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ABSTRACT: A photoredox and copper catalyzed asymmetric
cyanoalkylation reaction of alkenes has been developed, which
uses alkyl N-hydroxyphthalimide esters as alkylation reagents.
In this radical cyanoalkylation reaction, the photoredox induced
alkyl radical adds to styrene, and the generated benzylic radical
couples with a chiral Box/CuII cyanide complex to achieve the
enantioselective cyanation. This reaction features mild con-
ditions, operational simplicity, broad substrate scope, high
yields, and high enantioselectivities, which represents an
efficient method for the asymmetric radical difunctionalization
of alkenes.
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Carboxylic acids are the most common compounds in
numerous biologically active natural products and drug

molecules. Furthermore, they are inexpensive and abundant in
nature, and also are among the most basic building blocks in
synthetic organic chemistry.1 In recent years, decarboxylation
of carboxylic acids has exhibited obvious advantages for
organic synthesis, such as inexpensive materials, CO2 as the
nontoxic byproduct, and so on. Importantly, radical decarbox-
ylation of alkyl carboxylic acid, catalyzed by a visible light-
induced photoredox catalyst, has witnessed a significant
advancement.2 Meanwhile, the alkyl N-hydroxyphthalimide
esters (NHP esters) derived from alkyl carboxylic acids have
been extensively developed as alkylating reagents in alkylation
cross-coupling reactions through the elimination of CO2.

3

Difunctionalization of alkenes is a powerful and efficient tool
for organic synthesis, which can introduce two groups into an
alkene in one step via the addition of a C−C double bond,
enhancing the molecular complexity. Several functional groups,
such as cyano, trifluoromethyl, azido, amino, thiocyano, and so
on, have been introduced into molecules via these difunction-
alization reactions.4 However, the difunctionalization of
alkenes containing an alkylation process still includes great
challenges,5 as the previously reported related alkylation
reactions require harsh conditions, strong nucleophiles, or
explosive substrates.
In recent decades, asymmetric radical reactions have

tremendously enriched the research content of asymmetric
chemistry by trapping alky radicals with reactive chiral
transitional metal species.6 Compared to these previously
developed direct coupling reactions, the Buchwald group
realized an asymmetric cascade reaction by using unsaturated
carboxylic acids with Togni’s reagent and other reagents

(Scheme 1a).7 In 2016, the Liu group reported work realizing

enantioselective cyanation of benzylic C−H bonds via a
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Scheme 1. Asymmetric Radical Difunctionalization of
Alkenes

Letter

pubs.acs.org/acscatalysisCite This: ACS Catal. 2018, 8, 7489−7494

© XXXX American Chemical Society 7489 DOI: 10.1021/acscatal.8b01863
ACS Catal. 2018, 8, 7489−7494

D
ow

nl
oa

de
d 

vi
a 

D
U

R
H

A
M

 U
N

IV
 o

n 
Ju

ly
 1

9,
 2

01
8 

at
 2

1:
44

:0
0 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/acscatalysis
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscatal.8b01863
http://dx.doi.org/10.1021/acscatal.8b01863


copper-catalyzed radical relay.8 Based on this report, they
proposed and developed a series of asymmetric radical
difunctionalizations of alkenes (Scheme 1b).9 Besides
TMSCN, boronic acid was also developed as a nucleophilic
reagent adding to alkenes in asymmetric radical reactions
(Scheme 1c).10

Based on the photocatalyst’s activity, merging photoredox
and metal catalysis could realize some difficult transformations
under mild reaction conditions.11 In 2017, the Liu group
developed an enantioselective decarboxylative cyanation
reaction of N-hydroxy-phthalimide esters by merging photo-
redox catalysis with copper catalysis, which provides a new
access to chiral alkyl nitriles (Scheme 1).11c Recently, the
Macmillan, and Wang groups have independently developed
the decarboxylative cross-coupling of carboxylic acids with
electrophiles or nucleophiles.12 Notably, a radical generated via
photoredox catalysis and an aryl-metal(II) species are the two
key intermediates in these reactions. According to this strategy,
Fu and Macmillan realized an asymmetric decarboxylative
arylation reaction by using a photocatalyst, nickel catalyst, and
chiral ligand.12c Inspired by these elegant reports and our
previous work on asymmetric radical reactions,13 we proposed
a photoredox and copper-catalyzed asymmetric cyanoalkyla-
tion reaction of alkenes by using alkyl N-hydroxyphthalimide
esters as alkylation reagents (Scheme 1e). To the best of our
knowledge, an asymmetric cyanoalkylation reaction of alkenes
has never been developed. Furthermore, this work represents
the first example of photoredox and copper-catalyzed radical
difunctionalization of alkenes.
At the outset, we selected styrene 1a, cyclopentyl NHP ester

2a, and TMSCN as model substrates for the optimization of
racemic reaction conditions (for details, see Supporting
Information (SI)). We found that the reaction of 1a, 2a, and
TMSCN catalyzed by the combination of Ir(ppy)3/CuBr/2,6-
bis(4,5-dihydrooxazol-2-yl)pyridine (L7) with NMP as
solvent, under blue LEDs at room temperature, afforded
(±)-3aa in 58% yield. Then, we carried out the study of
condition optimization for the asymmetric radical reaction.
First, we selected Cu(CH3CN)4PF6 as a metal catalyst, L1 as a
chiral ligand, and Ir(ppy)3 as a photocatalyst for this
asymmetric difunctionalization reaction. To our delight, the
corresponding product 3aa can be obtained with a 30% yield
and −59% ee at room temperature, under 5 W blue LEDs after
24 h (entry 1, Table 1). Next, other chiral ligands were tried in
this reaction to improve the reaction efficiency. We found that
the chiral ligand L4 could catalyze the reaction smoothly,
affording the desired product (R)-3aa14 with obviously
increased enantioselectivity (70% ee, entry 4). With L4 as
ligand and DCM as the solvent, different metal catalysts were
then screened for this system, and the results of entries 5−8
indicated that CuBr exhibited good performance (39% yield
and 79% ee, entry 5). To improve the yield and
enantioselectivity, several regular solvents were then tried for
this reaction (entries 13−18). The reactions with PhCl or
THF as the solvent resulted in product 3aa with excellent
enantioselectivity, but with poor yields (entries 10 and 14).
Prolonging the reaction time to 36 h has no effect on this yield
(entry 15). To our delight, increasing the loading amount of 1a
to 4.0 equiv resulted in the corresponding product 3aa with a
78% yield and 77% enantioselectivity (entry 16). To our
surprise, mixed solvent had a favorable effect on this reaction,
and the ee was further increased to 84% (entry 17). Finally,
control experiments demonstrated that a photocatalyst, visible

light, and a metal catalyst were all essential for this reaction
(entries 18−20).
With the optimized conditions in hand, we then explored

the reactivity of various alkenes by reacting with cyclopentyl
NHP ester 2a, and the results were summarized in Scheme 2.
First, we examined the styrene derivatives with substitution at
the para-position on the aromatic ring. As depicted in Scheme
2, both electron-donating and -withdrawing groups were well
tolerated in this system and afforded the desired product with
good reaction outcomes (3aa−3ga). In particular, the
substrate bearing para-phenyl gave an excellent yield and
high enantioselectivity (3ba, 88% yield and 92% ee). Then, the
styrene derivatives with the meta-substituted group on the
phenyl moieties were applied to this reaction. To our delight,
the reactions also proceeded very well to give the
corresponding product (3ha and 3ia) with moderate yields
but good enantioselectivities (87% ee and 84% ee,
respectively). Several styrenes with ortho-subsituted phenyl
were tried in this reaction to investigate the effect of steric
hindrance. As expected, these substrates 1j−1m worked better
in this system and resulted in good yields and excellent

Table 1. Optimization of Reaction Conditionsa

entry
1a

(mmol) catalyst L solvent
yield
(%)b

ee
(%)c

1 0.2 Cu(CH3CN)4PF6 L1 DMF 30 −59
2 0.2 Cu(CH3CN)4PF6 L2 DMF 37 57
3 0.2 Cu(CH3CN)4PF6 L3 DMF 45 16
4 0.2 Cu(CH3CN)4PF6 L4 DMF 44 70
5 0.2 CuBr L4 DCM 34 79
6 0.2 CuCl L4 DCM 31 75
7 0.2 CuCN L4 DCM 27 76
8 0.2 CuOAc L4 DCM 25 79
9 0.2 CuBr L4 m-xylene trace −
10 0.2 CuBr L4 PhCl 26 87
11 0.2 CuBr L4 NMP 58 76
12 0.2 CuBr L4 MeOH trace
13 0.2 CuBr L4 DMSO trace
14 0.2 CuBr L4 THF 41 84
15 0.2 CuBr L4 THF 41 85d

16 0.8 CuBr L4 NMP 78 77
17 0.8 CuBr L4 NMP/

PhCl
75 84e

18 0.8 − − NMP/
PhCl

− −e

19 0.8 CuBr L4 NMP/
PhCl

− −e,f

20 0.8 CuBr L4 NMP/
PhCl

− −e,g

aReaction conditions: 1a, 2a (0.2 mmol), TMSCN (1.1 equiv),
Ir(ppy)3 (0.5 mol %), metal catalyst (1.0 mol %), ligand (1.2 mol %),
solvent (1 mL), at room temperature, 5 W blue LEDs, 24 h. bIsolated
yields. cDetermined by chiral HPLC. d36 h. eNMP (0.4 mL) and
PhCl (0.6 mL). fNo photocatalyst. gIn the dark.
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enantioselectivities. Especially, in the case of ortho-bromostyr-
ene 1j, the highest enantioselectivity was obtained (3ja, 94%
ee). Finally, one inactive alkene, but-3-en-1-ylbenzene 1r, was
tried in this reaction. Unfortunately, almost no desired product
3ra was obtained.
Encouraged by the results from different alkenes with 2a, we

undertook another part of the substrate scope study of alkyl
NHP esters by using styrene 1a as the coupling partner, and
the results are shown in Scheme 3. Primary alkyl NHP esters
such as methyl, ethyl, and propyl worked very well in the
reaction and resulted in the corresponding product 3ab−3ad
with good yields and high enantioselectivity (84−88% ee).
Next, aryl ethyl and aryl propyl NHP ester were applied to this
reaction, which also proceeded smoothly to afford 3ae and 3af

with good yields and enantioselectivity. It should be mentioned
that the reaction showed excellent regioselectivity compared to
the previous methods.8,15 We also explored whether secondary
alkyl NHP esters could adapt to this reaction. It was noted that
both isopropyl NHP ester 2g and cyclobutyl NHP ester 2h
could be well tolerated, and the products 3ag and 3ah were
obtained with excellent yields and enantioselectivities. Finally,
the tertiary alkyl NHP ester was also found to be a suitable
substrate for this asymmetric radical reaction, and the
corresponding product 3ai could be obtained with a 52%
yield and 90% enantioselectivity.
To gain the insight into this reaction mechanism, a radical

scavenger, TEMPO (2,2,6,6,-tetramethyl-1-piperidinyloxy),
was applied in the reaction. The reaction was totally
suppressed and the desired product 3aa was not detected,
which indicates that a radical process may be involved
(Scheme 4a). To confirm the formation of an alkyl radical,

another radical scavenger 1,1-diphenylalkene was added to the
reaction under standard reaction conditions. The desired
product 3aa was again not detected. However, the adduct 4a of
the cyclopentyl radical with ethene-1,1-diyldibenzene was
detected by GC-MS (Scheme 4b).
According to the above experimental results and previous

studies, a possible mechanism was shown in Scheme
5.8−10,11c,12c,13,16 Initially, the photoredox catalyst Ir(ppy)3 is
irradiated to the activated state A, from which 2a abstracts an
electron to form a radical anion C and the photocatalyst
intermediate B. The radical anion C generates the alkyl radical
D, the phthalimide anion, via release of CO2. Subsequently, the
alkyl radical D adds to styrene 1a to generate the key benzylic
radical E. Meanwhile, the intermediate B oxidizes a copper(I)

Scheme 2. Substrate Scope of Different Alkenesa,b,c

aReaction conditions: 2a (0.2 mmol), alkenes 1 (4.0 equiv), TMSCN
(1.1 equiv), Ir(ppy)3 (0.5 mol %), CuBr (1.0 mol %), L4 (1.2 mol %),
NMP (0.4 mL), and PhCl (0.6 mL), at room temperature, 5 W blue
LEDs, for 24 h. bIsolated yields. cEnantioselectivity was determined
by chiral HPLC.

Scheme 3. Scope of Alkyl NHP Estersa,b,c

aReaction conditions: NHP esters 2 (0.2 mmol), 1a (4.0 equiv),
TMSCN (1.1 equiv), Ir(ppy)3 (0.5 mol %), CuBr (1.0 mol %), L4
(1.2 mol %), NMP (0.4 mL), and PhCl (0.6 mL), at room
temperature, 5 W blue LEDs, for 24 h. bIsolated yields.
cEnantioselectivity was determined by chiral HPLC.

Scheme 4. Mechanistic Investigation

Scheme 5. Proposed Mechanism
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catalyst to release photocatalyst Ir(ppy)3 and form the chiral
Box/Cu(II) state. Then, the chiral Box/Cu(II) is oxidized by
benzylic radical E and reacts with TMSCN to give the chiral
intermediate Box/Cu(III)17 F. Finally, the intermediate F
proceeds through reductive elimination to give the final
product 3aa and regenerates the Cu(I) catalyst for the next
catalytic cycle.
In summary, we have developed a novel photoredox and

copper catalyzed asymmetric cyanoalkylation of alkenes. In this
reaction, a photocatalyt and metal catalyst play a vital role.
This reaction can be compatible with various alkenes and
multiple alkyl NHP esters including primary, secondary, and
tertiary alkyl substituted esters. Furthermore, this reaction
features mild conditions, simple operation, moderate to
excellent yields, and high enantioselectivities, which enriches
the research content of the asymmetric radical reaction.
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