropropene into (3,3,3-trifluoropropyl)silanes by C–F bond activation. The reactions proceed at room temperature with good TONs and are very selective. They are unique in that 1) they involve a rare catalytic C–F bond activation of a fluorinated alkene, and 2) the catalytic cycle, along with the hydrodefluorination steps, involves the formation of a C–Si bond.

Treatment of a solution of **2** with an excess Ph<sub>3</sub>SiH led to the selective formation of the (3,3,3-trifluoropropyl)silane **4a** and the dihydridosilyl complex *cis-fac*-[Rh(H)<sub>2</sub>(SiPh<sub>3</sub>)-(PEt<sub>3</sub>)<sub>3</sub>] (**5**)<sup>[10]</sup> (Scheme 1). An experiment with substoichiometric amounts of Ph<sub>3</sub>SiH also gave selectively the silane **4a** and complex **5**, but the starting compound **2** was still present.



Scheme 1. Reactivity of 2 towards silanes.

As **5** is in equilibrium with **1a**, it can be used as the starting compound for the C–F bond activation of hexafluoropropene (Scheme 1).<sup>[10]</sup> Based on these results, we could develop catalytic cycles for the formation of trifluoropropylsilanes from hexafluoropropene. In an initial experiment we investigated the reaction of hexafluoropropene with an excess of Ph<sub>3</sub>SiH in the presence of **2** as catalytic precursor (0.7 % based on the amount of silane). We observed a selective transformation of hexafluoropropene into **4a** at room temperature



## Communications

with a TON of 90 based on the amounts of (3,3,3-trifluoropropyl)silane **4a** produced (Scheme 2, Table 1). The silane **4a** was characterized by NMR spectroscopy, mass spectrometry and elemental analysis.<sup>[11]</sup> The <sup>1</sup>H NMR spectrum shows two



 $\textit{Scheme 2.}\xspace$  Catalytic derivatization of fluorinated alkenes; [a]  $Et_3N/$   $Cs_2CO_3$  was added.

Table 1: Catalytic formation of (3,3,3-trifluorpropyl)silanes from hexa-fluoropropene.

| Entry            | Substrate                          | Product | TON |
|------------------|------------------------------------|---------|-----|
| 1                | HSiPh <sub>3</sub>                 | 4a      | 90  |
| 2 <sup>[a]</sup> | HSiPh <sub>3</sub> /H <sub>2</sub> | 4 a     | 54  |
| 3                | HSiPh <sub>2</sub> Me              | 4 b     | 35  |
| 4                | HSiPhMe <sub>2</sub>               | 4 c     | 35  |
| 5                | HSiEt <sub>3</sub>                 | 4 d     | 12  |
| 6                | HSi(OMe)₃                          | 4e      | 2.5 |
| 7 <sup>[a]</sup> | HSi(OMe) <sub>3</sub>              | 4 e     | 15  |

[a] Base added: NEt<sub>3</sub>/Cs<sub>2</sub>CO<sub>3</sub>.

signals of higher order for the methylene groups at  $\delta = 1.57$ and 2.13 ppm. The signals can be properly simulated as AA' and BB' parts of an AA'BB'X<sub>3</sub> spin system (see the Supporting Information).<sup>[12]</sup> Ph<sub>2</sub>MeSiH and PhMe<sub>2</sub>SiH can also be used in comparable transformations to give the (3,3,3trifluoropropyl)silanes **4b** and **4c** with a TON of 35 for both catalytic cycles. Et<sub>3</sub>SiH converts into **4d**, whereas no reaction was observed for *i*Pr<sub>3</sub>SiH (Table 1).

To further test the limits of this catalytic route, we checked the reactivity of 2 towards the electronically very different silane (MeO)<sub>3</sub>SiH.<sup>[13]</sup> In a stoichiometric experiment we found that on treatment of 2 with (MeO)<sub>3</sub>SiH, the trifluoropropylsilane 4e and the hydrido complex cis-fac-[Rh(H)<sub>2</sub>{Si- $(OMe)_3$  (PEt<sub>3</sub>)<sub>3</sub> (6) were generated (Scheme 1). Complex 6 can be synthesized through an independent reaction pathway by treatment of the hydride 1a with (MeO)<sub>3</sub>SiH. The rhodium-phosphorus coupling constants in the <sup>31</sup>P NMR spectra of 6, as well as a  $T_1$  relaxation time of 1.2 s at 300 K (600 MHz) for the hydride nuclei (<sup>1</sup>H NMR:  $\delta =$ -11.34 ppm), suggest the presence of classical hydrido ligands at a Rh<sup>III</sup> center.<sup>[14]</sup> A catalytic experiment showed that 2 can also be used as a catalytic precursor to convert hexafluoropropene into 4e in the presence of (MeO)<sub>3</sub>SiH, but the TONs were very low (2.5). However, addition of the bases  $Et_3N/$   $Cs_2CO_3$  led to a TON of 15 for the conversion of hexafluoropropene into **4e** (Scheme 2, Table 1).

Mechanistically, the C-F bond activation steps might be induced by the Rh<sup>I</sup> hydrido species [RhH(PEt<sub>3</sub>)<sub>3</sub>] (1a) or by a  $Rh^{I}$  silvl species  $[Rh(SiR_{3})(PEt_{3})_{3}]$  (A; Scheme 3). Both complexes should be capable to form products from C-F bond activation such as 2 along with HF or fluorosilane, respectively.<sup>[9,15]</sup> The mechanism of the C–F bond activation steps is, as yet, not clear. It might involve an oxidative addition of a C-F bond or an olefin-insertion/β-fluorineelimination pathway.<sup>[1,6f,10,15,16]</sup> However, oxidative addition of tertiary silanes to the Rh<sup>I</sup> propenyl intermediates leads to Rh<sup>III</sup> hydrido complexes. In the case of 2 this complex would be an isomer of **B** (Scheme 3). After reductive elimination of the less-fluorinated alkene, both reaction cycles are completed by generation of either 1a or A. The former can be in equilibrium with dihydridosilyl species C (for example, 5 or 6) which can be considered as resting states of the catalytic system. In a final step, after three defluorination reactions, a hydrogenation of 3,3,3-trifluoropropene **D** or hydrosilylation of the silvlalkene E occurs (Scheme 3). The fact that the catalytic reactions are very selective and that only the trifluoropropane with one silyl group was formed might indicate that at least two C-F bond activation steps are followed by a reductive elimination of a C-H bond to give the silvl species  $[Rh(SiR_3)(PEt_3)_3]$  (A). Finally we note that complexes such as *cis-mer*- $[Rh(H)_2](Z)$ -CF=CF(CF<sub>3</sub>)- $(PEt_3)_3^{[9]}$  can be produced from 2 and H<sub>2</sub>, and these complexes may play a minor role in the catalytic conversions.

Dihydrogen can be formed within the catalytic cycle either by reaction of HF with free tertiary silane to give fluorosilane or by reaction of HF with the hydride **1a** to give the fluoro complex [RhF(PEt<sub>3</sub>)<sub>3</sub>] (**3**). In principle **1a** can be regenerated from **3** by reaction of **3** with a tertiary silane.<sup>[10,17]</sup> We have no indication that *cis-fac*-[Rh(H)<sub>2</sub>(SiPh<sub>3</sub>)(PEt<sub>3</sub>)<sub>3</sub>] (**5**) serves as dihydrogen source because we did not observe any loss of H<sub>2</sub> from **5** in stoichiometric experiments. Instead **5** was found to liberate only Ph<sub>3</sub>SiH.

To determine the possible influence of  $H_2$  on the catalytic transformations, we studied the catalytic activity of 2 towards hexafluoropropene in the presence of H<sub>2</sub> and Ph<sub>3</sub>SiH. The conversions were performed in benzene at room temperature in the presence of the bases Et<sub>3</sub>N/Cs<sub>2</sub>CO<sub>3</sub> to trap the HF that may have been generated. We obtained selectively the silane 4a together with Ph<sub>3</sub>SiF as the only fluorinated products (Scheme 2) with a TON of 54 based on the formation of 4a. We did not observe the generation of propane or 1,1,1trifluoropropane, which suggests that no hydrogenation of 3,3,3-trifluoropropene occurred. The use of  $D_2$  instead of  $H_2$ resulted in the formation of considerable amounts of 4a, but also of several deuterated isotopologues of 4a, which were not characterized. The <sup>2</sup>H spectrum also reveals deuterium exchange between the free silane and D<sub>2</sub>, as indicated by the presence of Ph<sub>3</sub>SiD. Nevertheless, D<sub>2</sub> might play a particular role in the catalytic cycle either in the hydrodefluorination steps or in a hydrogenation reaction of a silvl derivative of 3,3,3-trifluoropropene. The generation of the nondeuterated compound 4a is remarkable and indicates that the hydrosilvlation of 3,3,3-trifluoropropene is an important step.



Scheme 3. Possible reaction pathways for the formation of (3,3,3-trifluoroproyl)silanes from hexafluoropropene.

Indeed, in an independent experiment we showed that  $[RhH(PEt_3)_4]$  (**1b**) can serve as a catalyst for the hydrosilylation of 3,3,3-trifluoropropene, and silane **4a** was obtained with a TON of 138 (unoptimized, Scheme 2).

In conclusion, we have reported the catalytic conversion of hexafluoropropene and tertiary silanes to give (3,3,3trifluoropropyl)silanes. The reactions proceed at room temperature with reasonable TONs and are highly selective. According to the NMR spectroscopic data, hexafluoropropene is converted quantitatively into the (3,3,3-trifluoropropyl)silanes. The conversions also represent the first catalytic C-F bond activation of a highly fluorinated alkene that does not result in simple hydrodefluorination products. Instead higher-value fluorinated compounds are formed. We propose that the defluorination of hexafluoropropene initially results in either 3,3,3-trifluoropropene or a silyl derivative of 3,3,3trifluoropropene by replacement of the fluorine with a hydrogen or silicon atom. These defluorination reactions are coupled consecutively with a catalytic hydrosilylation or hydrogenation reaction. Notably the transformation can be applied for electronically very different silanes such as Ph<sub>3</sub>SiH, Et<sub>3</sub>SiH, and (MeO)<sub>3</sub>SiH. The product 4e is used as starting compound for the formation of aerogels and polysilsesquioxanes.[18]

Received: February 15, 2007 Published online: June 4, 2007

- [2] a) R. P. Hughes, R. B. Laritchev, L. N. Zakharov, A. L. Rheingold, J. Am. Chem. Soc. 2004, 126, 2308-2309; b) T. Braun, B. Blöcker, V. Schorlemer, B. Neumann, A. Stammler, H.-G. Stammler, J. Chem. Soc. Dalton Trans. 2002, 2213-2218; c) K. Fuchibe, T. Akiyama, J. Am. Chem. Soc. 2006, 128, 1434-1435; d) R. P. Hughes, R. B. Laritchev, A. Williamson, C. D. Incarvito, L. N. Zakharov, A. L. Rheingold, Organometallics 2003, 22, 2134-2141; e) U. Jäger-Fiedler, P. Arndt, W. Baumann, A. Spannenberg, V. V. Burlakov, U. Rosenthal, Eur. J. Inorg. Chem. 2005, 2842-2849; f) M. I. Sladek, T. Braun, B. Neumann, H.-G. Stammler, J. Chem. Soc. Dalton Trans. 2002, 297-299; g) T. Braun, V. Schorlemer, B. Neumann, H.-G. Stammler, J. Fluorine Chem. 2006, 127, 367-372; h) T. Braun, S. Parsons, R. N. Perutz, M. Voith, Organometallics 1999, 18, 1710-1716; i) D. Noveski, T. Braun, M. Schulte, B. Neumann, H.-G. Stammler, Dalton Trans. 2003, 4075-4083; j) B. L. Edelbach, B. M. Kraft, W. D. Jones, J. Am. Chem. Soc. 1999, 121, 10327-10331.
- [3] a) A. Steffen, M. I. Sladek, T. Braun, B. Neumann, H.-G. Stammler, Organometallics 2005, 24, 4057-4064; b) T. Braun, M. I. Sladek, R. N. Perutz, Chem. Commun. 2001, 2254-2255; c) H. Guo, F. Kong, K. Kanno, J. He, K. Nakajima, T. Takahashi, Organometallics 2006, 25, 2045-2048; d) T. Schaub, M. Backes,

**Keywords:** alkenes · C-F activation · fluorine · rhodium · silanes

Angew. Chem. Int. Ed. 2007, 46, 5321-5324

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 <sup>[1]</sup> Reviews of C-F bond activation by transition-metal complexes:

 a) T. Braun, R. N. Perutz, *Chem. Commun.* 2002, 2749–2757;
 b) J. Burdeniuc, B. Jedlicka, R. H. Crabtree, *Chem. Ber.* 1997, 130, 145–154;
 c) W. D. Jones, *Dalton Trans.* 2003, 3991–3995;
 d) J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, *Chem. Rev.* 1994, 94, 373–431;
 e) U. Mazurek, H. Schwarz, *Chem. Commun.* 2003, 1321–1326;
 f) H. Torrens, *Coord. Chem. Rev.* 2005, 249, 1957–1985;
 g) R. N. Perutz, T. Braun in *Comprehensive Organometallic Chemistry III, Vol. 1* (Eds.: R. H. Crabtree, M. P. Mingos), Elsevier, Oxford, 2007, pp. 725–758.

## Communications

U. Radius, J. Am. Chem. Soc. 2006, 128, 15964–15965; e) T. Braun, J. Izundu, A. Steffen, B. Neumann, H.-G. Stammler, *Dalton Trans.* 2006, 5118–5123.

- [4] T. Saeki, Y. Takashima, K. Tamao, Synlett 2005, 1771-1771.
- [5] Y. Ishii, N. Chatani, S. Yorimitsu, S. Murai, Chem. Lett. 1998, 157–158.
- [6] For some examples, see: a) B. M. Kraft, R. J. Lachicotte, W. D. Jones, J. Am. Chem. Soc. 2000, 122, 8559-8560; b) B. M. Kraft, W. D. Jones, J. Am. Chem. Soc. 2002, 124, 8681-8684; c) M. S. Kirkham, M. F. Mahon, M. K. Whittlesey, Chem. Commun. 2001, 813-814; d) G. Ferrando-Miguel, H. Gérard, O. Eisenstein, K. G. Caulton, Inorg. Chem. 2002, 41, 6440-6449; e) D. Huang, J. C. Bollinger, W. E. Streib, K. Folting, V. Young, Jr., O. Eisenstein, K. G. Caulton, Organometallics 2000, 19, 2281-2290; f) E. Clot, C. Mégret, B. M. Kraft, O. Eisenstein, W. D. Jones, J. Am. Chem. Soc. 2004, 126, 5647-5653; g) D. Huang, K. B. Renkema, K. G. Caulton, Polyhedron 2006, 25, 459-468; h) D. Ristic-Petrovic, M. Wang, R. McDonald, M. Cowie, Organometallics 2002, 21, 5172-5181.
- [7] J. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte, P. L. Holland, J. Am. Chem. Soc. 2005, 127, 7857-7870.
- [8] A. A. Peterson, K. McNeill, Organometallics 2006, 25, 4938– 4940.
- [9] T. Braun, D. Noveski, B. Neumann, H.-G. Stammler, Angew. Chem. 2002, 114, 2870–2873; Angew. Chem. Int. Ed. 2002, 41, 2745–2748.
- [10] D. Noveski, T. Braun, M. Schulte, B. Neumann, H.-G. Stammler, Dalton Trans. 2003, 4075–4083.
- [11] NMR spectroscopic data for **4a**: <sup>1</sup>H NMR ( $C_6D_6$ , 500 MHz):  $\delta = 1.57$  (m, 2H, SiCH<sub>2</sub>), 2.13 (m, 2H, CH<sub>2</sub>CF<sub>3</sub>), 7.11–7.69 ppm (m,

15 H, Ph); <sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>, 470 MHz):  $\delta = -67.3$  ppm (t, CF<sub>3</sub>, <sup>3</sup>*J*(HF) = 11 Hz); <sup>29</sup>Si NMR (C<sub>6</sub>D<sub>6</sub>, 99 MHz):  $\delta = -10.8$  ppm; for other analytical data see the Supporting Information; compounds **4c** and **4d** have been described: I. Ojima, T. Fuchikami, M. Yatabe, *J. Organomet. Chem.* **1984**, *260*, 335–346.

- [12] P. H. M. Budzelaar, g-NMR, version 4.1, Adept Scientific Plc, Letchworth 2001; see also: B. Richter, E. de Wolf, G. van Koten, B.-J. Deelman, J. Org. Chem. 2000, 65, 3885–3893.
- [13] W. E. Newton, E. G. Rochow, *Inorg. Chim. Acta* 1970, 4, 133– 136.
- [14] Spectroscopic data for **6**: IR (*n*-hexane):  $\tilde{\nu} = 2063$ , 1955 cm<sup>-1</sup> (RhH<sub>2</sub>). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz):  $\delta = -11.34$  (m, Simulation: <sup>1</sup>J(RhH) = <sup>1</sup>J(RhH') = 18.1, <sup>2</sup>J(P<sup>a</sup>H) = <sup>2</sup>J(P<sup>a</sup>H') = -130.5, <sup>2</sup>J-(P<sup>a</sup>H') = <sup>2</sup>J(P<sup>a</sup>'H) = 22.5, <sup>2</sup>J(P<sup>b</sup>H) = <sup>2</sup>J(P<sup>b</sup>H') = 18.2, <sup>2</sup>J(HH') = 32.4 Hz, 2H, Rh-H), 0.98 (m, 9H, P<sup>b</sup>CH<sub>2</sub>CH<sub>3</sub>), 1.05 (m, 18H, P<sup>a</sup>CH<sub>2</sub>CH<sub>3</sub>), 1.20 (m, 6H, P<sup>b</sup>CH<sub>2</sub>CH<sub>3</sub>), 1.44 (m, 12H, P<sup>a</sup>CH<sub>2</sub>CH<sub>3</sub>), 3.80 ppm (s, 9H, Si(OMe)<sub>3</sub>). <sup>31</sup>P NMR (202 MHz):  $\delta = 5.9$  (dt, <sup>1</sup>J(RhP) = 85.1, <sup>2</sup>J(P<sup>b</sup>P<sup>a</sup>) = 23.8 Hz, P<sup>b</sup>), 15.1 ppm (dd, <sup>1</sup>J(RhP) = 101.6, <sup>2</sup>J(P<sup>b</sup>P<sup>a</sup>) = 23.8 Hz, P<sup>a</sup>).
- [15] a) M. Aizenberg, D. Milstein, J. Am. Chem. Soc. 1995, 117, 8674–8675; b) M. Aizenberg, D. Milstein, Science 1994, 265, 359–361.
- [16] M. A. Esteruelas, J. Herrero, M. Oliván, *Organometallics* 2004, 23, 3891–3897.
- [17] D. Noveski, T. Braun, S. Krückemeier, J. Fluorine Chem. 2004, 125, 959–966.
- [18] a) S. Mikoshiba, S. Hayase, J. Mater. Chem. 1999, 9, 591-598;
   b) J. Hyeon-Lee, W. C. Kim, S. K. Min, H.-W. Ree, D. Y. Yoon, Macromol. Mater. Eng. 2003, 288, 455-461;
   c) T. M. Tillotson, K. G. Foster, J. G. Reynolds, J. Non-Cryst. Solids 2004, 350, 202-208.