Tetrahedron Letters 52 (2011) 4507-4511

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regiochemistry of an ambident cyclic ketene-*N*,*O*-acetal nucleophile and its anion toward electrophiles

Yingquan Song *, Hondamuni I. De Silva, William P. Henry, Guozhong Ye, Sabornie Chatterjee, Charles U. Pittman Jr. *

Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA

ARTICLE INFO

Article history: Received 16 March 2011 Revised 2 June 2011 Accepted 7 June 2011 Available online 21 June 2011

Keywords: Cyclic ketene acetal Ambident nucleophile Regiochemistry

ABSTRACT

The five-membered cyclic ketene-*N*,O-acetal, 2-oxazolidin-2-ylidene-1-phenylethanone **1**, and its anion **2**, formed on deprotonation, are ambident nucleophiles. Compound **1** was synthesized by benzoylation of 2-methyl-2-oxazoline to give a ring-opened N,C,O-trisbenzoylation product, **9**, followed by N,O-double debenzoylation using methanolic KOH. Compound **1** reacted with benzoyl chloride to give N,C,O-trisbenzoylated **9**, and reacted with phenyl chloroformate to give the similar ring-opened carbonic acid 3-[(2-chloro-ethyl)-phenoxycarbonyl-amino]-3-oxo-1-phenyl-propenyl ester phenyl ester, **13**. In contrast, ambident anion **2** reacted with benzoyl chloride to give the β , β -bisbenzoylated cyclic ketene-*N*,O-acetal, **16**, and reacted with phenyl chloroformate to give the novel heterocycle 3-(2-hydroxy-ethyl)-6-phenyl=[1,3]oxazine-2,4-dione, **17**.

© 2011 Elsevier Ltd. All rights reserved.

2-Oxazolidin-2-ylidene-1-phenylethanone **1**, a five-membered cyclic ketene-*N*,*O*-acetal, and its deprotonated form, anion **2**, are both ambident nucleophiles (Fig. 1). The ring nitrogen, exocyclic β -carbon and carbonyl oxygen are nucleophilic in both **1** and **2**.

Compound **1** has been used in the syntheses of fused indole derivatives,¹ bicyclic pyridones,² 1,3-oxazoheterocycle-fused-[1,2-*b*]isoquino-lin-1(2H)-imines³ and 5H-oxazolo[3,2-a]pyridine deriva tives.⁴ These reactions used **1** as an ambident nucleophile which reacted with ambident electrophiles to effect ring closures. The regiochemistry of **1** reacting with electrophiles having only one nucleophilic site has not been reported.

During studies of cyclic ketene-*N*,*O*-acetal chemistry with various electrophiles,⁵ interest grew in the regiochemistry of **1** and **2** reacting with acid chlorides and aryl chloroformates. Preliminary results are reported here.

Results

Benzoylation of 2-methyl-2-oxazoline and 2-methyl-2-oxazine

Compound **1** was previously made from ketene dithioacetal **3** and 2-aminoethanol⁴ (Eq. 1). Starting material **3**, in turn, was prepared from acetophenone with NaH and CS_2 , followed by methylation with methyl iodide. In contrast, cyclic ketene-*N*,*O*-acetal **4**, an analog of **1** with two methyl groups at C-4, was

Figure 1. The five-membered cyclic ketene-*N*,*O*-acetal 1, and its deprotonated form, anion 2, are ambident nucleophiles.

synthesized via benzoylation of 2,4,4-trimethyl-2-oxazoline **5** to give the N,O-bisbenzoylated cyclic ketene-N,O-acetal **6**, followed by N-debenzoylation with KOH/methanol (Eq. 2).⁶ Thus, an

^{*} Corresponding authors. Tel.: +1 662 325 7616; fax: +1 662 325 7611.

E-mail addresses: yingquan@gmail.com (Y. Song), cpittman@chemistry.msstate.edu (C.U. Pittman Jr.).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.023

alternative route to 1 would be N-debenzoylation of the bisbenzoylated cyclic ketene-*N*,O-acetal 7 (Eq. 3), an analog of **6**. **7** might form by the N,O-bisbenzoylation of 2-methyl-2-oxazoline, **8**. However, repeated attempts to generate 7 by this route failed (Table 1). Surprisingly, N,O,C-trisbenzoylation of 2-methyl-2-oxazoline occurred instead, followed by ring-opening, giving only the vinyl ester imide, 9. Formation of 9 occurred employing only 2 equiv of benzoyl chloride in either CH₃CN or THF. This same reaction pattern was followed in benzoylation of 2-methyl-2-oxazine, 10, which produced only the analogous ring-opened vinyl ester imide 11 where the crystal structure showed the (Z) geometrical isomer was made (Eq. 4).

Preparation of cyclic ketene-N,O-acetal 1

Interestingly, **1** was prepared directly from **9**. Subjecting ringopened **9** to methanolic KOH gave a 44% isolated yield of **1** (Eq. 5), the product originally sought through **7**. However, subjecting **11** to methanolic KOH gave an unidentified product (Eq. 6) rather than **12**, the six-membered ring analog of **1**.

The combination of Eqs. 3 and 5 provides an easier and safer route to **1** than from ketene dithioacetal and 2-aminoethanol (Eq. 1). With **1** available, nucleophilic reactions of **1** and its deprotonated form, anion **2**, with the electrophiles, benzoyl chloride and phenyl chloroformate, were studied.

Benzoylation of 1

2-Oxazolidin-2-ylidene-1-phenylethanone **1** produced only trisbenzoylated ring-opened product **9** (Eq. 7) when reacted with benzoyl chloride in refluxing THF in the presence of Et₃N. Thus, 1 equiv of benzoyl chloride, diluted in THF, was added over 5 h to **1**/THF at 22–23 °C, in an attempt to generate N,C-bisbenzoylated **7** by kinetically favored *N*-benzoylation (Eq. 7) without further reaction occuring to produce **9**. However, **7** was still not formed. A 2% yield of **9** was obtained and most of the starting material **1** was recovered.

Reaction of 1 with phenyl chloroformate

Compound **1** did not react with phenyl chloroformate in CH_3CN/Et_3N after 7.5 h at 22–23 °C. No new products were detected by TLC analysis. After refluxing for 5 h, however, ring-opened carbonic acid 3-[(2-chloro-ethyl)-phenoxycarbonyl-amino]-3-oxo-1-phenyl-propenyl ester phenyl ester, **13**, was isolated and purified in 65% yield (Eq. 8). Two equivalents of phenyl chloroformate were consumed generating **13**, as was the case during bisbenzoylation of **1** to form **9** (Eq. 7) with the stronger benzoyl chloride electrophile. No N-phenoxycarbonylation product **14** or C-phenoxycarbonylation product **15** were detected.

Benzoylation of ambident anion 2

Ambident anion **2**, obtained by deprotonation of **1** by sodium hydride in THF, was reacted with 1 equiv of benzoyl chloride to explore its regiochemistry. Mono-benzoylation occurred at the exocyclic β -carbon, giving the β , β -bisbenzoylated **16**, in a 52% isolated yield (Eq. 9).

 Table 1

 Benzoylation of 2-methyl-2-oxazoline 8 and 2-methyl-2-oxazine 10^a

Entry	Substrate	Equiv of PhCOCl	Solvent	Product	Yield ^b (%)
1	8	2.2	CH₃CN	9	60 ^c
2	8	2.2	THF	9	56 ^{c,d}
3	8	3.3	THF	9	60 ^e
4 ^f	10	2.1	THF	11	52 ^c

^a Reactions were run in refluxing THF or CH₃CN for 5 h. Et₃N was used as the acid scavenger. Column chromatography was used for purification (stationary phase: silica gel, eluting solvent: acetone/hexanes or ethyl acetate/hexanes).

^b Isolated/purified yield.

^c Yield was based on PhCOCl (the limiting reagent).

- ^d A 89% yield (based on PhCOCI, the limiting reagent) was obtained using 1.80 g
- of **8** and 2.3 equiv PhCOCl, freshly distilled from SOCl2, and flame-dried glassware. ^e Yield was based on **8** (the limiting reagent).

^f Reaction was run for 4.5 h.

Reaction of phenyl chloroformate with ambident anion 2

Compound **2** was also reacted with 1 equiv of the weaker electrophile, phenyl chloroformate in THF at room temperature (Eq. 10). Surprisingly, the expected C-alkoxycarbonylation adduct **15**, an analog of **16** (Eq. 9), was not isolated. Instead, the completely unforseen 3-(2-hydroxy-ethyl)-6-phenyl-[1,3]oxazine-2,4-dione, **17**, was formed in 25% yield. In addition, the starting material **1** was recovered in 12% yield.

Discussion

Benzoylation of 2-methyl-2-oxazoline to N,C,O-trisbenzoylated, ring-opened **9** presumably arises from N,C-bisbenzoylated compound **7** (Scheme 1). The ketone oxygen of **7** may subsequently have been O-benzoylated to form cation **18**, followed by chloride nucleophilic attack at C-5 to open the ring. O-Benzoylation would be promoted by strong electron donation in **7** from the ring oxygen and nitrogen atoms making this keto oxygen more negative and nucleophilic.

The contrasting benzoylation behavior of 2-methyl-2-oxazoline to **9** versus 2,4,4-trimethyl-2-oxazoline to **6** (Eq. 2 vs 3) highlights the importance of the C-4 methyl substituents on these reaction paths. These two methyl groups stop 2,4,4-trimethyl-2-oxazoline benzoylation at the N,C-bisbenzoylation stage. Even if a third benzoylation does occur at the ketone oxygen to form a 1,3-oxazolinium cation **19**, analogous to **18** (Scheme 1), the two C-4 methyl groups hinder the chloride attack at C-5, so ring opening cannot occur. Thus, O-benzoylation will be reversible and **6** is the isolated product.

Scheme 1. A mechanism for benzoylation of 2-methyl-2-oxazoline to *N*,*C*,0-trisbenzoylated, ring-opened compound **9**.

Likewise, benzoylation of 2-methyl-2-oxazine **10** gave **11** (Eq. 4). In contrast, benzoylation of **20** gave ring-retained N,C-bisbenzoylation product **21** (Eq. 11).⁶ This substituent effect has been observed elsewhere.⁵¹

The reaction of N,C,O-trisbenzoylated, ring-opened **9** with methanolic KOH reclosed the ring and formed cyclic ketene-*N*,O-acetal **1**. O-debenzoylation by hydroxide likely triggers a subsequent intramolecular S_N^2 attack by an imide carbonyl oxygen on the methylene carbon bearing chlorine, giving rise to **7**⁷ (Scheme 2). N-Debenzoylation then leads to cyclic ketene-*N*,O-acetal **1**. Alternatively, N-debenzoylation might occur prior to O-debenzoylation, similar to the preparation of 2-oxazolines by dehydrohalogenation of β -haloalkylamides with aqueous or alcoholic alkali.⁸

Scheme 2. A suggested route from 9 to 1.

Benzoylation of **1** was slow at ambient temperature and formed only 2% of trisbenzoylated, ring-opened **9**. Most of **1** was recovered. N,C-Bisbenzoylated **7** may have formed as an intermediate which rapidly reacted with more benzoyl chloride to form **9** (Eq. 7).

Benzoylation of **2** is totally different than benzoylation of **1** (Scheme 3). The β -carbon site of **2** reacted with benzoyl chloride to give adduct **22**. Using excess NaH ensures removal of the acidic β -proton of **22** to form stable anion **23**. This is similar to the Claisen condensation where a stoichiometric amount of base drives the reaction to completion. Excess NaH also reduced the possibility of **22** being deprotonated by **2**, which would regenerate **1** (Scheme 3). Aqueous workup transforms **23** to **16**.

N,C-Dibenzoylation product **7** could have formed via *N*-benzoylation of **2** (Scheme 4). However, **7** could further react with **2** in two ways. The nitrogen of **2** could attack the amide carbonyl carbon of **7** (route **a** in Scheme 4), regenerating **7** and **2** with no net change. However, if the β -carbon of **2** attacks **7** (route **b**), β , β -dibenzoyl product, **22**, will form. Subsequent deprotonation of **22** by sodium hydride gives stable anion **23**, which gives **16** on workup. This accounts for why benzoylation of **2** appears to occur at the softer carbon site rather than the harder nitrogen site, despite the fact that benzoyl chloride is a harder electrophile than methyl iodide. For comparison, methyl iodide reacted with **4**, the C-4 dimethylated analog of **1**, on the β -carbon.⁶

Reaction of **1** with phenyl chloroformate gave ring-opened product **13** (Scheme 5). This route is similar to formation of **9** (Eq. 7). Nucleophilic attack by **1** on phenyl chloroformate probably occurs via the ring nitrogen, giving rise to intermediate **14** (similar to **7** in Eq. 7). Subsequent β -keto oxygen phenoxycarbonylation leads to cation **28**, which is ring-opened by chloride attack. This ring-opening finds analogy in Scheme 1.

In contrast to the conversion of **1** to **9** (Eq. 7), **2** reacted with phenyl chloroformate generating the substituted [1,3]-oxazine-2,4-dione **17** (Scheme 6 and Eq. 10) instead of the expected β , β -disubstituted cyclic ketene-*N*,*O*-acetal **15** from C-phenoxycarbonylation. Phenyl chloroformate, a harder electrophile than iodomethane, reacted with anion **2** at its nitrogen, which is a harder nucleophilic site than its β -carbon. This produces **14**. Compound **14** is expected to undergo an intramolecular nucleophilic attack of the carbonyl oxygen on the carbamate carbonyl carbon to form intermediate **29**. Compound **29** loses phenoxide to generate the fused ring oxazolinium cation **30** rather than cleaving the bond to the ring nitrogen to generate the oxazoline **31**.⁹ Hydrolysis of cation **30** provides ring-opened product **17**.

The differences when reacting **1** versus **2** with phenyl chloroformate may be due to differences in reaction conditions rather than intrinsic reactivity differences. Intermediate **14**, formed during reaction of **1** with phenyl chloroformate, in the presence of Et₃N (Scheme 5), might have undergone β -keto oxygen phenoxycarb-

Scheme 3. Benzoylation of ambident anion 2 gave 16.

Scheme 4. The reason why N,C-dibenzoylated 7 is not observed.

Scheme 5. A suggested route to 13.

Scheme 6. A suggested route to 17.

onylation faster than intramolecular nucleophilic attack of the ketone's oxygen on the carbamate carbonyl carbon to form oxazolinium cation **29** (Scheme 6). Et₃N may have activated phenyl chloroformate for β -keto oxygen phenoxycarbonylation via nucleophilic catalysis.¹⁰ Intermediate **14**, formed by reaction of **2** with phenyl chloroformate, in the absence of Et₃N, simply undergoes intramolecular nucleophilic attack to form **17**, since keto oxygen attack on unactivated phenyl chloroformate would be slower.

Similar [1,3]-oxazine-2,4-dione compounds have been synthesized from β -oxo-esters.¹¹ [1,3]-Oxazine derivatives oxazinomycin and minimycin are reported to have antibiotic activity.¹¹ Therefore, the preparation of [1,3]-oxazine-2,4-diones from 2-methyl-2-oxazoline via cyclic ketene-*N*,O-acetal chemistry may have synthetical potential.

Acknowledgments

The authors acknowledge the educational and general funds of Mississippi State University for financial support of this work.

Supplementary data

Complete experimental synthetic descriptions and characterizations of all the compounds described here, including crystal structures of **1**, **11** and **17**, can be found in the online version, at doi:10.1016/j.tetlet.2011.06.023.

References and notes

- Zeng, C.; Liu, F.; Ping, D.; Hu, L.; Cai, Y.; Zhong, R. J. Org. Chem. 2009, 74, 6386– 6389.
- 2. Yan, S.; Niu, Y.; Huang, R.; Lin, J. Synlett 2009, 2821-2824.
- 3. Yan, S.; Huang, C.; Su, C.; Ni, Y.; Lin, J. J. Comb. Chem. 2010, 12, 91-94.
- 4. Huang, Z.; Zhang, P. Chem. Ber. 1989, 122, 2011-2016.

- (a) Wu, Z.; Stanley, R. R.; Pittman, C. U., Jr. J. Org. Chem. 1999, 64, 8386; (b) Zhou, A.; Pittman, C. U., Jr. J Comb. Chem. 2006, 8, 262; (c) Zhou, A.; Cao, L.; Li, H.; Liu, Z.; Cho, H.; Henry, W. P.; Pittman, C. U., Jr. Tetrahedron 2006, 62, 4188–4200; (d) Ye, G.; Henry, W. P.; Chen, C.; Zhou, A.; Pittman, C. U., Jr. Tetrahedron lett. 2009, 50, 2135–2139; (e) Zhou, A.; Pittman, C. U., Jr. Synthesis 2006, 37–48; (f) Zhou, A.; Moses, N.; Pittman, C. U., Jr. Tetrahedron 2006, 62, 4093–4102; (g) Ye, G.; Chen, C.; Chatterjee, S.; Collier, W. E.; Zhou, A.; Song, Y.; Beard, D. J.; Pittman, C. U., Jr. Synthesis 2010, 141–152; (h) Ye, G.; Chatterjee, S.; Zhou, A.; Barker, B. L.; Chen, C.; Song, Y.; Pittman, C. U., Jr. Synthesis 2010, 1209–1216; (i) Ye, G.; Zhou, A.; Henry, W. P.; Song, Y.; Chatterjee, S.; Beard, D. J.; Pittman, C. U., Jr. Jorg. Chem. 2008, 73, 5170–5172; (j) Chatterjee, S.; Ye, G.; Pittman, C. U., Jr. Tetrahedron Lett. 2010, 51, 1139–1144; (k) Ye, G.; Chatterjee, S.; Li, M.; Zhou, A.; Song, Y.; Barker, B. L.; Chen, C.; Beard, D. J.; Henry, W. P.; Pittman, C. U., Jr. Tetrahedron 2010, 66, 2919–2927; (l) Song, Y.; Henry, W. P.; De Silva, H. I.; Ye, G., ; Pittman, C. U., Jr. Tetrahedron Lett. 2011, 52, 853–858.
- Tohda, Y.; Kawashima, T.; Ariga, M.; Akiyama, R.; Shudoh, H.; Mori, Y. Bull. Chem. Soc. Jpn. 1984, 57, 2329–2330.
- For a similar enolate oxygen anion intramolecular attack on the β-carbon of an N-β-chloroethyl amide to form a five cyclic ketene-N;O-acetal moiety, see Ognyanov, V. I.; Hesse, M. Helv. Chim. Acta 1990, 73, 272–276.
- 8. Fry, E. M. J. Org. Chem. 1949, 14, 887-894.
- Chatterjee, S.; Ye, G.; Song, Y.; Barker, B. L.; Pittman, C. U., Jr. Synthesis 2010, 3384–3394.
- (a) Bender, M. L. Chem. Rev. **1960**, 60, 53–113; (b) Fu, G. C. Acc. Chem. Res. **2000**, 33, 412–420.
- Ahmed, S.; Lefthouse, R.; Shaw, G. J. Chem. Soc., Perkin Trans. 1. 1976, 1969– 1975.