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Abstract: An efficient, inexpensive, environmentally friendly and high yield one-pot route to
new spiro[indolo-3,10-indeno [1,2-b]quinolin]-trione derivatives has been developed, involving
three-component reaction of enaminones, N-substituted isatins and indane-1,3-dione catalysed
by FeCls. The approach to this spiro-heterocycle is noteworthy because it results in the formation
of three new o (two C-C and one C-N) bonds in a single operation, leading to the construction of

novel spiro skeleton. This method works on a large scale in excellent yields.
INTRODUCTION

Multicomponent reactions (MCRs) are important tools for medicinal and organic chemists
because they offer significant advantages over the stepwise convergent construction of complex
molecules'. The structurally diverse enaminones have been of longstanding interest for the
construction of biologically-relevant core structures via multicomponent reactions (MCRs).>

Examples of such heterocyclic spiro-fragments are shown in Figure 1,° including those derived
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from isatin’, quinoline5 , indenone®, and indole” building blocks. Furthermore, C-3 spiroindoline
compounds8 represents an important structural unit found in many natural alkaloids’ such as
spirotryprostatins A and, B, which function as inhibitors of microtubule assembly, and
pteropodine and isopteropodine alkaloids, which interact with muscarinic serotonin receptors. In
this chemistry, our attention has been drawn to iron (III) chloride as a green and efficient Lewis

acid catalyst for C-C bond and carbon—heteroatom formation'®"!

including MCRs under mild
reaction conditions'?. Several FeCls-based isatin-based multicomponent methods have been

reported for the synthesis of spiro[indolo-3,10"-indeno [1,2-b]quinolin]-triones heterocycles®

and related molecules'?.

R=OCH; Spirotryprostatin A
R=H Spirotryprostatin B Antimicrobial

Peteropodine

Figure 1. Examples of biologically important fuesd spiro-compounds.

We describe here the extension of FeCls-catalyzed three-component coupling methodology to
commercially available cyclicl,3-dicarbonyl compounds, amines and isatins for the synthesis of
highly functionalized spiro-derivatives (Scheme 1). This process provides good to excellent

yields of the desired compounds under mild conditions.
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Scheme 1: MCR synthesis of spiro[indolo-3,10 -indeno [1,2-b]quinolin]-triones heterocycles.

Ry ES FeCl; (10 mol%)
VL Ko .
R3
NH X o
h , 0 , ctgrzi(rilz, r.t. (25-30 °C),
R;=H, Aryl and S &

Rs=Allyl, Benzyl
and Alkyl 4{1,1,1}-4{1,8,1}
X=H, Cl, Br and NO,

alkyl; R, R3=H,
-CH; and Phenyl
R,4=H and -CHj;

RESULTS AND DISCUSSION

Reaction conditions

Enaminone 1{/}, N-substituted isatin 2{/} and indane 1,3-dione 3{/} served as model
substrates to explore the three-component reaction conditions in the presence of various Lewis
acidic catalysts in organic solvent (Figure 2, Table 1). FeCl; (10 mol %) was found to be the
best catalyst, giving 4{/,1,1} in 92% yield (Table 1, entry 5). While diminishing (entry 6) or
increasing (entry 7) the amount of catalyst made no significant difference, the presence of
catalyst was required (entry 1). Other Lewis acids (entries 2, 3, 4) and mild protic acids (entries
8, 9) gave the same product in moderate yield, but HCI provided only trace amounts, perhaps due
to decomposition of the product in the presence of strong acid. Among the organic solvents
tested (CH3;CN, EtOH, MeOH, Toluene, THF, DMF and DMSO; entries 11-17), CH,Cl, gave
the best yields by substantial amounts.

Table 1. Optimization of reaction conditions for the synthesis of compound 4{/,1,1}"
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H; catalyst, r.t., 3h H;C o

© !
1/1}  CH; 21} 3 ©4{1, 11

1 mmol 1 mmol 1 mmol CH,
entry | catalyst (mol %) / solvent Yieldb4{1,],] } (%)
1 None (-), DCM 5
2 AlICI5(10), DCM 45
3 SnCl, (10), DCM 32
4 ZnCl, (10), DCM 35
5 FeCl; (10), DCM 92
6 FeCl;(5), DCM 80
7 FeCl3(20), DCM 87
8 AcOH (5), DCM 55
9 H;BO; (5), DCM 38
10 HCI (5), DCM trace
11 FeCl; (5), ACN 75
12 FeCl;(5), EtOH 65
13 FeCls(5), MeOH 52
14 FeCl;(5), Tolune 66
15 FeCl;(5), THF 55
16 FeCls(5), DMF 30
17 FeCls(5), DMSO 25

“Reaction conditions: enaminone (1{/}, 1 mmol), isatin (2{/}, 1 mmol), indane-1,3-dione
(3{1}, 1 mmol), different catalysts, different solvents. ®Yields of isolated products.

Substrate scope

With favorable reaction conditions established (10 mol% FeCl;, CH,Cl, solvent, room
temperature), the substrate scope of this FeCl;-catalyzed MCRs process was explored with 27
enaminones (1{7}-1{27}), 8 N-substituted isatins (2{/}-2{8}) and indane -1,3-dione (3{1})

(Figure 2 and Table 2).
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Figure 2. Enaminone and isatin reagents tested in FeCls-catalyzed multicomponent
condensation.

Various 5,5 disubstituted enaminones 1 were found to give corresponding products 4{1,1,1}-
4{18,1,1}, in yields ranging from 60% to 93% (Table 2, entries 1 to 11). Unsubstituted
enaminones also gave good yields (Table 2, entries 18-20, 24, 25, 27 and 31). Phenyl
substitution at the 5 position (1{/9} and 1{20}), as well as 6,6-disubstitution (1{21}) provided
lower yields (Table 2, entries 12, 16, 17, 34), the latter most probably due to steric factors. The

electronic nature of N-aryl enaminone substituents had little effect, with electron-donating
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(methyl, isopropyl, methoxy) or electron-withdrawing (chloro, bromo, nitro, carboxylic acid)
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aromatic groups (R;) giving similar results (Table 2, entries 1-6).

Table 2: Synthesized spiro compounds.

4 1{1-27},2{1-8},3{1}}

|
Ry

0 Rs
ILI FeCl; (10 mol%)
EH X 1 DCM (5 ml), r.t.
. {1_27}1 2 (1.8} 3713 (25-30 °C), stirring
1 mmol I mmol 1 mmol
R,=Allyl, Benzyl
R;=H, Aryl and Alkyl
andalkyl  x=p C1, Brand NO,
entry product (4) / time (h) | yield (%) / mp (°C)

1 4/1,1,1},3 92, 286-288
2 4/2,1,1},3 93, 280-282
3 4/3,1,1},4 86, 240-242
4 4{9,1,1},3.5 90, 304-305
5 4/12,1,1}, 4 88, 132-134
6 4/13,1,1}, 4 87,310-312
7 4/14,1,1}, 5 74, 158-160
8 4/15,1,1},3.5 83, 248-250
9 4/16,1,1},3 85, 280-281
10 417,11}, 5 75, 238-240
11 4/18,1,1},3.5 84,254-255
12 420,11}, 6 60, 254-256
13 4¢23,1,1},3.5 92, 340-342
14 476,2,1},3.5 85, 278-279
15 4/10,2,1},3 86, 292-293
16 419,21}, 5 72,200-202
17 4/20,2,1}, 6 65,210-212
18 423,21}, 3 87,328-330
19 424,21}, 4 70, 296-298
20 425,21}, 5 75,277-278
21 4{2,3,1},3.5 88, 266-268
22 4{15,3,1},3 80, 268-270
23 410,41}, 3 91, 258-260
24 4/22,4,1},3.5 86, >350
25 425,41}, 6 72,216-218
26 4{7,5,1},2.5 94, 328-330
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27 4/26,5,1},4 83, 336-338
28 4/27,5,1},3.5 82, >350
29 474,61}, 3 92, 308-310
30 4/5,6,1},3.5 88, 320-322
31 4/22,6,1},3 88, >350
32 478,71}, 3 90, >350
33 471171}, 5 84, 340-342
34 421,71}, 3 75, 318-320
35 471,81}, 2 92, 284-286

N-alkyl enaminones also gave good yields (Table 2, entries 7-10) with this method. To further
broaden the scope of this reaction, we investigated the electronic properties of the substituents
(X= chloro, bromo and nitro) at the isatin C5 position and the N-substituent (Rs= allyl, benzyl
and n-butyl). Each variation was well tolerated, giving structurally diverse spiro-products in
excellent yields (82-94%). Note that N-protected isatins bearing electron-withdrawing
substituents (X) at the C5 position afforded reproducibly higher yields than other analogues,

suggesting an electronic effect (Table 2, entries 23 —38).

Enaminones derived from acyclic 1,3-diketones (5{/-3}) also proved to be effective in this
ferric-caralyzed process, reacting cleanly with isatins (3{/,2,4}) and indane -1,3-dione (3{1})
compounds under the same reaction conditions. The corresponding spiro[indolo-3,4 -indeno[ 1,2-
b]pyridin]-2,5 dione derivatives were isolated in good yields (75-85%, Scheme 3, 6{7,1,1}-

6/3,4,1}). All compounds were characterized by 'H, >*C NMR and IR spectroscopy analysis.

Scheme 3:Synthesis of spiro[indolo-3,4 -indeno[1,2-b]pyridin]-2,5 diones derivatives.

FeCl; (10 mol%)

0 R
. N
Hyc” "NH X

| o 3/ CH,Cl,, r.t. (25-30 °C),
5(1-3} Rs 2{1,2.4} {1 stirring, 4 h
R6:Al'yl R7:A11y1 and Benzyl 6 {5{]_3},2{1’2’ 4},3{]}}
X=H, Cl 3 Example
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(1 CH; 5t OCHj; 513/ Cl 6{1,1,1},<> 6{2,2,1},© 6{3,4,1}©

82% CHs 85% 75% Cl

OCH;

To the best of our knowledge, this is the first report of the synthesis of spiro-
heterocycle using FeCls as a lewis acid catalyst via multicomponent protocols and is perfectly
amenable to automation for combinatorial synthesis. Here, lewis acidic nature of FeCls helps to
co-ordinate with oxygen and nitrogen atoms, thereby increasing the electrophilic character of

carbonyl carbon and finally, facilitating the dehydration process®'*

(A detailed mechanistic
pathway is proposed in Supporting Information.) The structures of the above spiro-compounds
were confirmed unambiguously from single crystal Xray diffraction of the compound 4{76,1,1}

and all the compounds were well characterized by 'H, ?*C NMR and IR spectroscopy. The

ORTEP plot of compound 4{16,1,1} (Figure 3) is shown in Supporting Information 1.

CONCLUSION

In summary, we have successfully developed a novel, straightforward, cheap, and
environmentally friendly one-pot three-component reaction to synthesize highly functionalized
spiro[indolo-3,10"-indeno  [1,2-b]quinolin]-2,9",11 triones derivatives in DCM at room
temperature (25-30 °C) in presence of the Lewis acid catalyst FeCls (10 mol %) . The procedure

has the following advantages: (1) it is highly efficient, has good atom economy and uses an
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ecologically benign multicomponent reaction strategy, (2) a wide variety of functional groups are
tolerated, (3) the FeCl; catalyst is easily available and environmentally friendly, and (4) it should

be readily scalable.
Experimental Section

Representative procedure for FeCls-catalyzed three component synthesis of functionalized spiro

derivatives:

A 25 mL flask was charged with a mixture of enamenones (1, 1 mmol), N-protected isatin (2, 1
mmol), indane-1,3-dione (3, 1 mmol), and catalytic amount of anhydrous FeCI3 (16 mg, 0.1
mmol) in dichloromethane (5 mL). The mixture was magnetically stirred at room temperature
(25-30°C) for the appropriate time mentioned in Table 2. The progress of the reaction was
monitored by TLC. After completion of the reaction the mixture was poured into water. Then it
was extracted with DCM (20 ml) for three times and followed by brine solution. Next, it was
dried over Na,SQOy4, and evaporated under reduced pressure to remove the excess solvent. Finally
the crude residue was directly purified by silica gel column chromatography using 30% ethyl
acetate in petroleum ether (60-80 °C) as eluant to afford the desired product as red solid. All the
obtained products were characterized by 'H NMR, *C NMR, and IR spectral data. The spectra

data for two representative compounds are given bellow.

1-Allyl-7°,7’-dimethyl-5"-p-tolyl-1,3,6",7 ,8 -pentahydro-SH-spiro[indolo-3,10 -indeno [1,2-
b]quinolin]-2,9°,11 triones: (Table 2, 4/17,7,1}): Yield 92 % (484 mg); red solid; Mp: 286-288
°C (EtOH); R¢ [50 % EtOAc / petroleum ether (60-80°C)]: 0.60; IR (Viay, KBr, cm™): 3044,
2955, 2343, 1719, 1690, 1654, 1631, 1487, 1396, 1356, 1281, 1172, 1086, 897, 739, 501; 'H

NMR (300 MHz, CDCL3) &y: 7.30-7.04 (m, 6H, ArH), 6.94 (t, J=7.4 Hz, 2H, ArH), 6.82-6.72 (m,
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3H, ArH), 6.02-5.92 (m, 1H, allyl-CH), 5.58-5.52 (m, 1H, N-CH,), 5.20 (d, /=10.5 Hz, 1H, N-
CH,), 5.12 (d, J=7.5 Hz, 1H, ArH), 4.46-4.41 (m, 2H, allyl-CH,), 2.42 (s, 3H, Ar-CHj), 2.18-

2.10 (m, 2H, CH,), 1.97 (d, J=17.4 Hz, 2H, CH,), 0.84 (d, J=18.0 Hz, 6H, CHs); °*C NMR (75

©CoO~NOUTA,WNPE

MHz, CDCIl;) dc: 194.9, 190.1, 177.8, 154.5, 152.5, 143.3, 140.7, 136.8, 135.7, 134.6, 133.1,
13 132.1, 131.3, 130.7, 129.5, 129.0, 128.2, 122.4, 121.9, 121.3, 121.0, 117.2, 114.6, 110.3, 108.7,
15 50.0, 47.3,43.1, 41.2, 32.2,29.4, 26.5, 21.3; Anal. calcd. for C35sH3yN,O3; C: 79.82; H: 5.74; N:

18 5.32. Found: C: 79.98; H: 5.77; N: 5.24%.

21 1-Butyl-5’-(4-methoxy-phenyl)-7°,7 -dimethyl-1,3,6",7",8 -pentahydro-SH-spiro[indolo-

23 3,10°-indeno[1,2-b]quinolin]-2,9°,11 triones: (Table 2, 4/2,3,1}): Yield 88 % (492 mg); red
26 solid; Mp: 266-268 °C (EtOH); R¢ [50 % EtOAc / petroleum ether (60-80°C)]: 0.70; IR (Viax,
28 KBr, cm™): 2956, 2345, 1719, 1661, 1511, 1403, 1360, 1251, 1086, 986, 677; "H NMR (300
30 MHz, CDCl;) 6y: 7.44-7.35 (m, 2H, ArH), 7.28-7.20 (m, 2H, ArH), 7.12-7.06 (m, 4H, ArH),
33 6.95-6.90 (m, 3H, ArH), 5.33 (d, J=7.5 Hz, 1H, ArH), 3.97 (s, 3H, -OCH3, 3.89-3.84 (m, 2H, N-
35 CH,), 2.30-2.08 (m, 4H, CH), 1.94-1.88 (m, 2H, CH,), 1.60-1.53 (m, 2H, CH;), 1.07-1.02 (m,
37 9H, CH3); °C NMR (75 MHz, CDCls) 8¢: 194.8, 190.1, 177.8, 160.6, 154.7, 152.8, 143.8, 136.9,
40 134.9, 133.2, 131.4, 130.9, 130.8, 130.4, 129.5, 128.2, 122.5, 121.6, 121.3, 121.0, 115.2, 115.0,
42 114.8, 110.4, 107.8, 55.7, 50.1, 47.4, 41.3, 40.3, 32.2, 29.4, 28.9, 26.6, 20.4, 13.8; Anal. calcd.

for C3¢H3¢N,05; C: 77.12; H: 6.47; N: 5.00. Found: C: 77.25; H: 6.46; N: 5.07%.
48 ASSOCIATED CONTENT

51 Supporting Information.

53 Details experimental procedures for synthesis of spiro[indolo-3,10"-indeno [1,2-b]quinolin]-

2,9°,11 triones derivatives, scale up reaction and spectral data, copies of 'H and *C NMR
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spectra and IR analysis data of all the new synthesised compounds are provided. This material is

available free of charge via the Internet at http://pubs.acs.org/.
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