Hypervalent Iodine Mediated Oxidative Cyclization of Acrylamide *N*-Carbamates to 5,5-Disubstituted Oxazolidine-2,4-diones

Anantha Lakshmi Duddupudi, Pankaj Pandey, Hien Vo, Colin L. Welsh, Robert J. Doerksen, and Gregory D. Cuny*

I n recent years, transition metal (TM) catalyzed and metalfree oxidative cyclization via C–H activation of Nphenylacrylamides has emerged as an efficient method for the construction of 3,3-disubstituted oxindoles (Figure 1A).¹⁻³ For example, Jaegli et al. utilized Pd-catalysis to affect the reaction rate, and this was further used in a spirooxindole synthesis.⁴ In addition, Cao et al.⁵ reported a metal-free example of this reaction, while Zhang et al. have generated

Figure 1. Previous studies on (A) TM catalyzed and metal-free oxidative cyclizations of *N*-phenylacrylamides and (B) Cyclizations of *N*-Boc-acrylamides with the formation of C–F, C–N, and C–I bonds. (C) Current study on metal-free oxidative cyclizations of *N*-Boc-acrylamides producing 5,5-disubstituted oxazolidine-2,4-diones with the introduction of a C–O bond.

aminooxylated oxindoles using a similar strategy.⁶ Alternatively, *N*-Boc acrylamides have been found to undergo cyclization with the alkene generating a variety of 5,5'-disubstituted oxazolidine-2,4-diones with the introduction of C-F, C-N, and C-I bonds (Figure 1B).⁷⁻⁹ We now report that metal-free hypervalent iodine mediated oxidative cyclization of *N*-Boc-acrylamides provides an efficient route to 5,5-disubstituted oxazolidine-2,4-diones with the formation of a C-O bond (Figure 1C).¹⁰ Furthermore, the reaction takes place with an array of N-substituents, is diastereospecific with *N*-Boc-2,3-dimethylacrylamides, and occurs with phenyl migration in the case of an *N*-Boc-2-phenylacrylamide.

5,5-Disubstituted oxazolidine-2,4-diones are an interesting class of heterocycles that has been recognized as a "privileged medicinal chemistry scaffold"¹¹ found in various pharmacologically active compounds.^{12–14} For example, 5,5-disubstituted oxazolidine-2,4-diones have been reported as potent and selective mineralocorticoid receptor antagonists with potential use in the treatment of chronic kidney disease, hypertension, and congestive heart failure.^{15–17} For these reasons, the efficient construction of 5,5-disubstituted oxazolidine-2,4-diones is of interest within the synthetic organic chemistry community.

N-2,3-Dimethoxybenzyl-*N*-Boc-methacrylamide (1) was selected as the initial substrate for this study. Exposure of this material, at a concentration of 0.1 M in acetic acid, to 10 mol % Pd(OAc)₂ and 2 equiv of PhI(OAc)₂ at 100 °C for 3 h generated 5,5-disubstituted oxazolidine-2,4-dione **2** as the

Received: March 16, 2020

		H ₃ CO OCH ₃ O	t-Bu solvent temp.	H ₃ CO OCH ₃ O		
-	0.11		0.1	2	m; (1)	
Entry	Oxidant	Catalyst	Solvent	Temp (°C)	Time (h)	Yield of $2 (\%)$
1	$PhI(OAc)_2$	$Pd(OAc)_2$	AcOH	100	3	70
2	$PhI(OAc)_2$	$Pd(OAc)_2$	AcOH	rt	24	75
3	$PhI(OAc)_2$	$Pd(OAc)_2$	CH ₃ CN	100	27	<5
4	$PhI(OAc)_2$	$Pd(OAc)_2$	1,4-dioxane	100	72	n.d. ^b
5	Oxone	$Pd(OAc)_2$	AcOH	100	2	22
6	$K_2S_2O_8$	$Pd(OAc)_2$	AcOH	100	2	n.d.
7	$PhI(OAc)_2$	None	AcOH	100	16	71
8	$PhI(OAc)_2$	None	AcOH	100	3	83
9	$PhI(OAc)_2^c$	None	AcOH	100	6	48
10 ^d	$PhI(OAc)_2$	None	AcOH	100	3	84

^{*a*}Reaction conditions: 1 (1.0 equiv), oxidant (2.0 equiv), catalyst (10 mol %) in solvent (0.1 M under argon). ^{*b*}n.d. = not detected. ^{*c*}1.0 equiv. ^{*d*}Methyl carbamate of 1 used as substrate.

major product in 70% yield (Table 1, entry 1) with no detection of the corresponding 3,3-disubstituted oxindole. In order to confirm the structure assignment of 2 as a 5,5disubstituted oxazolidine-2,4-dione, a crystal structure was obtained (cf. Figure S1). In addition, a minor overoxidized product (<5%) was detected.¹⁸ Encouraged by these initial results, a number of reaction parameters (e.g., solvent, oxidant, temperature, and necessity of the palladium catalyst) were examined. The reaction proceeded at room temperature, although additional time was needed to achieve similar product yield (entry 2). However, the reaction was adversely affected when nonacidic less polar solvents (e.g., acetonitrile or 1,4dioxane) were used in place of acetic acid (entries 3 and 4). Similarly, replacement of $PhI(OAc)_2$ with other oxidants, such as potassium peroxymonosulfate (e.g., Oxone) or potassium persulfate, resulted in significantly lower product yields (entries 5 and 6). The reaction was conducted in the absence of a palladium catalyst producing 2 in comparable yields (entries 7 and 8) demonstrating that the reaction proceeds in metal-free conditions. Over-oxidation was observed in the absence of a Pd-catalyst, but only during extended reaction time (entry 7). Reducing the equivalents of $PhI(OAc)_2$ was detrimental (entry 9). Finally, the methyl carbamate also gave a similar yield of 2 (entry 10).

Following an analysis of reaction conditions and reagents, the structure-reactivity relationship (SRR) of the Nsubstituent was explored. N-Benzyl groups with a 2- or 4methoxy (e.g., 3a and 3b) were well tolerated producing 4a and 4b in good yields without generation of oxidized byproducts as observed with substrate 1 (Table 2). Electronwithdrawing groups in the 2- or 4-position of the N-benzyl, as well as replacement of the benzyl with a heterocycle (e.g., 2thiophenylmethyl) or a fused aromatic hydrocarbon (e.g., 2naphthylmethyl), were well tolerated generating products 4cf, respectively, in good yields. The additional steric hindrance on the benzylic carbon or extending the linker to a phenethyl resulted in corresponding 5,5-disubstituted oxazolidine-2,4diones 4g and 4h in moderate yields. Finally, the attachment of the phenyl group directly to the nitrogen was also tolerated (4i and 4j). However, a similar substrate containing several

Table 2. Reaction Substrate Scope: N-Substituents^a

QAc

^{*a*}Reaction conditions: PhI(OAc)₂ (2 equiv) in AcOH (0.1 M) at 100 $^{\circ}$ C for 2–3 h. ^{*b*}N-de-Boc starting material was isolated (80%).

electron-withdrawing groups resulted in isolation of only the corresponding *N*-de-Boc starting material.

Next, the scope of the alkene was analyzed. For example, alkene **5a** generated **6a** in quantitative yield (Table 3). The SRR of the alkene geometry was also examined. The *E*-substituted alkene substrate **5b** underwent diastereospecific reaction to generate **6b**, albeit in only 27% yield. In addition to the desired product, another 5,5-disubstituted oxazolidine-2,4-dione **7a** was generated in 44% yield. The *Z*-isomer **5c** gave the other diastereomer **6c** in 42% yield, again with generation of **7a** in a similar yield. The trisubstituted alkene **5d** and tetra-substituted alkene **5e** only yielded alkene products **7b** and **7c**, respectively.

Assignment of the relative stereochemistry of **6b** and **6c** was difficult to confirm via 1D, 2D, and NOE NMR experiments,

Table 3. Reaction Substrate Scope: Alkenes^a

^aY: CH₂(4-OMe)Ph. ^bde-Boc starting material recovered.

so ¹H and ¹³C NMR chemical shift calculations were performed on the two diastereomers of interest, rel-(R,S) and rel-(S,S), which for the calculations we labeled **6RS** and 6SS, respectively. The gauge independent atomic orbital $(GIAO)^{19}$ method at the mPW1PW91/6-311+G(d,p) level of theory²⁰ was used for the chemical shift calculations, using Boltzmann weighting for all low-energy conformations. CHCl₃ was used as a solvent with the polarizable continuum solvent model (PCM). The computed chemical shifts of 6RS and 6SS were compared with the experimental values of 6b and 6c, utilizing mean absolute error (MAE), CP3²¹ and DP4+²² probability analyses (for DP4+, we used total or tDP4+ to be the sum of the scaled, sDP4+, and unscaled, uDP4+, NMR chemical shifts). The scaled chemical shifts were calculated by applying empirical scaling using the slope and intercept of the regression line obtained by plotting chemical shift values of ¹H and ¹³C (calculated vs experimental). This computational approach has been reported for addressing the stereochemical assignment of other isomeric compounds.^{23,24}

Comparing the results (cf. Tables S1-S22, Supporting Information) obtained with either tDP4+ probability analysis or "scaled shift only" sDP4+ probability data of 6SS (96.86% probability, Table S20) showed close agreement with the experimental data of 6c, whereas sDP4+ also predicted 6RS to match 6c (83.67% probability, Table S19), a confusing result. The only case of DP4+ calculations in which 6RS matched with experimental results for 6b was for sDP4+ carbon-only data, and for these data 6SS matched with 6c as well. Similarly, for scaled chemical shifts the carbon corrected mean absolute error (CMAE) data of 6SS matched 6c, but the data of 6RS did not match 6b. Moreover, tDP4+ probability analysis predicted 6SS to match 6c with 99.78% probability but did not predict 6RS calculated chemical shifts to match with 6b experimental values. Finally, considering results from CP3 (a method that simultaneously assigns structures for two diastereomers when experimental chemical shifts are available

for both), **6RS** matched **6b** and **6SS** matched **6c** with 100% probability when carbon-only or all chemical shift data were used (*cf.* Tables S23-S24).

In order to verify the relative stereochemistry of these materials, **6b** was hydrolyzed with lithium hydroxide in THF/ MeOH/H₂O to diol **8a** (Scheme 1). The structure of **8a** was

confirmed as rel-(R,S) by X-ray crystallography (cf. Figure S2). Furthermore, this material was converted to dimethyl ketal 9a, which by 1D-NOE experiments indicated the relative stereochemistry was rel-(R,S). Diastereomer **6c** was likewise converted to diol 8b and then to dimethyl ketal 9b. 1D-NOE experiments of 9b were consistent with the relative stereochemistry of rel-(S, S). ¹H and ¹³C NMR chemical shift calculations were performed for the two diastereomers of interest, rel-(S,R) and rel-(S,S), which for the calculations we labeled 8RS and 8SS, respectively. Comparing the results (cf. Tables S17-S18 and S21-S22) obtained with DP4+ probability analysis and "scaled only" sDP4+ probability data, sDP4+ chemical shift data for 8RS with 8a (53.06% probability) and for 8SS with 8b (72.77% probability) showed agreement, whereas the sDP4+ calculations for scaled carbononly data matched 8RS with 8a but 8SS also with 8b. In addition, tDP4+ probability analysis predicted 8RS to match 8a with a 94.62% probability. The CMAE data for scaled chemical shifts matched 8RS with 8a and 8SS with 8b. Unlike for the 6b/6c assignment, for 8a/8b the CP3 probabilities (cf. Tables S23-S24) were unhelpful. The CP3 ¹H data and all data (considering together both ¹H and ¹³C data) predicted that 8SS matched with 8a and 8RS matched with 8b, though the CP3 ¹³C only data did match correctly with what was learned from the crystal structure of 8a-that 8RS should match with 8a and 8SS with 8b.

The diastereospecificity and formation of the alkene byproducts observed in these reactions provide some insights into the potential mechanism of this transformation. Presumably the (diacetoxyiodo)benzene coordinates with the alkene via intermediate **A** (Scheme 2) that can undergo cyclization with loss of isobutylene to generate an intermediate such as **B**. This is consistent with the stereochemical course reported for the ICl-induced iodo-cyclization of similar *N*-Bocacrylamide substrates.⁹ This could be followed by S_N2-like substitution of PhI(OAc) with stereocenter inversion resulting in **6b**. Intermediate **B** could also undergo elimination generating **7a**.

Finally, the *N*-Boc-2-phenylacrylamide substrate **10** was subjected to the same reaction conditions. However, the phenyl-migration product **11** was generated in 75% yield

Scheme 2. Proposed Mechanism for the Conversion of 5b to 6b and $7a^a$

(Scheme 3). The structure of 11 was confirmed by X-ray crystallography (*cf.* Figure S3). This reaction likely occurs via a

phenonium ion intermediate reminiscent of a similar reaction of 4-aryl-4-pentenoic acids with a hypervalent iodine reagent reported by Boye et al.²⁵

In conclusion, a method for (diacetoxyiodo)benzenemediated oxidative cyclization of N-Boc-acrylamides in acetic acid to produce 5,5-disubstituted oxazolidine-2,4-diones was developed. The reaction scope was modestly broad with respect to the amide N-substituents. In addition, the reaction was diastereospecific with N-Boc-2,3-dimethylacrylamide substrates. However, more highly substituted N-Boc-acrylamides gave alkene-containing 5,5-disubstituted oxazolidine-2,4-diones. A proposed mechanism was provided that is consistent with the observed diastereospecificity of the reaction and formation of the alkene byproducts. Finally, in the case of an N-Boc-2-phenylacrylamide substrate, phenyl migration was observed generating a 5-acetoxy-5-benzyl oxazolidine-2,4dione. Hopefully, the results of this study will encourage further examination of these reactions (e.g., employing more reactive or catalytic hypervalent iodine reagents and expanding the scope), as well as medicinal chemistry applications of the products.

EXPERIMENTAL SECTION

General Information. All reactions involving air-sensitive reagents were carried out with magnetic stirring and oven-dried glassware with rubber septa under argon, unless otherwise stated. All commercially available chemicals and reagent grade solvents were used directly without further purification, unless otherwise specified. Reactions were monitored by thin-layer chromatography (TLC) on Baker-flex silica gel plates (IB2-F) using UV-light (254 and 365 nm)

detection or visualizing agents (phosphomolybdic acid stain). Flash chromatography was conducted with silica gel (230-400 mesh) using a Teledyne ISCO CombiFalsh Rf instrument. NMR spectra were recorded at room temperature using JEOL ECA-600 or 500 or 400 instruments (¹H NMR at 600 or 500 or 400 MHz; ¹³C NMR at 150 or 125 or 100 MHz; ¹⁹F NMR at 564 MHz) with tetramethylsilane (TMS) as an internal standard. Chemical shifts (δ) are given in parts per million (ppm) with reference to solvent signals [¹H NMR: CDCl₃ (7.26 ppm), CD₃OD (3.31 ppm), DMSO-d₆ (2.50 ppm); ¹³C NMR: CDCl₃ (77.0 ppm), CD₃OD (49.2 ppm), DMSO-d₆ (39.5 ppm)]. Signal patterns are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants (J) are given in Hz. Nuclear Overhauser enhancement spectroscopy (NOESY) spectra were obtained to observe correlations between proton signals. High-resolution mass spectra (HRMS) were obtained by the University of Texas at Austin mass spectrometry facility using an ESI quadrupole mass spectrometer with a time-of-flight tube and reported as m/z (relative intensity) for the molecular ion [M].

General Procedure A: Preparation of tert-Butyl Carbamates 1, 3a-h, 3k, 5a-e, and 10.²⁶ To a solution of the corresponding amine (1 equiv) in anhydrous dichloromethane was added Et₃N (1.3 equiv) at 0 °C. Then the corresponding acryloyl chloride (1.0-1.5 equiv) was added slowly. The reaction mixture was allowed to warm to room temperature and stirred for 2-4 h. After completion of the reaction, water was added and the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and filtered. The solvent was removed under reduced pressure, and the crude compound was purified by chromatography using hexane/ethyl acetate as eluent. To a solution of the acrylamide (1 equiv) in anhydrous THF was added LiHMDS (1.3 equiv. 1.0 M in THF) at -78 °C. The reaction mixture was stirred for 20 min at this temperature. Then di-tert-butyl dicarbonate (1.3 equiv dissolved in THF) was added slowly to the reaction mixture, which was then allowed to warm to 0 °C. Stirring was continued for 1-2 h. Reaction progress was monitored by TLC (30% EtOAc/hexane). After reaction completion saturated NH₄Cl solution was added and the mixture was extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄₁ and filtered. The solvent was removed under reduced pressure, and the crude compounds were purified by chromatography using hexane/ethyl acetate as eluent to obtain compounds 1, 3a-h, 3k, 5a-e, and 10.

tert-Butyl (2,3-Dimethoxybenzyl)(methacryloyl)carbamate (1). 21%; colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.0 (t, J = 8.0 Hz, 1H), 6.80 (dd, J = 20.6 Hz, 8.2 Hz, 2H), 5.28 (s, 1H), 5.20 (s, 1H), 4.92 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.04 (s, 3H), 1.40 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.2, 153.4, 152.5, 146.7, 143.2, 131.5, 123.9, 119.4, 116.4, 111.2, 83.3, 60.4, 55.7, 43.2, 27.7, 19.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₂₅NO₅Na, 358.1625; found, 358.1634.

tert-Butyl Isobutyryl(4-methoxybenzyl)carbamate (**3a**). 69%; yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 5.15 (s, 2H), 4.77 (s, 2H), 3.78 (s, 3H), 1.99 (s, 3H), 1.41 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.2, 158.8, 153.4, 143.3, 129.8, 129.5, 116.2, 113.6, 83.3, 55.2, 47.5, 27.9, 19.2. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₇H₂₃NO₄Na, 328.1519; found, 328.1526.

teri-Butyl Isobutyryl(2-methoxybenzyl)carbamate (**3b**). 74%; white solid; mp: 65–66 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.22 (td, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.15 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 6.92–6.89 (m, 1H), 6.85–6.83 (m, 1H), 5.27–5.26 (m, 1H), 5.20 (m, 1H), 4.86 (s, 2H), 3.80 (s, 3H), 2.02–2.04 (m, 3H), 1.38 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 174.2, 156.9, 153.5, 143.3, 128.1, 127.8, 125.9, 120.3, 116.5, 110.0, 83.0, 55.2, 43.6, 27.7, 19.3. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₇H₂₃NO₄Na, 328.1519; found, 328.1526.

tert-Butyl (4-Fluorobenzyl)(methacryloyl)carbamate (3c). 96%; yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.01–6.96 (m, 2H), 5.17–5.16 (m, 2H), 4.80–4.78 (m, 2H), 2.00 (s, 3H), 1.41 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.9, 162.0 (d, J_{CF} = 244.2 Hz), 153.2, 143.1, 133.4 (d, J_{CF} = 2.9 Hz), 129.8 (d,

$$\begin{split} &J_{\rm CF} = 8.7~{\rm Hz}),\,116.3,\,115.1~({\rm d},\,J_{\rm CF} = 20.4~{\rm Hz}),\,83.7,\,47.3,\,27.6,\,19.1.\\ ^{19}{\rm F}~{\rm NMR}~({\rm 564~MHz},\,{\rm CDCl}_3){\rm :}~\delta-115.0~({\rm s}).~{\rm HRMS}~({\rm ESI}){\rm :}~m/z~[{\rm M}+{\rm Na}]^+~{\rm calcd}~{\rm for}~{\rm C}_{16}{\rm H}_{20}{\rm FNO}_3{\rm Na},\,316.1319;~{\rm found},\,316.1317. \end{split}$$

tert-Butyl (2-Fluorobenzyl)(methacryloyl)carbamate (**3d**). 23%; white solid; mp: 51–52 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.21 (m, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.03 (t, *J* = 9.3 Hz, 1H), 5.26 (s, 1H), 5.22 (s, 1H), 4.92 (s, 2H), 2.03 (s, 3H), 1.39 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 174.2, 160.5 (d, *J*_{CF} = 245.6 Hz), 153.1, 143.0, 129.2 (d, *J*_{CF} = 4.3 Hz), 128.9 (d, *J*_{CF} = 8.6 Hz), 124.8(d, *J*_{CF} = 14.4 Hz), 124.1 (d, *J*_{CF} = 2.9 Hz), 116.7, 115.2 (d, *J*_{CF} = 21.5 Hz), 83.6, 41.8 (d, *J*_{CF} = 4.4 Hz), 27.7, 19.3. ¹⁹F NMR (564 MHz, CDCl₃): δ –118.3 (s). HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₆H₂₀FNO₃Na, 316.1319; found, 316.1317.

tert-Butyl Methacryloyl(thiophen-3-ylmethyl)carbamate (**3e**). 81%; colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.22 (m, 2H), 7.10 (dd, *J* = 5.0 Hz, 1.5 Hz, 1H), 5.17–5.14 (m, 2H), 4.81 (s, 2H), 1.99 (s, 3H), 1.43 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 174.0, 153.2, 143.2, 138.1, 127.9, 125.5, 123.3, 116.3, 83.5, 43.2, 27.7, 19.2. HRMS (ESI): *m/z* [M + K]⁺ calcd for C₁₄H₁₉NO₃SK, 320.0717; found, 320.0720.

tert-Butyl Methacryloyl(naphthalen-2-ylmethyl)carbamate (**3f**). 85%; pale yellow solid; mp 85–87 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.82–7.78 (m, 4H), 7.49–7.44 (m, 3H), 5.21–5.18 (m, 2H), 4.99 (s, 2H), 2.02 (s, 3H), 1.40 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.2, 153.4, 143.3, 135.1, 133.2, 132.7, 128.2, 127.9, 127.6, 127.0, 126.1, 126.0, 125.8, 116.5, 83.5, 48.3, 27.7, 19.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₀H₂₃NO₃Na, 348.1570; found, 348.1577.

tert-Butyl Methacryloyl(2-*phenylpropan-2-yl*)*carbamate* (**3***g*). 37%; yellow solid; mp 87–90 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.47 (m, 2H), 7.33–7.29 (m, 2H), 7.22–7.18 (m, 1H), 5.77 (s, 1H), 5.50 (s, 1H), 2.0 (s, 3H), 1.76 (s, 6H), 1.28 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.1, 153.5, 147.7, 144.3, 128.1, 126.3, 124.8, 121.3, 82.4, 61.9, 29.2, 27.7, 18.6. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₁₈H₂₅NO₃Na, 326.1727; found, 326.1725.

tert-Butyl Methacryloyl(phenethyl)carbamate (**3h**). 89%; yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.19 (m, 5H), 5.13 (s, 1H), 5.09 (s, 1H), 3.89 (t, *J* = 7.8 Hz, 2H), 2.90 (t, *J* = 7.8 Hz, 2H), 1.97 (s, 3H), 1.44 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.2, 153.3, 143.4, 138.5, 129.0, 128.4, 126.4, 115.9, 83.7, 46.2, 34.9, 27.8, 19.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₇H₂₃NO₃Na, 312.1570; found, 312.1576.

tert-Butyl (3-Chloro-4-cyanophenyl)(*methacryloyl*)carbamate (**3k**). 77%; white solid; mp 105–107 °C ¹H NMR (600 MHz, CDCl₃): δ 7.69 (dd, *J* = 8.2 Hz, 1.3 Hz, 1H), 7.36 (m, 1H), 7.19 (dt, *J* = 8.3 Hz, 1.7 Hz, 1H), 5.61 (s, 1H), 5.51 (s, 1H), 2.07 (s, 3H), 1.47 (s, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 173.0, 152.0, 143.4, 142.4, 137.3, 134.2, 128.7, 126.0, 120.5, 115.5, 111.9, 85.1, 27.7, 18.7. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₆H₁₇ClN₂O₃Na, 343.0820; found, 343.0819.

tert-Butyl 4-Methoxybenzyl(2-methylenebutanoyl)carbamate (**5a**). 79%; colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.16 (dt, *J* = 17.2 Hz, 1.6 Hz, 2H), 4.78 (s, 2H), 3.78 (s, 3H), 2.36 (qt, *J* = 7.2 Hz, 1.6 Hz, 2H), 1.40 (s, 9H), 1.08 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.1, 158.8, 153.4, 149.0, 129.9, 129.5, 113.9, 113.6, 83.2, 55.1, 47.5, 27.7, 25.5, 11.5. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₈H₂₅NO₄Na, 342.1676; found, 342.1683.

(E)-tert-Butyl 4-Methoxybenzyl(2-methylbut-2-enoyl)carbamate (**5b**). 84%; colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 5.88 (qq, J = 7.0 Hz, 2.0 Hz, 1H), 4.74 (s, 2H), 3.78 (s, 3H), 1.84 (m, 3H), 1.70 (dd, J = 7.0 Hz, 1.0 Hz, 3H), 1.39 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 175.1, 158.8, 153.7, 135.5, 130.1, 129.6, 128.8, 113.6, 82.6, 55.2, 47.9, 27.8, 13.6, 13.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₂₅NO₄Na, 342.1676; found, 342.1686.

(*Z*)-tert-Butyl 4-methoxybenzyl(2-methylbut-2-enoyl)carbamate (*5c*). 85%; colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.31 (d, *J* = 6.9 Hz, 2H), 6.83 (d, *J* = 6.9 Hz, 2H), 5.38–5.33 (m, 1H), 4.83 (s, 2H), 3.78 (s, 3H), 1.91 (s, 3H), 1.51 (d, *J* = 6.9 Hz, 3H), 1.43 (s, found, 342.1686. (E)-tert-Butyl 4-Methoxybenzyl(2-methylpent-2-enoyl)carbamate (5d). 87%; colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 5.77 (tq, J = 7.2 Hz, 1.6 Hz, 1H), 4.74 (s, 2H), 3.78 (s, 3H), 2.14–2.06 (m, 2H), 1.84 (m, 3H), 1.39 (s, 9H), 0.99 (t, J = 7.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.3, 158.7, 153.7, 135.8, 133.9, 130.1, 129.6, 113.6, 82.7, 55.2, 48.0, 27.8, 21.3, 13.5, 13.0. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₉H₂₇NO₄Na, 356.1832; found, 356.1842.

tert-Butyl (2,3-Dimethylbut-2-enoyl)(4-methoxybenzyl)carbamate (**5e**). 95%; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 4.83 (s, 2H), 3.78 (s, 3H), 1.79 (s, 3H), 1.66 (s, 3H), 1.57 (s, 3H), 1.41 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.5, 158.8, 152.8, 130.0, 129.8, 129.5, 128.0, 113.6, 82.7, 55.2, 46.7, 27.8, 21.3, 19.8, 16.2. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₁₉H₂₇NO₄Na, 356.1832; found, 356.1839.

tert-Butyl 4-*Methoxybenzyl*(2-*phenylacryloyl*)*carbamate* (10). 61%; colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 8.4 Hz, 2H), 7.29–7.27 (m, 5H), 6.87 (d, J = 8.4 Hz, 2H), 5.68 (s, 1H), 5.48 (s, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 1.18 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.4, 158.9, 152.7, 147.1, 136.0, 130.0, 129.7, 128.3, 128.2, 126.4, 115.9, 113.7, 83.6, 55.2, 47.5, 27.4. HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₂H₂₅NO₄Na, 390.1676; found, 390.1683.

General Procedure B: Preparation of tert-Butyl Carbamates 3ii.⁸ To a solution of the corresponding amine, carboxylic acid (1.0 equiv each) and HOBt·H₂O (0.3 equiv) in acetonitrile was added EDC (1.2 equiv) at 0 °C. After 5 min, Et₃N (1.0 equiv) was added and the reaction mixture was allowed to warm slowly to room temperature and then stir for 1 h. Reaction progress was monitored by TLC (50% EtOAc/hexane). After reaction completion, water was added and the mixture was extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and filtered. The solvent was removed under reduced pressure, and the crude compound was purified by chromatography using hexane/ethyl acetate as eluent. To a solution of acrylamide (1.0 equiv) in anhydrous dichloromethane was added a catalytic amount of DMAP. Then di-tert-butyl dicarbonate (2.0 equiv) was added, and the reaction mixture was allowed to stir overnight at room temperature. Reaction progress was monitored by TLC 30% EtOAc/hexane. After reaction completion, water was added and the mixture was extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and filtered. Solvent was removed under reduced pressure, and the crude material was purified by chromatography to obtain 3i-j.

tert-Butyl Methacryloyl(phenyl)carbamate (**3***i*). 73%; white solid; mp 65–67 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.40 (br t, *J* = 7.8 Hz, 2H), 7.32 (br t, *J* = 7.5 Hz, 1H), 7.17–7.15 (m, 2H), 5.56 (s, 1H), 5.38 (s, 1H), 2.06 (s, 3H), 1.44 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 173.8, 153.2, 142.9, 138.6, 129.1, 127.7, 127.6, 118.6, 83.6, 27.8, 19.0. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₅H₁₉NO₃Na, 284.1257; found, 284.1261.

tert-Butyl Methacryloyl(4-methoxyphenyl)carbamate (**3***j*). 47%; colorless viscous liquid. ¹H NMR (600 MHz, CDCl₃): δ 7.07 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 5.51 (s, 1H), 5.34 (s, 1H), 3.80 (s, 3H), 2.05 (s, 3H), 1.43 (s, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 173.9, 158.8, 153.4, 142.9, 131.2, 128.8, 118.2, 114.3, 83.4, 55.4, 27.7, 19.1. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₂₁NO₄Na, 314.1363; found, 314.1371.

General Procedure C: Preparation of 5,5 Disubstituted Oxazolidine-2,4-diones (2, 4a-j, 6a-c, 7a-c, and 11).⁴ To a solution of the corresponding *tert*-butyl carbamate substrate (1.0 equiv) in acetic acid (0.1 M) at room temperature was added (diacetoxyiodo)benzene (2.0 equiv). The reaction mixture was heated in an oil bath to 100 °C for 2–3 h. Reaction progress was monitored by TLC (30–40% EtOAc/hexane). Upon reaction completion, the 3-(2,3-Dimethoxybenzyl)-5-methyl-2,4-dioxooxazolidin-5-yl)methyl Acetate (2). Compound 2 was synthesized from 1 (50 mg, 0.15 mmol), PhI(OAc)₂ (96 mg, 0.30 mmol), and acetic acid (1.49 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to provide 2 (42.3 mg, 83%). White solid; mp 99–100 °C. ¹H NMR(500 MHz, CDCl₃): δ 7.01–6.98 (m, 1H), 6.88–6.85 (m, 2H), 4.79 (s, 2H), 4.32 (dd, *J* = 54.0 Hz, 12.0 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 1.96 (s, 3H), 1.58 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.1, 169.8, 154.2, 152.8, 147.2, 128.1, 124.1, 120.6, 112.5, 83.8, 65.1, 60.7, 55.8, 38.8, 20.4, 18.9. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₂₀NO₇, 338.1240; found, 338.1230.

(3-(4-Methoxybenzyl)-5-methyl-2,4-dioxooxazolidin-5-yl)methyl Acetate (4a). Compound 4a was synthesized from 3a (50 mg, 0.16 mmol), PhI(OAc)₂ (106 mg, 0.33 mmol), and acetic acid (1.64 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 4a (40.7 mg, 81%) as a white solid; mp 103–105 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.63 (dd, *J* = 34.8 Hz, 14.6 Hz, 2H), 4.27 (dd, *J* = 38.0 Hz, 12.4 Hz, 2H), 3.78 (s, 3H), 1.72 (s, 3H), 1.55 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.9, 169.5, 159.6, 154.3, 130.2, 126.9, 114.0, 83.8, 65.0, 55.2, 43.3, 19.9, 18.4. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₅H₁₇NO₆Na, 330.0948; found, 330.0954.

(3-(2-Methoxybenzyl)-5-methyl-2,4-dioxooxazolidin-5-yl)methyl Acetate (**4b**). Compound **4b** was synthesized from **3b** (50 mg, 0.16 mmol), PhI(OAc)₂ (106 mg, 0.33 mmol), and acetic acid (1.64 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield **4b** (47.6 mg, 94%) as a white solid; mp 82–83 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.22 (m, 2H), 6.92–6.87 (m, 2H), 4.77 (s, 2H), 4.32 (dd, *J* = 50.8 Hz, 12.0 Hz, 2H), 3.84 (s, 3H), 1.95 (s, 3H), 1.57 (s, 3H);¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.8, 169.5, 157.0, 154.2, 129.4, 128.6, 122.2, 120.3, 110.5, 83.5, 64.9, 55.3, 39.1, 20.3, 18.7. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₇NO₆Na, 330.0948; found, 330.0954.

(3-(4-Fluorobenzyl)-5-methyl-2,4-dioxooxazolodin-5-yl)methyl Acetate (4c). Compound 4c was synthesized from 3c (50 mg, 0.17 mmol), PhI(OAc)₂ (113 mg, 0.35 mmol), and acetic acid (1.70 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 4c (45 mg, 89%) as a white solid; mp 93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.40 (m, 2H), 7.05–7.01 (m, 2H), 4.66 (dd, *J* = 36.0 Hz, 14.4 Hz, 2H), 4.28 (dd, *J* = 45.6 Hz, 12.4 Hz, 2H), 1.72 (s, 3H), 1.56 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.8, 169.4, 162.7 (d, *J*_{CF} = 246.2 Hz), 154.1, 130.7 (d, *J*_{CF} = 8.8 Hz), 130.6 (d, *J*_{CF} = 2.9 Hz), 115.7 (d, *J*_{CF} = 21.4 Hz), 83.9, 65.0, 43.0, 20.0, 18.4. ¹⁹F NMR (564 MHz, CDCl₃): δ –112.9 (s). HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₄H₁₄FNO₅Na, 318.0748; found, 318.0750.

(3-(2-Fluorobenzyl)-5-methyl-2,4-dioxooxazolidin-5-yl)methyl Acetate (4d). Compound 4d was synthesized from 3d (50 mg, 0.17 mmol), PhI(OAc)₂ (113 mg, 0.35 mmol), and acetic acid (1.70 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 4d (44.3 mg, 88%) as a white solid; mp 94–95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.35 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.34–7.28 (m, 1H), 7.14–7.05 (m, 2H), 4.80 (dd, *J* = 23.2 Hz, 14.8 Hz, 2H), 4.31 (dd, *J* = 52.4 Hz, 12.0 Hz, 2H), 1.88 (s, 3H), 1.59 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.6, 169.4, 160.5 (d, *J*_{CF} = 247.1 Hz), 153.9, 130.3 (d, *J*_{CF} = 2.9 Hz), 130.2 (d, *J*_{CF} = 8.8 Hz), 124.2 (d, *J*_{CF} = 3.9 Hz), 121.3 (d, *J*_{CF} = 14.6 Hz), 115.6 (d, *J*_{CF} = 21.4 Hz), 83.9, 65.0, 37.6 (d, *J*_{CF} = 4.9 Hz), 20.1, 18.5. ¹⁹F NMR (564 MHz, CDCl₃): δ –116.8 (s). HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₄H₁₄FNO₅Na, 318.0748; found, 318.0740.

(5-Methyl-2,4-dioxo-3-(thiophen-3-ylmethyl)oxazolidin-5-yl)methyl Acetate (4e). Compound 4e was synthesized from 3e (50 mg, 0.18 mmol), PhI(OAc)₂ (144 mg, 0.45 mmol), and acetic acid (1.78 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield **4e** (41.3 mg, 82%) as a white solid; mp 90 °C. ¹H NMR 500 MHz, CDCl₃): δ 7.38–7.36 (m, 1H), 7.29–7.27 (m, 1H), 7.15–7.13 (m, 1H), 4.75 (dd, *J* = 14.5 Hz, 3.0 Hz, 1H), 4.67 (dd, *J* = 14.5 Hz, 2.5 Hz, 1H), 4.32 (dd, *J* = 12.0 Hz, 3.5 Hz, 1H), 4.23 (dd, *J* = 12.0 Hz, 3.5 Hz, 1H), 4.23 (dd, *J* = 12.0 Hz, 3.5 Hz, 1H), 1.74 (d, *J* = 3.5 Hz, 3H), 1.56 (d, *J* = 2.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.6, 169.4, 154.1, 134.8, 127.7, 126.4, 124.9, 83.9, 65.0, 38.3, 19.9, 18.3. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₂H₁₃NO₅SNa, 306.0407; found, 306.0406.

(5-Methyl-3-(naphthalen-2-ylmethyl)-2,4-dioxooxazolidin-5-yl)methyl Acetate (4f). Compound 4f was synthesized from 3f (50 mg, 0.15 mmol), PhI(OAc)₂ (99 mg, 0.307 mmol), and acetic acid (1.5 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 4f (38 mg, 76%) as a white solid; mp 110–112 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (s, 1H), 7.83–7.79 (m, 3H), 7.53–7.47 (m, 3H), 4.86 (dd, *J* = 42.0 Hz, 14.5 Hz, 2H), 4.27 (dd, *J* = 46.0 Hz, 13.0 Hz, 2H), 1.56 (s, 3H), 1.53 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.9, 169.5, 154.3, 133.1, 133.0, 132.0, 128.7, 128.1, 127.9, 127.6, 126.5, 126.1, 83.9, 65.0, 44.0, 19.8, 18.4. HRMS (ESI): m/z [M + K]⁺ calcd for C₁₈H₁₇NO₅K, 366.0738; found, 366.0743.

(5-Methyl-2,4-dioxo-3-(2-phenylpropan-2-yl)oxazolidin-5-yl)methyl Acetate (**4g**). Compound **4g** was synthesized from **3g** (50 mg, 0.16 mmol), PhI(OAc)₂ (106 mg, 0.329 mmol), and acetic acid (1.65 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield **4g** (34 mg, 62%) as a white solid; mp 78–80 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.32 (m, 4H), 7.28–7.25 (m, 1H), 4.28 (dd, *J* = 82.5 Hz, 12.0 Hz, 2H), 2.07 (s, 3H), 1.97 (s, 6H), 1.52 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 173.8, 169.5, 153.7, 144.6, 128.5, 127.3, 124.4, 81.6, 65.3, 62.8, 28.4, 27.8, 20.5, 18.9. HRMS (ESI): m/z [M + K]⁺ calcd for C₁₆H₁₉NO₅K, 344.0895; found, 344.0895.

(5-Methyl-2,4-dioxo-3-phenethyloxazolidin-5-yl)methyl Acetate (4h). Compound 4h was synthesized from 3h (50 mg, 0.17 mmol), PhI(OAc)₂ (111 mg, 0.34 mmol), and acetic acid (1.72 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield 4h (38 mg, 76%) as a white solid; mp 82–84 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.29 (m, 2H), 7.26–7.22 (m, 3H), 4.25 (dd, *J* = 58.4 Hz, 12.0 Hz, 2H), 3.82 (td, *J* = 7.6 Hz, 2.4 Hz, 2H), 2.99 (br t, *J* = 7.4 Hz, 2H), 1.99 (s, 3H), 1.43 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.9, 169.6, 154.2, 136.7, 128.8, 128.7, 127.0, 83.6, 64.8, 41.0, 33.2, 20.4, 18.6. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₇NO₅Na, 314.1003; found, 314.0999.

(5-Methyl-2,4-dioxo-3-phenyloxazolidin-5-yl)methyl Acetate (4i). Compound 4i was synthesized from 3i (50 mg, 0.19 mmol), PhI(OAc)₂ (123 mg, 0.381 mmol), and acetic acid (1.9 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield 4i (37 mg, 74%) as a white solid; mp 118–120 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.52 (br t, *J* = 7.5 Hz, 2H), 7.46–7.40 (m, 3H), 4.41 (dd, *J* = 55.0 Hz, 12.0 Hz, 2H), 2.07 (s, 3H), 1.69 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.1, 169.5, 153.2, 130.7, 129.4, 129.1, 125.4, 83.5, 65.3, 20.4, 18.6. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₃H₁₃NO₅Na, 286.0686; found, 286.0686.

(3-(4-Methoxyphenyl)-5-methyl-2,4-dioxooxazolidin-5-yl)methyl Acetate (4j). Compound 4j was synthesized from 3j (180 mg, 0.618 mmol), PhI(OAc)₂ (398 mg, 1.235 mmol), and acetic acid (6.18 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield 4j (150 mg, 82%) as an off-white solid; mp 111–113 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.30 (d, *J* = 9.0 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 4.40 (dd, *J* = 67.2 Hz, 12.0 Hz, 2H), 3.83 (s, 3H), 2.07 (s, 3H), 1.67 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 172.3, 169.5, 159.8, 153.5, 126.9, 123.2, 114.7, 83.5, 65.4, 55.5, 20.4, 18.7. HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₁₄H₁₅NO₆Na, 316.0792; found, 316.0797.

(5-Ethyl-3-(4-methoxybenzyl)-2,4-dioxooxazolidin-5-yl)methyl Acetate (6a). Compound 6a was synthesized from 5a (50 mg, 0.157 mmol), PhI(OAc)₂ (104 mg, 0.322 mmol), and acetic acid (1.57 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield **6a** (48 mg, 99%) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.36 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 4.64 (dd, *J* = 37.5 Hz, 14.5 Hz, 2H), 4.28 (dd, *J* = 59.0 Hz, 12.0 Hz, 2H), 3.77 (s, 3H), 1.94–1.85 (m, 2H), 1.73 (s, 3H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.4, 169.5, 159.6, 154.6, 130.2, 126.9, 114.0, 87.0, 64.5, 55.2, 43.2, 25.2, 20.0, 6.5. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₆H₁₉NO₆Na, 344.1105; found, 344.1104.

rel-(R)-1-((S)-3-(4-Methoxybenzyl)-5-methyl-2,4-dioxazolidin-5-yl)ethyl Acetate (6b). Compound 6b was synthesized from 5b (100 mg, 0.313 mmol), PhI(OAc)₂ (201 mg, 0.62 mmol), and acetic acid (3.13 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 6b (27 mg, 27%) as a colorless liquid and 7a (36 mg, 44%) as a colorless liquid. ¹H NMR (600 MHz, CDCl₃): δ 7.37 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 5.07 (q, *J* = 6.6 Hz, 1H), 4.59 (dd, *J* = 20.4 Hz, 14.4 Hz, 2H), 3.76 (s, 3H), 1.52 (s, 3H), 1.50 (s, 3H), 1.32 (d, *J* = 6.6 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 173.3, 169.1, 159.6, 154.6, 130.5, 127.0, 114.1, 86.4, 71.0, 55.3, 43.2, 20.1, 18.6, 13.4. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₉NO₆Na, 344.1105; found, 344.1110.

3-(4-Methoxybenzyl)-5-methyl-5-vinyloxazolidine-2,4-dione (**7a**). ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 5.92 (dd, *J* = 17.2 Hz, 10.8 Hz, 1H), 5.41 (dd, *J* = 75.2 Hz, 16.8 Hz, 1H), 4.59 (s, 2H), 3.78 (s, 3H), 1.61 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.4, 159.5, 154.3, 133.0, 130.0, 126.8, 117.6, 114.1, 85.2, 55.2, 43.2, 22.5. HRMS (ESI): *m*/z [M + Na]⁺ calcd for C₁₄H₁₅NO₄Na, 284.0893; found, 284.0900.

rel-(S)-1-((S)-3-(4-Methoxybenzyl)-5-methyl-2,4-dioxo-oxazolidin-5-yl)ethyl Acetate (6c). Compound 6c was synthesized from 5c (100 mg, 0.313 mmol), PhI(OAc)₂ (201 mg, 0.62 mmol), and acetic acid (3.13 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–20% ethyl acetate in hexane) to yield 6c (42 mg, 42%) as a colorless liquid and 7a (34 mg, 42%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 2H), 5.12 (q, *J* = 6.4 Hz, 1H), 4.61 (dd, *J* = 48.6 Hz, 14.2 Hz, 2H), 3.78 (s, 3H), 1.75 (s, 3H), 1.54 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.6, 169.4, 159.5, 154.4, 130.2, 126.9, 114.0, 85.8, 71.9, 55.2, 43.1, 20.3, 18.8, 14.2. HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₁₆H₁₉NO₆Na, 344.1105; found, 344.1110.

(E)-3-(4-Methoxybenzyl)-5-methyl-5-(prop-1-en-1-yl)oxazolidine-2,4-dione (**7b**). Compound 7b was synthesized from **5d** (100 mg, 0.30 mmol), PhI(OAc)₂ (193 mg, 0.60 mmol), and acetic acid (3.0 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–10% ethyl acetate in hexane) to yield 7b (42 mg, 51%) as a colorless liquid along with 4d (12 mg, 17%). ¹H NMR (500 MHz, CDCl₃): δ 7.31 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 5.93–5.86 (dq, *J* = 15.5 Hz, 6.5 Hz, 1H), 5.54 (dq, *J* = 15.5 Hz, 2.0 Hz, 1H), 4.59 (s, 2H), 3.79 (s, 3H), 1.72 (dd, *J* = 7.0 Hz, 2.0 Hz, 3H), 1.58 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 174.0, 159.5, 154.4, 130.0, 129.5, 126.9, 126.0, 114.1, 85.1 55.2, 43.2, 22.7, 17.7. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₇NO₄Na, 298.1050; found, 298.1053.

3-(4-Methoxybenzyl)-5-methyl-5-(prop-1-en-2-yl)oxazolidine-2,4-dione (7c). Compound 7c was synthesized from 5e (107 mg, 0.30 mmol), PhI(OAc)₂ (193 mg, 0.60 mmol), and acetic acid (3.0 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–15% ethyl acetate in hexane) to yield 7c (32 mg, 36%) as a colorless liquid; ¹H NMR (500 MHz, CDCl₄): δ 7.32 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.21 (br s, 1H), 5.06–5.04 (m, 1H), 4.60 (s, 2H), 3.79, (s, 3H), 1.77 (t, J = 1.5 Hz, 3H), 1.65 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 173.5, 159.5, 154.5, 139.5, 130.0, 126.9, 114.8, 114.1, 87.0, 55.2, 43.2, 21.3, 18.1. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₇NO₄Na, 298.1050; found, 298.1051.

5-Benzyl-3-(4-methoxybenzyl)-2,4-dioxooxazolidin-5yl Acetate (11). Compound 11 was synthesized from 10 (58 mg, 0.157

mmol), PhI(OAc)₂ (101 mg, 0.315 mmol), and acetic acid (1.57 mL, 0.1 M) according to general procedure C. The crude compound was purified by chromatography (0–10% ethyl acetate in hexane) to yield **11** (44 mg, 75%) as a white solid; mp 100–101 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.66–7.62 (m, 2H), 7.44–7.35 (m, 5H), 7.19–7.12 (m, 5H), 6.88–6.84 (m, 4H), 6.72–6.70 (m, 2H), 4.70–4.66 (m, 1H), 4.60–4.57 (m, 1H), 4.55–4.52 (m, 1H), 4.45–4.42 (m, 1H), 4.37 (s, 2H), 3.78 (s, 3H), 3.77 (s, 3H), 3.31 (dd, *J* = 50.5 Hz, 18 Hz, 2H), 2.15 (s, 3H), 1.72 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 171.1, 169.4, 168.8, 168.4, 159.6, 159.1, 154.1, 152.7, 131.4, 130.4, 130.2, 129.8, 129.5, 129.4, 129.0, 128.6, 128.1, 126.7, 125.9, 124.9, 114.0, 113.8, 99.9, 86.0, 66.4, 55.2, 55.1, 43.5, 43.1, 40.3, 20.4, 20.0. HRMS (ESI): m/z [M + K]⁺ calcd for C₂₀H₁₉NO₆K, 408.0844; found, 408.0853.

rel-(2S,3R)-2,3-Dihvdroxy-N-(4-methoxybenzyl)-2-methylbutanamide (8a). To a solution of 6b (136 mg, 0.423 mmol) in THF and MeOH (8 mL, 1:1) was added LiOH·H₂O (480 mg, 11.42 mmol, dissolved in 4.0 mL water) at room temperature. The reaction mixture was stirred at room temperature overnight. Upon reaction completion, volatiles were removed under reduced pressure and the crude compound was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. The solvent was evaporated, and the crude material was purified by chromatography (0-50% ethyl acetate in hexane) to yield 8a (74 mg, 69%) as a white solid; mp 112-114 °C. ¹H NMR (600 MHz, $CDCl_3$): δ 7.20 (d, J = 8.4 Hz, 2H), 7.12 (br s, 1H), 6.86 (d, J =8.4 Hz, 2H), 4.39 (td, J = 15.6 Hz, 6.0 Hz, 2H), 4.11 (q, J = 6.6 Hz, 6.0 Hz, 1H), 3.79 (s, 3H), 3.21 (s, 1H), 2.76 (d, J = 6.0 Hz, 1H), 1.37 (s, 3H), 1.18 (d, J = 6.6 Hz, 3H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₃): δ 175.7, 159.0, 130.0, 128.9, 114.1, 77.4, 71.3, 55.3, 42.7, 23.0, 16.7. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₃H₁₉NO₄Na, 276.1206; found, 276.1213.

rel-(4S,5R)-N-(4-Methoxybenzyl)-2,2,4,5-tetramethyl-1,3-dioxo*lane-4-carboxamide* (**9a**).²⁷ To a solution of **8a** (35 mg, 0.14 mmol) in 1.5 mL of CH₂Cl₂ was added 2,2-DMP (28 mg, 0.27 mmol) and a catalytic amount of PTSA at room temperature. The reaction mixture was stirred for 2 h. Upon reaction completion, sat. NaHCO₃ solution was added and the mixture was extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure, and the crude material was purified by chromatography (0-20% ethyl acetate in hexane) to yield 9a (39 mg, 97%) as a colorless liquid. ¹H NMR (600 MHz, $CDCl_3$): δ 7.19 (d, J = 8.4 Hz, 2H), 7.02 (br s, 1H), 6.87 (d, J = 8.4 Hz, 2H), 4.36 (ddd, J = 24.6 Hz, 17.4 Hz, 7.2 Hz, 2H), 4.17 (q, J = 7.20 Hz, 1H), 3.80 (s, 3H), 1.44 (s, 3H), 1.37 (d, J = 6.6 Hz, 3H), 1.33 (s, 6H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 173.4, 159.0, 130.1, 128.8, 114.1, 108.0, 83.4, 76.4, 55.2, 42.3, 28.2, 25.7, 19.5, 14.9. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₂₃NO₄Na, 316.1519; found, 316.1522.

rel-(2S,3S)-2,3-Dihydroxy-N-(4-methoxybenzyl)-2-methylbutanamide (8b). To a solution of 6c (70 mg, 0.42 mmol) in THF and MeOH (4 mL, 1:1) was added LiOH·H₂O (24 mg, 11.44 mmol, dissolved in 2 mL water) at room temperature. The reaction mixture was stirred at room temperature overnight. Upon reaction completion, volatiles were removed under reduced pressure and the crude material was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. The solvent was evaporated, and the crude compound was purified by chromatography (0-50% ethyl acetate in hexane) to yield 8b (58 mg, 100%) as a colorless viscous liquid. ¹H NMR (600 MHz, $CDCl_3$): δ 7.22 (br s, 1H), 7.18 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 4.35 (ddd, J = 16.2 Hz, 15.6 Hz, 6.0 Hz, 2H), 3.94 (q, J = 6.6 Hz, 1H), 3.78 (s, 3H), 3.30 (s, 1H), 3.13 (br s, 1H), 1.43 (s, 3H), 1.15 (d, J = 6.0 Hz, 3H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₂): δ 174.9, 159.0, 129.9, 129.0, 114.0, 76.7, 71.4, 55.3, 42.6, 22.3, 17.2. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₃H₁₉NO₄Na, 276.1206; found, 276.1213.

rel-(45,55)-N-(4-Methoxybenzyl)-2,2,4,5-tetramethyl-1,3-dioxolane-4-carboxamide (9b). To a solution of 8b (40 mg, 0.158 mmol) in 1.5 mL of CH₂Cl₂ was added 2, 2-DMP (33 mg, 0.316 mmol) and a catalytic amount of PTSA at room temperature. The reaction mixture was stirred for 2 h. Upon reaction completion, sat. NaHCO₃ solution was added and the mixture was extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure, and the crude material was purified by chromatography (0–20% ethyl acetate in hexane) to yield **9b** (37 mg, 80%) as a colorless liquid. ¹H NMR (600 MHz, CDCl₃): δ 7.20 (d, *J* = 8.4 Hz, 2H), 7.01 (br s, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 4.44 (dd, *J* = 6.6 Hz, 14.4 Hz, 1H), 4.31 (dd, *J* = 14.4 Hz, 5.4 Hz, 1H), 4.13 (q, *J* = 6.6 Hz, 1H), 3.79 (s, 3H), 1.52 (s, 3H), 1.46 (s, 3H), 1.41 (s, 3H), 1.33 (d, *J* = 6.0 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.9, 159.0, 130.2, 128.8, 114.1, 108.4, 84.4, 80.5, 55.2, 42.6, 27.6, 25.7, 23.7, 16.0. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₂₃NO₄Na, 316.1519; found, 316.1522.

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c00581.

¹H, ¹³C NMR spectra of compounds 1, 2, 3a-k, 4a-j, 5a-e, 6a-c, 7a-c, 8a-b, 9a-b, 10, and 11; DP4+ and CP3 experimental data (PDF)

Crystal structure data for compound 2 (CIF)

Crystal structure data for compound 8a (CIF)

Crystal structure data for compound 11 (CIF)

Accession Codes

CCDC-1936130 (2), CCDC-1877266 (8a), and CCDC-1936131 (11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/data_request/cif, by emailing data_ request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Gregory D. Cuny – Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204-5000, United States; orcid.org/0000-0002-3188-4748; Email: gdcuny@ central.uh.edu

Authors

Anantha Lakshmi Duddupudi – Department of

Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204-5000, United States

Pankaj Pandey – Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States; orcid.org/0000-0001-9128-8254

Hien Vo – Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204-5000, United States

Colin L. Welsh – Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States

Robert J. Doerksen – Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States; © orcid.org/0000-0002-3789-1842 Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c00581

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Welch Foundation (E-1916-20170325) and NSF CHE-1460568 and CHE-1757888 for financial support, the Mississippi Center for Supercomputing Research and NSF MRI 1338056 for providing access to supercomputer resources, and Dr. James Korp (Department of Chemistry, University of Houston) for solving the x-ray crystal structures of **2**, **8a**, and **11**. The authors would also like to recognize Dr. Jeremy May (Department of Chemistry, University of Houston) for insightful discussions regarding the proposed reaction mechanism.

REFERENCES

(1) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Hydrazonyl Radical-Participated Tandem Reaction: A Strategy for the Synthesis of Pyrazoline-Functionalized Oxindoles. *Org. Lett.* **2015**, *17*, 6022–6025.

(2) Li, Y. M.; Sun, M.; Wang, H. L.; Tian, Q. P.; Yang, S. D. Direct Annulations toward Phosphorylated Oxindoles: Silver-Catalyzed Carbon-Phosphorus Functionalization of Alkenes. *Angew. Chem., Int. Ed.* **2013**, *52*, 3972–3976.

(3) Li, Y. M.; Wei, X. H.; Li, X. A.; Yang, S. D. Metal-Free Carbonitration of Alkenes Using K2S2O8. *Chem. Commun.* 2013, 49, 11701–11703.

(4) Jaegli, S.; Dufour, J.; Wei, H.; Piou, T.; Duan, X. H.; Vors, J. P.; Neuville, L.; Zhu, J. Palladium-Catalyzed Carbo-Heterofunctionalization of Alkenes for the Synthesis of Oxindoles and Spirooxindoles. *Org. Lett.* **2010**, *12*, 4498–4501.

(5) Cao, Y.; Zhao, H.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Metal-Free Synthesis of 3-Arylquinolin-2-Ones from N,2-Diaryl- Acrylamides via Phenyliodine(III) Bis(2,2-Dimethylpropanoate)- Mediated Direct Oxidative C-C Bond Formation. *Adv. Synth. Catal.* **2016**, *358*, 3610–3615.

(6) Zhang, M. Z.; Luo, N.; Long, R. Y.; Gou, X. T.; Shi, W. B.; He, S. H.; Jiang, Y.; Chen, J. Y.; Chen, T. Transition-Metal-Free Oxidative Aminooxyarylation of Alkenes: Annulations toward Aminooxylated Oxindoles. *J. Org. Chem.* **2018**, *83*, 2369–2375.

(7) Mahoney, J. M.; Smith, C. R.; Johnston, J. N. Brønsted Acid-Promoted Olefin Aziridination and Formal Anti-Aminohydroxylation. J. Am. Chem. Soc. **2005**, 127, 1354–1355.

(8) Wu, H.; Yang, B.; Zhu, L.; Lu, R.; Li, G.; Lu, H. High-Valent Palladium-Promoted Formal Wagner-Meerwein Rearrangement. *Org. Lett.* **2016**, *18*, 5804–5807.

(9) Yi, W.; Fang, X. X.; Liu, Q. Y.; Liu, G. Q. Metal-Free Synthesis of Oxazolidine-2,4-Diones and 3,3-Disubstituted Oxindoles via ICl-Induced Cyclization. *Eur. J. Org. Chem.* **2018**, 2018, 6671–6681.

(10) Lee, J. H.; Choi, S.; Hong, K. B. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. *Molecules* **2019**, *24*, 2634.

(11) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; et al. Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagonists. *J. Med. Chem.* **1988**, *31*, 2235–2246.

(12) Diwan, B. A.; Nims, R. W.; Henneman, J. R.; Ward, J. M.; Lubet, R. A.; Rice, J. M. Effects of the Oxazolidinedione Anticonvulsants Trimethadione and Dimethadione and the Barbiturate Homolog 5,5-Dimethylbarbituric Acid on N-Nitrosodiethylamine-Initiated Renal and Hepatic Carcinogenesis in the F344/NCr Rat. Arch. Toxicol. **1992**, *66*, 413–422. (13) Momose, Y.; Maekawa, T.; Yamano, T.; Kawada, M.; Odaka, H.; Ikeda, H.; Sohda, T. Novel 5-Substituted 2,4-Thiazolidinedione and 2,4-Oxazolidinedione Derivatives as Insulin Sensitizers with Antidiabetic Activities. *J. Med. Chem.* **2002**, *45*, 1518–1534.

(14) Shankarananth, V.; Ranganayakulu, D.; Sridhar, C.; Rajasekhar, K. K. Synthesis and Antiinflammatory Activity of Some Oxazolidinedione Derivatives. *J. Pharm. Res.* **2012**, *5*, 1633–1635.

(15) Cox, J. M.; Chu, H. D.; Yang, C.; Shen, H. C.; Wu, Z.; Balsells, J.; Crespo, A.; Brown, P.; Zamlynny, B.; Wiltsie, J.; et al. Mineralocorticoid Receptor Antagonists: Identification of Heterocyclic Amide Replacements in the Oxazolidinedione Series. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 1681–1684.

(16) Nair, V. A.; Mustafa, S. M.; Mohler, M. L.; Dalton, J. T.; Miller, D. D. Synthesis of Oxazolidinedione Derived Bicalutamide Analogs. *Tetrahedron Lett.* **2006**, *47*, 3953–3955.

(17) Yang, C.; Shen, H. C.; Wu, Z.; Chu, H. D.; Cox, J. M.; Balsells, J.; Crespo, A.; Brown, P.; Zamlynny, B.; Wiltsie, J.; et al. Discovery of Novel Oxazolidinedione Derivatives as Potent and Selective Mineralocorticoid Receptor Antagonists. *Bioorg. Med. Chem. Lett.* **2013**, 23, 4388–4392.

(18) Viswanadh, N.; Ghotekar, G. S.; Thoke, M. B.; Velayudham, R.; Shaikh, A. C.; Karthikeyan, M.; Muthukrishnan, M. Transition Metal Free Regio-Selective C-H Hydroxylation of Chromanones towards the Synthesis of Hydroxyl-Chromanones Using PhI(OAc)2 as the Oxidant. *Chem. Commun.* **2018**, *54*, 2252–2255.

(19) Wolinski, K.; Hinton, J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. **1990**, 112, 8251–8260. (20) Perdew, J. P. Unified Theory of Exchange and Correlation beyond the Local Density Approximation. *Electron. Struct. Solids* '91 **1991**, 11.

(21) Smith, S. G.; Goodman, J. M. Assigning the Stereochemistry of Pairs of Diastereoisomers Using GIAO NMR Shift Calculation. *J. Org. Chem.* **2009**, *74*, 4597–4607.

(22) Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds Using Quantum Chemical Calculations of NMR Shifts. J. Org. Chem. 2015, 80, 12526–12534.

(23) Wang, X.; Liu, J.; Pandey, P.; Chen, J.; Fronczek, F. R.; Parnham, S.; Qi, X.; Doerksen, R. J.; Ferreira, D.; Sun, H.; et al. Assignment of the Absolute Configuration of Hepatoprotective Highly Oxygenated Triterpenoids Using X-Ray, ECD, NMR J-Based Configurational Analysis and HSQC Overlay Experiments. *Biochim. Biophys. Acta, Gen. Subj.* **2017**, *1861*, 3089–3095.

(24) Bifulco, G.; Riccio, R.; Martin, G. E.; Buevich, A. V.; Williamson, R. T. Quantum Chemical Calculations of 1JCC Coupling Constants for the Stereochemical Determination of Organic Compounds. *Org. Lett.* **2013**, *15*, 654–657.

(25) Boye, A. C.; Meyer, D.; Ingison, C. K.; French, A. N.; Wirth, T. Novel Lactonization with Phenonium Ion Participation Induced by Hypervalent Iodine Reagents. *Org. Lett.* **2003**, *5*, 2157–2159.

(26) Delgado, R.; Blakey, S. B. Cascade Annulation Reactions To Access the Structural Cores of Stereochemically Unusual Strychnos Alkaloids. *Eur. J. Org. Chem.* **2009**, 2009, 1506–1510.

(27) Yoshimura, A.; Nishimura, S.; Otsuka, S.; Hattori, A.; Kakeya, H. Structure Elucidation of Verucopeptin, a HIF-1 Inhibitory Polyketide-Hexapeptide Hybrid Metabolite from an Actinomycete. *Org. Lett.* **2015**, *17*, 5364–5367.