Synthesis of Chiral Pyridylphenols for the Enantioselective Addition of Diethylzinc to Aldehydes

Pei-Shan Wu and Chinpiao Chen*

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan, Republic of China

(Received: Aug. 2, 2011; Accepted: Dec. 8, 2011; Published Online: Mar. 13, 2012; DOI: 10.1002/jccs.201100474)

Chiral 8-substituted 2-(8,10,10-trimethyl-6-aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5-yl)-phenols were prepared from a high enantiopurity (>97% ee) of (1R)-(+)- α -pinene, and assessed in the enantio-selective addition of diethylzinc to substituted benzaldehydes, giving the (*S*)-alcohols with enantiomeric excess ranging from 33% to 89%. Interestingly, in all cases, except for those of *ortho*-chlorobenzaldehydes, *ortho*- and *para*-methoxybenzaldehydes, the ee was >71%. The plot of the Hammett substituted benzaldehydes shows a linear correlation.

Keywords: Enantioselective catalyst; Diethylzinc; Asymmetric alkylation; Chiral ligand; Enantiomeric excess.

INTRODUCTION

Asymmetric catalysis provides enantiomerically-enriched products in organic reactions, which is very important in modern synthetic and pharmaceutical chemistry.¹ Notably, enantioselective catalysis is one of the most efficient environmentally benign processes. Therefore, the development of enantioselective catalysts is the greatest challenges in modern organic chemistry. The most promising candidates for such enantioselective catalysts are metal complexes that bear chiral organic ligands. The enantioselective addition of diorganozinc reagents to aldehydes is one of the most important and fundamental asymmetric reactions² among the asymmetric catalysis of C-C bondforming reactions. Since the initial report by Oguni,³ various chiral ligands including α -amino alcohols,⁴ BINOL,⁵ diamine,⁶ diol,⁷ pyridyl alcohol,⁸ salen,⁹ TADDOL,¹⁰ and others¹¹ have been used in this type of reaction. Chiral ligands with diol generally need a Lewis acid such as Ti(O-i-Pr)₄ to form a chiral environment to induce an asymmetric addition of diethylzinc to aldehydes. While chiral ligands with amino alcohol or pyridyl alcohol form an asymmetric environment with two molecules of diethylzinc, one performs as a Lewis acid, and another performs as a nucleophile.¹² The interaction between diethylzinc and an amino alcohol produces a chelated ethylzinc alkoxide (A) which is in equilibrium with a dimeric species (B).^{12d} Only the monomer is catalytically active, and the adjacent Zn and O ring atoms, displaying complementary Lewis acid and Lewis base characteristics, are believed to respectively coordinate one molecule of aldehyde and one molecule of diethylzinc to assemble the key species (C) where the ethyl group transfer occurs (Scheme I). Recently, we demonstrated that bipyridyl alcohols (D) and (E) act as interesting chiral catalysts in the enantioselective addition of diethylzinc to various substituted benzaldehydes, provided that the alcohols of the (S)-configuration and enantiomeric excess generally range from 45% to 79%.¹³ The moderate degree of asymmetric induction encouraged us to modify the 5-pyridyl ring of the ligand (D) for various aldehydes.

RESULTS AND DISCUSSION Synthesis of ligands 10-13

The synthesis of ligands **10–13** is outlined in Scheme II. 1-(2-Hydroxy-phenyl)-ethanone (**1**) readily converts to methyl ether in the presence of LiOH and dimethylsulfate to yield **2**. Moreover, 2-methoxyacetophenone was heated with iodine in pyridine at 100–110 °C for 3 hr and recrystallized from ethanol to produce pyridinium salt **3**. Com-

^{*} Corresponding author. Tel: +886-3-8633597; Fax: +886-3-8630475; E-mail: chinpiao@mail.ndhu.edu.tw

Pyridylphenol Enantioselective Addition Et₂Zn Aldehyde

Scheme II

pounds **3** and **4** were heated with ammonium acetate in glacial acetic acid at 100–110 °C overnight to yield 2-anisolylpyridine **5**. Compounds **6–9** were prepared by treating compound **5** with LDA and alkyl halides. The methyl ether of compounds **6–9** were cleaved by treating them with phenyl thiol and K₂CO₃ in NMP solution to produce compounds **10–13**.¹⁴

Synthesis of ligand 16

The synthesis of ligand **16** is outlined in Scheme III. Compound **5** was oxidized using potassium permanganate to form ketone **14**. Compound **15** was prepared by reacting compound **14** with the Grignard reagent (MeMgI). An efficient protocol reported in the literature for the demethylation of **15** to **16** in good purity using KOPh¹⁴ was therefore attempted.

Synthesis of ligands 17 and 19

The synthesis of ligands **17** and **19** is outlined in Scheme IV. Compound **17** was prepared by treating compound **5** with LDA and acetone. The methyl ether of compound **5** was cleaved by treating it with BBr₃ to produce compound **18**. Compound **19** was obtained by treating compound **18** with LDA and acetone.

Application in asymmetric catalytic reaction

The enantiomeric excesses of 1-phenyl-1-propanol were acquired through the asymmetric addition of benzaldehyde using diethylzinc in the presence of chiral ligand **13**

at room temperature with various solvents (Table 1): toluene (57%), dichloromethane (56%), hexane (53%), acetonitrile (43%) and tetrahydrofuran (33%). Toluene was therefore selected as the reaction solvent in the following reactions. The asymmetric addition of benzaldehyde using diethylzinc in toluene at room temperature in the presence of 5% of ligands yielded enantiomeric excesses of 1-phenyl-1-propanol, as shown in Table 2. The stereochemical outcome depends mainly on the stereogenic centres in the 8-position of the pyridyl-pinane-ring (ligand **10**). In fact, the other substituent on the 8-position of the ligands did not

Table 1. Asymmetric addition of diethylzinc to benzaldehyde using ligand 13 in various solvents

43

33

 Table 2. Asymmetric addition of benzaldehyde using diethylzinc, in the presence of various chiral ligands

CH₃CN

THF

	O H <u>chiral ligand</u> Toluene	(5 mol%) , r.t. ≽, Et₂Zn	OH *
Entry	Chiral ligand	Ee (%)	Yield (%)
1	10	64	63
2	11	57	66
3	12	55	90
4	13	57	90
5	16	9	41
6	$16/Ti(O^{i}Pr)_{4}$	0	53
7	17	40	75
8	19	2	40
9	$19/Ti(O^{i}Pr)_{4}$	35	84

4

5

76

62

	H chiral ligand 10 (5 mol%),			
Entry	Temp (°C)	Ee (%)	Yield (%)	
1	40	72	93	
2	rt	64	63	
3	4	67	72	
4	- 20	73	81	
5	- 40	79	42	
6	- 78	78	46	

Table 3. Enantiomeric excess of the addition of benzaldehyde in the presence of **10** at various temperatures

increase the stereoselectivity. The optimized ligands were 10 (64% ee). Therefore, the following asymmetric reactions were performed in the presence of ligand 10. The same reactions were conducted in toluene at various temperatures (Table 3), and the enantimeric excesses of 1phenyl-1-propanol were acquired at -78 °C (78%), -40 °C (79%), -20 °C (73%), 4 °C (67%), rt (64%), and 40 °C (72%). Therefore the following asymmetric reactions were performed in toluene at -40 °C. The asymmetric addition of benzaldehyde, using diethylzinc in the presence of various amounts of ligand 10, yielded enantiomeric excesses of 1-phenyl-1-propanol, as shown in Table 4. The optimal amount catalyst was 10 mol% of ligand 10 (79% ee).

The enantioselective formation of carbon-carbon bonds via the asymmetric addition of dialkylzinc to aldehydes continues to be very important in the development of the enantioselective method. Numerous pyridine-alcohol derivatives have been established to be effective chiral catalysts so, following research in this area, the authors have evaluated the potential utility of new ligands 10-13 in this catalytic process. Substituted benzaldehyde was asymmetrically alkylated in the presence of catalyst 10 as described below. Diethylzinc was added to a solution of ligand 10 (10 mol%) in toluene at -40 °C and stirred for 30 h. The reaction was quenched by adding 1N HCl. Following purification by flash chromatography, the enantiomeric excess of the product was determined by HPLC, and the yields, %ee, and the specific rotation were as shown in Table 5. The absolute configurations of all products were determined by comparing the signs of specific rotations (α_D) .¹⁵ The stereochemical outcome mainly depends on the stereogenic centers in the 8-position of the pyridyl-pinane-ring (ligand 10). In fact, the ligands with further substituents at the 8-position did not exhibit higher stereoselectivity. The Wu and Chen

	H chiral ligand toluene,	10, -40 °C	OH *
Entry	Ligand mol %	Ee (%)	Yield (%)
1	1	79	37
2	5	79	42
3	10	79	85
4	15	78	80
5	20	78	86

Table 4. Enantiomeric excess of the addition of benzaldehyde in the presence of various amount of ligand 10

enantioselectivities obtained using the 8-methyl-substituted ligand 10 were in the range of 33-89% ee. All products were S-configuration determined by comparing the signs of specific rotations (α_D) in the literature. Notably, similarly high levels of reactivity and enantioselectivity were observed for aliphatic aldehydes under identical reaction conditions (Table 5, entries 14 and 15).

The plot of Hammett substituent constants vs. enantiomeric excess of the addition of para-substituted benzaldehydes using diethylzinc shows a linear correlation. Importantly the moderate electron-releasing substituents on the para-position exhibited higher enantiomeric excesses (p-CH₃, 89%), while the stronger electron-withdrawing substituents on the para-position showed lower enantiomeric excesses (p-Cl, 75%; p-CN, 71%) (Fig. 1). On the other hand, the substituents on the meta-position did not exhibit high correlation of Hammett substituent constants and enantiomeric excesses of the alkylation of substituted benzaldehydes using diethylzinc (enantiomeric ex-

$\begin{array}{c} O \\ H \\ R \end{array} H \xrightarrow{\text{chiral ligand } 10 (5 \text{ mol}\%), -40 \ ^{\circ}\text{C}} \\ \text{toluene, Et}_2\text{Zn} \\ \end{array} \xrightarrow{OH} \\ R OH$							
Entry	R	Yield (%)	ee (%) ^d	$[\alpha]_{D}(c) CH_{2}Cl_{3}$	Cofiguration		
1	C ₆ H ₅ (20)	85	79	-44.8 (1.25)	S		
2	$2-Me-C_{6}H_{4}(21)$	70	75 ^a	-44.8 (1.25)	S		
3	$3-Me-C_6H_4(22)$	64	77	-31.9 (1.20)	S		
4	$4-Me-C_{6}H_{4}(23)$	52	89	-37.6 (1.00)	S		
5	2-MeO-C ₆ H ₄ (24)	51	41	-9.8 (1.00)	S		
6	$3-MeO-C_6H_4$ (25)	86	75 ^a	-29.5 (1.20)	S		
7	$4-MeO-C_6H_4$ (26)	40	33	-15.1 (1.10)	S		
8	$2-Cl-C_{6}H_{4}(27)$	72	39 ^b	-23.4 (1.05)	S		
9	3-Cl-C ₆ H ₄ (28)	91	83	-29.8 (0.95)	S		
10	4-Cl-C ₆ H ₄ (29)	93	75	-31.4 (1.00)	S		
11	$3-CN-C_6H_4(30)$	94	79 ^a	-18.4 (1.05)	NA		
12	$4-CN-C_{6}H_{4}(31)$	91	71 ^b	-26.0 (1.00)	NA		
13	$3-(Me)_2N-C_6H_4(32)$	87	77	-25.7 (1.15)	NA		
14	$c-C_{6}H_{11}(33)$	77	81 ^c	-5.3 (1.00)	S		
15	$n-C_{6}H_{13}$ (34)	56	65 °	+4.3 (1.00)	S		
16	(<i>E</i>)-cinnamyl (35)	66	39	-3.6 (1.25)	S		

Table 5. Asymmetric addition of substituted benzaldehyde using diethylzinc, in the presence of ligand 10

^a The ee% was determined by converting the alcohols to acetates.

^b The ee% was determined by converting the alcohols to benzoyates.

 $^{\rm c}$ The ee% was determined by converting the alcohols to Mosher's ester and determined by $^{19}{\rm F}$ NMR.

^d The ee% was determined by Chiracel OD-H HPLC column and the absolute configuration was assigned based on comparison with the literature data.

cesses ranged from 75% to 83%) (Fig. 2). The stronger electron-releasing substituents on the *para-* and *ortho-*position displayed lower enantiomeric excesses (*p*-OCH₃, 33%; *o*-OCH₃, 41%) (Fig. 1 and 3). Moreover, the stronger electron-withdrawing substituents on the *ortho-*position displayed lower enantiomeric excesses (*o*-Cl, 39%), while the weaker electron-releasing substituents on the *ortho-*po-

sition showed higher enantiomeric excesses (*o*-Me, 75%) (Fig. 3).

CONCLUSIONS

In summary, a new class of chelating ligands of type **10** was prepared. Their catalytic activity in the asymmetric addition of diethylzinc to substituted benzaldehydes was demonstrated. These ligands were prepared from highly

Fig. 3. The correlation of substituent constants (σ_o) and the enantiomeric excess of the alkylation of *ortho*-substituted benzaldehydes in the presence of **10**.

enantiopure (1R)-(+)- α -pinene (>97% ee). Pridylphenol **10** acts as an interesting chiral catalyst in the enantioselective addition of diethylzinc to various substituted benzaldehydes, affording the (*S*)-alcohols with ee ranging from 33% to 89%.

EXPERIMENTAL

General Chemical Procedures

All reactions were carried out in anhydrous solvents. THF and diethyl ether were distilled from sodium-benzophenone under argon. Toluene, CH₃CN, CH₂Cl₂, xylene and hexane were distilled from CaH₂. ¹H NMR spectra were obtained at 300 or 400 MHz (as indicated), and ¹³C NMR spectra were obtained at 75.5 or 100.6 MHz using a Bruker NMR spectrometer. Chemical shifts (δ) are reported in ppm relative to CDCl₃ (7.26 and 77.0 ppm). Mass spectra (MS) and high resolution mass spectra (HRMS) were determined on a Finnigan/Thermo Quest MAT 95XL mass spectrometer. Infrared spectra were recorded using a JASCO FT/IR 410 spectrometer. All asymmetric reactions were conducted in dry glassware under nitrogen using a standard glovebox. Enantiomeric excesses were determined using Lab Alliance Series III high performance liquid chromatography (HPLC) with a Chiracel OD-H chiral column (Daicel Chemical Industries, LTD). Optical rotations were measured using a JASCO P-1010 polarimeter at the indicated temperature using a sodium lamp (D line, 589 nm). Flash column chromatography was performed using MN silica gel 60 (70-230 mesh) purchased from Macherey-Nagel.

Synthesis of ligands 10–13

2-Methoxyphenyl methyl ketone 2

A solution of 1-(2-hydroxy-phenyl)-ethanone (1) (35.2 mL, 300 mmol) and LiOH·H₂O (24.8 g, 590 mmol) in THF (400 mL) was stirred at room temperature for 1 h, and then dimethyl sulfate (42 mL, 293 mmol) was added. After completion of the reaction (TLC, 60 h), the solvent was removed under reduced pressure. The residue was dissolved in 2 M NaOH, and the resulted solution was extracted with diethyl ether (3 ×). The combined extracts were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to afford compound **2** (38.5 g, 256.0 mmol, 86%). ¹H NMR (400 MHz, CDCl₃, δ): 7.71-7.69 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.44-7.40 (m, 1H), 6.97-6.92 (m, 2H), 3.86 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 199.8, 158.9, 133.7, 130.3, 128.2, 120.5, 111.6, 55.5, 31.8. IR (KBr): 3074, 3003, 2944, 2840, 1674, 1598, 1578,

1486, 1437, 1358, 1292, 1247, 1163, 1126, 1023, 967, 805, 758, 595, 534 cm⁻¹.

1-[2-(2-Methoxyphenyl)-2-oxoethyl]pyridinium iodide 3

To a solution of 2-methoxyphenyl methyl ketone **2** (45.0 mL, 300.0 mmol) in pyridine (328 mL) was added a solution of iodine (83.0 g, 327 mmol) in pyridine (75.0 mL), and the resulting solution was heated at 100–110 °C for 3 h. The reaction solution was stood for 10 h, filtered, washed with ethanol, and then recrystallized twice in ethanol. The crystal was dried under vacuum yielding compound **3** (43.8 g, 123.0 mmol). Yield: 41%.

(5*S*,7*S*)-(+)-5,6,7,8-Tetrahydro-6,6-dimethyl-2-(2-meth-oxyphenyl)-5,7-methanoquinoline 5

A mixture of compound 4 (1.2 g, 8.0 mmol), compound 3 (4.72 g, 13.0 mmol), and ammonium acetate (4.14 g, 53.0 mmol) in glacial acetic acid (8.8 mL) under argon atmosphere was heated at 100-110 °C for 20 h. After cooling to room temperature, the reaction mixture was transferred to a 1-L Erlenmeyer flask, ethyl acetate (200 mL) and water (200 mL) were added, and the mixture was basified by 6 M sodium hydroxide until the aqueous solution become basic. The aqueous solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous magnesium sulfate. After filtering and concentration, the resulting residue was purified by flash column chromatography using silica gel as the stationary phase and using ethyl acetate-hexane (1:19) as the mobile phase producing compound 5 (0.74 g, 2.6 mmol). Yield: 33%. mp: 110-111 °C. $[\alpha]^{23.4}_{D}$ +71.0° (*c* 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.80-7.78 (dd, $J_1 = 7.5, 1.3$ Hz, 1H), 7.51-7.49 (d, J = 7.8 Hz, 1H), 7.34-7.30 (t, J = 7.8Hz, 1H), 7.22-7.20 (d, J = 7.8 Hz, 1H), 7.08-7.04 (t, J = 7.4 Hz, 1H), 6.98-6.96 (d, J = 8.2 Hz, 1H), 3.83 (s, 3H), 3.19-3.18 (d, *J* = 2.0 Hz, 2H), 2.79-2.76 (t, *J* = 5.6 Hz, 1H), 2.71-2.66 (m, 1H), 2.40-2.38 (m, 1H), 1.42 (s, 3H), 1.34-1.32 (d, J = 9.5 Hz, 1H), 0.70 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 156.8, 156.3, 152.9, 139.7, 132.6, 131.1, 129.6, 121.5, 121.0, 111.3, 55.6, 46.3, 40.3, 39.5, 36.7, 32.0, 26.15, 21.4. IR (KBr): 3045, 2931, 2832, 1600, 1583, 1492, 1444, 1423, 1263, 1240, 1120, 1068, 1025, 944, 821, 752 cm⁻¹. MS *m/z*: 279 (M⁺, 100), 279 (100), 264 (68), 250 (28), 236 (45), 221 (23), 126 (28), 77 (7). HRMS-EI (*m/z*): $[M]^+$ calcd for C₁₉H₂₁NO, 279.1623; found, 279.1614.

(1*S*,8*R*,9*S*)-8-Isopropyl-5-(2-methoxy-phenyl)-10,10-dimethyl-6-aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-triene 9

To a solution of diisopropylamine (121 μ L, 1.2 mmol) in THF (5 mL) at 0 °C was added *n*-BuLi (0.76 mL, 1.2

mmol, 1.6 M in hexane) and stirred for 30 min. The prepared LDA solution was cooled to -78 °C, and a solution of 5 (0.28 g, 1.0 mmol) in THF (6 mL) was transferred to LDA solution by cannula. The solution became a blue color and was stirred at -78 °C for 2 h. A solution of 2-bromopropane (113 µL, 3.0 mmol) in THF (10 mL) was added and stirred overnight at room temperature. The solution became orange color and quenched by adding water. The resulting solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound 9 (0.18 g, 0.6 mmol, 56%). [α]^{16.8}_D+17.2° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.94-7.91 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.62-7.60 (d, J = 7.8 Hz, 1H), 7.35-7.31 (m, 1H), 7.22-7.20 (d, J = 7.8 Hz, 1H), 7.10-7.07 (t, J = 7.4 Hz, 1H), 7.01-6.99 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.00 (s, 1H), 2.96-2.92 (m, 1H), 2.76-2.73 (t, J = 5.6 Hz, 1H), 2.62-2.57 (m, 1H), 2.40-2.37 (m, 1H), 1.44 (s, 3H), 1.41-1.42 (d, *J* = 5.7 Hz, 2H), 1.22-1.20 (d, J = 6.9 Hz, 3H), 0.89-0.87 (t, J = 6.9 Hz, 3H), 0.68(s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 158.7, 157.1, 152.3, 140.2, 132.4, 131.2, 129.7, 129.2, 121.5, 121.1, 111.6, 55.6, 49.1, 46.6, 42.0, 41.3, 30.3, 29.6, 26.5, 22.3, 21.2, 20.0. IR (KBr): 2953, 2923, 2868, 1599, 1582, 1492, 1463, 1434, 1385, 1294, 1259, 1239, 1121, 1067, 1026, 853, 828, 751 cm⁻¹. MS *m/z*: 321 (M⁺, 9), 306 (20), 278 (100), 264 (21), 250 (18), 236 (68), 221 (16). HRMS-EI (m/z): [M]⁺ calcd for C₂₂H₂₇NO, 321.2093; found, 321.2096.

(1*S*,8*R*,9*S*)-8-Isopropyl-10,10-dimethyl-6-aza-tricyclo-[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5-yl)-phenol 13

To a solution of **9** (0.09 g, 0.3 mmol) in anhydrous NMP (0.53 mL) was added PhSH (28 μ L, 0.6 mmol) and K₂CO₃ (2.0 mg, 0.03 mmol), and heated to 250 °C for refluxing 30 min (TLC). The reaction mixture was cooled to room temoerature and a 5% NaOH (25 mL) was added, then the aqueous solution was neutralized by adding 1 M HCl to pH = 8. The aqueous phase was extracted with diethyl ether three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound **13** (0.08 g, 0.25 mmol, 86%). [α]^{20.7}_D-17.5° (*c* 1.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.78-7.76

(dd, J = 7.9, 1.4 Hz, 1H), 7.63-7.61 (d, J = 8.1 Hz, 1H), 7.37-7.35 (d, J = 8.1 Hz, 1H), 7.28-7.23 (m, 1H), 7.01-6.98 (dd, J = 9.3, 0.8 Hz, 1H), 6.90-6.86 (m, 1H), 2.99-2.98 (m, 1H), 2.82-2.78 (m, 1H), 2.76-2.74 (t, J = 5.8 Hz, 1H), 2.63-2.58 (m, 1H), 2.40-2.36 (m, 1H), 1.57-1.39 (d, J = 7.0Hz, 1H), 1.43 (s, 3H), 1.15-1.13 (d, J = 7.0 Hz, 3H), 0.83-0.81 (d, J = 7.1 Hz, 3H), 0.63 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.6, 156.0, 154.7, 141.0, 134.8, 130.7, 125.8, 119.5, 118.7, 118.3, 115.9, 48.6, 46.6, 42.2, 40.7, 30.3, 29.7, 26.3, 22.0, 21.0, 19.7. IR (KBr): 2956, 2931, 2862, 1584, 1503, 1470, 1411, 1292, 1255, 1117, 853, 760, 747, 608 cm⁻¹. MS *m/z*: 307 (M⁺, 35), 292 (11), 264 (100), 236 (20), 222 (76), 128 (8). HRMS-EI (*m/z*): [M]⁺ calcd for C₂₁H₂₅NO, 307.1936; found, 307.1947.

(1*S*,8*R*,9*S*)-5-(2-Methoxy-phenyl)-8,10,10-trimethyl-6aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-triene 6

Compound 6 was prepared following the same procedure as in the preparation of 9 using CH_3I (187 µL, 3.0 mmol) to produce 6 (0.22 g, 0.7 mmol, 75%). mp: 68-70 °C. $[\alpha]^{17.5}_{D}$ +47.6° (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.89-7.87 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.56-7.54 (dd, J=7.8, 0.5 Hz, 1H), 7.35-7.30 (m, 1H), 7.20-7.18 (d, J = 7.8 Hz, 1H), 7.09-7.05 (m, 1H), 7.00-6.98 (dd, J = 6.2, 0.6 Hz, 1H), 3.86 (s, 3H), 3.29-3.23 (m, 1H), 2.78-2.76 (t, J = 5.6 Hz, 1H), 2.59-2.53 (m, 1H), 2.18-2.15 (m, 1H), 1.46-1.44 (d, J = 7.1 Hz, 3H), 1.43 (s, 3H), 1.37-1.34 (d, J = 9.8 Hz, 1H), 0.69 (s, 3H). ^{13}C NMR (100.6 MHz, CDCl3, $\delta):$ 160.2, 157.0, 152.6, 139.6, 132.3, 131.2, 129.6, 129.2, 121.6, 121.1, 111.5, 55.6, 47.0, 46.9, 41.4, 39.0, 28.7, 26.4, 21.0, 18.4. IR (KBr): 2955, 2927, 2869, 1600, 1583, 1492, 1434, 1300, 1240, 1179, 1123, 1026, 857, 831, 753 cm⁻¹. MS *m/z*: 293 (M⁺, 24), 278 (100), 250 (41), 234 (20), 115 (7). HRMS-EI (m/z): [M]⁺ calcd for C₂₀H₂₃NO, 293.1780; found, 293.1776.

(1*S*,8*R*,9*S*)-2-(8,10,10-Trimethyl-6-aza-tricyclo-[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5-yl)-phenol 10

Compound **10** was prepared following the same procedure as in the preparation of **13** to produce **10** (0.17 g, 0.6 mmol, 61%). $[\alpha]^{20.1}{}_{\rm D}$ +31.3° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.78-7.76 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.62-7.60 (d, *J* = 8.1 Hz, 1H), 7.37-7.34 (d, *J* = 8.1 Hz, 1H), 7.29-7.25 (m, 1H), 7.03-7.00 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.91-6.89 (m, 1H), 6.89-6.87 (t, *J* = 7.0 Hz, 1H), 3.25-3.23 (m, 1H), 2.82-2.78 (dd, *J* = 10.2, 5.6 Hz, 1H), 2.61-2.58 (m, 1H), 2.17-2.15 (m, 1H), 1.43 (s, 3H), 1.34-1.31 (d, *J* = 9.9 Hz, 1H), 0.67 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.7, 157.4, 154.9, 140.2, 134.7, 130.7, 125.7, 119.4,

118.7, 118.4, 115.8, 46.9, 46.7, 41.5, 38.2, 28.8, 26.3, 20.9, 18.0. IR (KBr): 3675, 3329, 2967, 2928, 2868, 1585, 1500, 1467, 1458, 1411, 1289, 1254, 1215, 852, 749, 611 cm⁻¹. MS *m/z*: 279 (M⁺, 56), 264 (96), 250 (13), 236 (100), 222 (21), 210 (14), 115 (11), 77 (8). HRMS-EI (*m/z*): [M]⁺ calcd for C₁₉H₂₁NO, 279.1623; found, 279.1632.

(1*S*,8*R*,9*S*)-8-Ethyl-5-(2-methoxy-phenyl)-10,10-di-

methyl-6-aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-triene 7 Compound 7 was prepared following the same procedure as in the preparation of 9 using 1-bromoethane (224 $\mu L,\,3.0$ mmol) to produce 7 (0.11 g, 0.4 mmol, 36%). mp 87-89 °C. $[\alpha]^{18.0}_{D}$ +31.3° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.90-7.88 (dd, J = 7.6, 1.8 Hz, 1H), 7.57-7.55 (d, J = 7.8 Hz, 1H), 7.34-7.30 (m, 1H), 7.20-7.18 (d, J = 7.8 Hz, 1H), 7.10-7.06 (t, J = 7.5 Hz, 1H), 6.99-6.97(d, J = 8.2 Hz, 1H), 3.86 (s, 3H), 2.99-2.96 (m, 1H), 2.78-2.75 (t, J = 5.6 Hz, 1H), 2.57-2.53 (m, 1H), 2.51-2.44 (m, 1H), 2.39-2.36 (m, 1H), 1.57-1.47 (m, 1H), 1.45 (s, 3H), 1.35-1.33 (d, J = 9.7 Hz, 1H), 1.09-1.06 (t, J = 7.4 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.7, 157.0, 152.5, 139.6, 132.3, 131.2, 129.6, 129.2, 121.5, 121.1, 111.5, 55.6, 46.8, 46.1, 42.8, 41.1, 28.6, 26.5, 25.3, 21.1, 12.5. IR (KBr): 2956, 2928, 2869, 1600, 1583, 1492, 1463, 1436, 1398, 1302, 1261, 1240, 1180, 1123, 1068, 1027, 942, 831, 752, 605 cm⁻¹. MS *m/z*: 307 (M⁺, 10), 292 (18), 278 (100), 264 (35), 250 (16), 236 (22). HRMS-EI (m/z): $[M]^+$ calcd for C₂₁H₂₅NO, 307.1936; found, 307.1932.

(1*S*,8*R*,9*S*)-2-(8-Ethyl-10,10-dimethyl-6-aza-tricyclo-[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5-yl)-phenol 11

Compound 11 was prepared following the same procedure as in the preparation of 13 to produce 11 (0.17 g, 0.6 mmol, 60%). $[\alpha]^{20.6}_{D}$ +9.5° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.78-7.76 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.62-7.60 (d, J = 8.1 Hz, 1H), 7.36-7.34 (d, J = 8.1 Hz, 1H), 7.29-7.25 (m, 1H), 7.02-7.00 (dd, J = 8.2, 1.1 Hz, 1H), 6.91-6.87 (m, 1H), 2.98-2.94 (m, 1H), 2.81-2.78 (t, J = 5.6 Hz, 1H), 2.60-2.55 (m, 1H), 2.39-2.31 (m, 1H), 2.30-2.25 (m, 2H), 1.58-1.52 (m, 1H), 1.45 (s, 3H), 1.42-1.40 (d, J= 6.8 Hz, 1H), 1.33-1.31 (d, J=9.9 Hz, 3H), 1.09-1.05 (t, J= 7.4 Hz, 3H), 0.69 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.6, 156.0, 154.8, 140.2, 134.6, 125.7, 119.4, 118.7, 118.3, 115.8, 46.8, 45.3, 42.6, 41.2, 28.6, 26.4, 25.1, 20.9, 12.3. IR (KBr): 2961, 2931, 2873, 1585, 1503, 1471, 1411, 1377, 1292, 1256, 1218, 1149, 1094, 1019, 851, 823, 801, 749, 606 cm⁻¹. MS m/z: 293 (M⁺, 58), 278 (25), 264 (100), 250 (58), 236 (22), 222 (37), 128 (8), 77 (5). HRMS-EI (m/z): $[M]^+$ calcd for C₂₀H₂₃NO, 293.1780; found, 293.1770.

(1*S*,8*R*,9*S*)-5-(2-Methoxy-phenyl)-10,10-dimethyl-8propyl-6-aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-triene 8

Compound 8 was prepared following the same procedure as in the preparation of 9 using 1-bromopropane (273 µL, 3.0 mmol) to produce 8 (0.11 g, 0.4 mmol, 34%). mp: 107-109 °C. [α]^{17.1}_D+21.8° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.91-7.89 (dd, J = 7.6, 1.7 Hz, 1H), 7.56-7.54 (d, J = 7.8 Hz, 1H), 7.33-7.31 (m, 1H), 7.19-7.18 (d, J = 7.8 Hz, 1H), 7.10-7.06 (m, 1H), 6.99-6.97 (d, J = 8.2 Hz, 1H), 3.86 (s, 3H), 3.08-3.06 (dd, *J* = 6.5, 2.9 Hz, 1H), 2.77-2.75 (t, J = 5.7 Hz, 1H), 2.62-2.52 (m, 1H), 2.35-2.32 (m, 2H), 1.52-1.48 (m, 3H), 1.43 (s, 3H), 1.36-1.34 (d, J= 9.7 Hz, 1H), 1.02-0.98 (t, J = 6.9 Hz, 3H), 0.67 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.8, 157.1, 152.5, 139.6, 132.3, 131.3, 129.6, 129.2, 121.4, 121.1, 111.5, 55.6, 46.8, 44.2, 43.4, 41.0, 34.7, 28.5, 26.5, 21.1, 20.9, 14.4. IR (KBr): 2950, 2928, 2868, 1599, 1582, 1492, 1462, 1436, 1396, 1300, 1259, 1239, 1174, 1123, 1026, 828, 751 cm⁻¹. MS *m/z*: 321 (M⁺, 10), 279 (51), 278 (100), 264 (18), 250 (14), 236 (36), 221 (12). HRMS-EI (m/z): $[M]^+$ calcd for C₂₂H₂₇NO, 321.2093; found, 321.2085.

(1*S*,8*R*,9*S*)-2-(10,10-Dimethyl-8-propyl-6-aza-tricyclo-[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5-yl)-phenol 12

Compound 12 was prepared following the same procedure as in the preparation of 13 to produce 12 (0.22 g, 0.7 mmol, 72%). $[\alpha]^{20.7}_{D}$ -11.8° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.78-7.75 (dd, J = 8.0, 1.5 Hz, 1H), 7.60-7.58 (d, *J* = 8.0 Hz, 1H), 7.35-7.34 (d, *J* = 3.2 Hz, 1H), 7.29-7.25 (m, 1H), 7.05-7.02 (dd, *J* = 8.2, 1.0 Hz, 1H), 6.91-6.87 (m, 1H), 3.08-3.04 (m, 1H), 2.80-2.77 (t, J = 5.6 Hz, 1H), 2.60-2.54 (m, 1H), 2.36-2.32 (m, 1H), 2.19-2.11 (m, 1H), 1.60-1.52 (m, 2H), 1.44 (s, 3H), 1.34-1.31 (d, J= 9.9 Hz, 1H), 1.04-1.00 (t, J = 7.2 Hz, 3H), 0.69 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.6, 157.2, 154.8, 140.2, 134.6, 130.6, 125.8, 119.5, 118.7, 118.3, 115.8, 46.7, 43.3, 43.2, 41.1, 34.5, 28.6, 26.4, 20.9, 20.8, 14.2. IR (KBr): 2950, 2931, 2862, 1585, 1503, 1471, 1411, 1380, 1292, 1256, 1218, 1149, 1124, 1015, 852, 823, 749, 606 cm⁻¹. MS *m/z*: 307 (M⁺, 37), 292 (10), 278 (17), 264 (100), 236 (24), 222 (64), 128 (11). HRMS-EI (m/z): [M]⁺ calcd for C₂₁H₂₅NO, 307.1936; found, 307.1929.

(1*S*,9*R*)-5-(2-Methoxy-phenyl)-10,10-dimethyl-6-azatricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-8-one 14

A solution of compound **5** (4.00 g, 14.0 mmol), *tert*butyl alcohol (143 mL) and water (28.6 mL) was heated at

80 °C, and added potassium permanganate (12.3 g, 77.7 mmol). After stirred for 12 hr, the hot reaction mixture was filtrated through celite to remove the manganese dioxide, and washed with 20% tert-butyl alcohol in water (20 mL). The filtrate was added 20% aqueous solution of sodium bisulfite (10.0 mL) to reduce the remained potassium permanganate, and then the tert-butyl alcohol was removed by rotary evaporator. The remained aqueous solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous magnesium sulfate. After filtering and concentration, the resulting residue was purified by flash column chromatography using silica gel as the stationary phase and using ethyl acetate-hexane (1:19, 1:4, 3:7) as the mobile phase producing compound 14 (3.00 g, 10.2 mmol). Yield: 72%. mp 187–188 °C. $[\alpha]^{23.5}_{D}$ +152.6° (*c* 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.92-7.89 (d, J = 10.6 Hz, 1H), 7.89-7.87 (d, J = 8.3 Hz, 1H), 7.59-7.57 (d, J = 8.0 Hz, 1H), 7.35-7.32 (t, J = 7.6 Hz, 1H), 7.20-7.18 (d, J = 8.2 Hz, 1H), 7.15-7.11 (t, J = 7.5 Hz, 1H), 5.19 (s, 2H), 3.43 (s, 3H), 3.12-3.10 (d, J = 9.1 Hz, 3H), 2.21-2.19 (t, J = 4.6 Hz, 1H), 1.61 (s, 3H), 0.84 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 200.0, 156.9, 155.1, 147.7, 144.4, 133.7, 131.7, 130.1, 128.3, 128.0, 121.2, 111.2, 58.2, 55.6, 52.8, 47.1, 39.5, 26.7, 22.7. IR (KBr): 2954, 2836, 1708, 1585, 1492, 1442, 1303, 1257, 1189, 1066, 1022, 860, 754, 725, 582 cm⁻¹. MS *m/z*: 293 (M⁺, 33), 278 (26), 264 (100), 250 (78), 236 (28), 77 (9). HRMS-EI (*m/z*): $[M]^+$ calcd for C₁₉H₁₉NO₂, 293.1416; found, 293.1414. (1S,8S,9R)-5-(2-Methoxy-phenyl)-8,10,10-trimethyl-6aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-8-ol 15

A mixture of magnesium (72.0 mg, 3.0 mmol) in diethyl ether (30.0 mL) equipped with a reflux condenser and under argon atmosphere, was added iodomethane (0.46 mL, 3.0 mmol) drop wisely, and after 1 hr, all magnesium was consumed. A solution of compound 14 (0.3 g, 1.0 g)mmol) in tetrahydrofuran (30.0 mL) was added to the fresh prepared MeMgI drop wisely at 0 °C, and then stirred at room temperature. After completion of the reaction (TLC, 1 h), the reaction was guenched by ammonium chloride solution, and the aqueous solution was extracted with diethyl ether three times, and the combined extracts were dried over anhydrous magnesium sulfate. After filtering and concentration, the resulting residue was purified by flash column chromatography using silica gel as the stationary phase and using ethyl acetate-hexane (1:19) as the mobile phase producing compound 15 (0.22 g, 0.7 mmol). Yield: $88\%. [\alpha]^{21.3} + 107.0^{\circ} (c \ 1.00, \text{CHCl}_3).$ ¹H NMR (400 MHz,

CDCl₃, δ): 7.94-7.92 (dd, J = 7.7, 1.8 Hz, 1H), 7.69-7.67 (d, J = 7.8 Hz, 1H), 7.38-7.34 (m, 1H), 7.29-7.26 (d, J = 7.8 Hz, 1H), 7.11-7.07 (m, 1H), 7.02-6.99 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 2.92 (br, 1H), 2.83-2.74 (m, 2H), 2.41-2.38 (t, J = 6.2 Hz, 1H), 1.65 (s, 3H), 1.58-1.55 (d, J = 9.9 Hz, 1H), 1.49 (s, 3H), 0.82 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 160.0, 157.0, 153.2, 138.2, 132.7, 131.2, 129.6, 129.1, 123.2, 121.0, 111.5, 76.1, 55.6, 51.9, 47.1, 43.2, 34.7, 29.0, 27.1, 24.1. IR (KBr): 3564, 3445, 2926, 2868, 1600, 1583, 1569, 1493, 1463, 1437, 1367, 1302, 1244, 1098, 1025, 923, 751 cm⁻¹. MS *m*/*z*: 309 (M⁺, 16), 307 (10), 294 (100), 276 (67), 266 (48), 252 (36), 236 (39), 128 (4), 77 (5). HRMS-EI (*m*/*z*): [M]⁺ calcd for C₂₀H₂₃NO₂, 309.1729; found, 309.1721.

(1*S*,8*S*,9*R*)-5-(2-Hydroxy-phenyl)-8,10,10-trimethyl-6aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-8-ol 16

To a solution of 15 (0.18 g, 0.5 mmol) in anhydrous NMP (1.10 mL) was added PhSH (58 µL, 0.5 mmol) and K₂CO₃ (4.0 mg, 0.03 mmol), and heated to 250 °C for refluxing 30 min (TLC). The reaction mixture was cooled to room temperature and a 5% NaOH (25 mL) was added, then the aqueous solution was neutralized by adding 1 M HCl to pH = 8. The aqueous phase was extracted with diethyl ether three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound **16** (0.22 g, 0.7 mmol). Yield: 84%. $[\alpha]^{20.7}$ _D +103.0° (*c* 1.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.78-7.75 (dd, J = 8.0, 1.4 Hz, 1H), 7.70-7.68 (d, J = 8.2 Hz, 1H), 7.46-7.43 (d, *J* = 8.2 Hz, 1H), 7.30-7.26 (m, 1H), 7.03-7.01 (dd, J = 8.2, 1.0 Hz, 1H), 6.93-6.89 (m, 1H),2.85-2.77 (m, 2H), 2.44 (br, 1H), 2.40-2.37 (t, *J* = 6.2 Hz, 1H), 1.65 (s, 3H), 1.54-1.51 (d, J = 9.8 Hz, 1H), 1.49 (s, 3H), 0.83 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.4, 157.0, 155.7, 138.9, 135.1, 130.9, 125.9, 119.4, 118.9, 118.4, 117.7, 75.9, 52.6, 47.1, 43.1, 35.0, 28.5, 27.0, 24.0. IR (KBr): 3468, 2927, 1586, 1471, 1411, 1368, 1290, 1251, 1221, 1151, 1102, 1059, 845, 752, 620 cm⁻¹. MS *m/z*: 295 $(M^+, 22), 266 (39), 250 (80), 240 (100), 235 (12).$ HRMS-EI (m/z): $[M]^+$ calcd for C₁₉H₂₁NO₂, 295.1572; found, 295.1570.

(1*S*,8*R*,9*S*)-2-[5-(2-Methoxy-phenyl)-10,10-dimethyl-6aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-8-yl]-propan-2-ol 17

To a solution of diisopropylamine (121 $\mu L,\,1.2$

mmol) in THF (5 mL) at 0 °C was added n-BuLi (0.90 mL, 1.2 mmol, 1.33 M in hexane) and stirred for 30 min. The prepared LDA solution was cooled to -78 °C, and a solution of 5 (0.28 g, 1.0 mmol) in THF (6 mL) was transfered to LDA solution by cannula. The solution became a blue color and was stirred at -78 °C for 2 h. A solution of acetone (128 µL, 1.75 mmol) in THF (10 mL) was added and stirred overnight at room temperature. The solution became orange color and quenched by adding water. The resulting solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound 17 (0.22 g, 0.7 mmol). Yield: 61%. $[\alpha]^{20.8}_{D}$ -0.9° (c 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 8.05 (br, 1H), 7.74-7.72 (d, *J* = 7.4 Hz, 1H), 7.61-7.59 (d, J = 7.8 Hz, 1H), 7.35-7.28 (m, 1H), 7.06-7.02 (t, J = 7.5 Hz, 1H), 6.99-6.97 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.26 (s, 1H), 2.79-2.77 (t, J = 5.4 Hz, 1H), 2.63-2.58 (m, 1H), 2.37-2.35 (t, *J* = 5.4 Hz, 1H), 1.44 (s, 3H), 1.43-1.38 (d, J = 9.3 Hz, 1H), 1.33 (s, 3H), 1.14 (s, 3H), 0.73 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 157.9, 157.0, 151.5, 140.9, 133.3, 130.8, 129.7, 128.4, 122.0, 121.1, 111.4, 74.2, 55.5, 52.9, 46.4, 42.7, 42.2, 29.5, 29.2, 27.5, 26.4, 21.2. IR (KBr): 3306, 2974, 2939, 2867, 1703, 1584, 1464, 1417, 1241, 1163, 1122, 1024, 860, 752, 646 cm^{-1} .

(5*S*,7*S*)-(+)-5,6,7,8-Tetrahydro-6,6-dimethyl-2-(2-hydroxyphenyl)-5,7-methanoquinoline 18

To a solution of 5 (1.2 g, 4.3 mmol) in dichloromethane (40 mL) was added BBr₃ (8.1 mL, 32.0 mmol, 1 M in dichloromethane) slowly under argon and the mixture was stirred at room temperature for 60 h (TLC). A 2 M NaOH solution was added, and neutralized by acetic acid to pH = 8. The resulting solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound 18 (1.02 g, 3.8 mmol). Yield: 90%. mp: 130-131 °C. $[\alpha]^{22.0}$ +114.0° (c 1.0, CHCl₃). ¹H NMR (400 MHz, $CDCl_3, \delta$): 7.78-7.75 (dd, J= 8.0, 1.5 Hz, 1H), 7.62-7.60 (d, *J* = 8.1 Hz, 1H), 7.37-7.35 (d, *J* = 8.1 Hz, 1H), 7.28-7.24 (m, 1H), 7.02-7.00 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.90-6.86 (m, 1H), 3.14-3.13 (d, J = 2.8 Hz, 2H), 2.81-2.78 (t, J = 5.6 Hz, 1H), 2.75-2.70 (m, 1H), 2.41-2.38 (m, 1H), 1.43 (s, 3H), 1.31-1.29 (d, J=9.6 Hz, 1H), 0.67 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.5, 154.8, 153.4, 140.2, 134.7, 130.6, 125.7, 119.3, 118.6, 118.4, 115.6, 46.2, 40.0, 39.7, 35.8, 32.1, 26.0, 21.2. IR (KBr): 2938, 1586, 1497, 1469, 1425, 1382, 1294, 1254, 1154, 946, 850, 768, 751, 625 cm⁻¹. MS *m/z*: 265 (M⁺, 100), 250 (66), 236 (24), 222 (75), 210 (13), 128 (9), 91 (3), 77 (6). HRMS-EI (*m/z*): [M]⁺ calcd for C₁₈H₁₉ON, 265.1647; found, 265.1458.

(1*S*,8*R*,9*S*)-2-[8-(1-Hydroxy-1-methyl-ethyl)-10,10-dimethyl-6-aza-tricyclo[7.1.1.0^{2,7}]undeca-2(7),3,5-trien-5yl]-phenol 19

To a solution of diisopropylamine (253 µL, 1.2 mmol) in THF (6 mL) at 0 °C was added n-BuLi (1.5 mL, 2.4 mmol, 1.6 M in hexane) and stirred for 30 min. The prepared LDA solution was cooled to -78 °C, and a solution of 18 (0.26 g, 1.0 mmol) in THF (6 mL) was transferred to LDA solution by cannula. The solution became a blue color and was stirred at -78 °C for 2 h. A solution of acetone (108 µL, 1.5 mmol) in THF (20 mL) was added and stirred over night at room temperature. The reaction was quenched by adding water. The resulting solution was extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous MgSO₄. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing compound **19** (0.22 g, 0.7 mmol). Yield: 68%. $[\alpha]^{20.4}$ -43.3° (*c* 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.71-7.68 (dd, J = 7.9, 1.4 Hz, 1H), 7.60-7.58 (d, J = 8.1 Hz, 1H), 7.40-7.38 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.02-6.99 (dd, J = 8.2, 0.9 Hz, 1H), 6.92-6.88 (m, 1H),3.25-3.22 (m, 1H), 2.78-2.75 (t, J = 5.6 Hz, 1H), 2.61-2.56 (m, 1H), 2.45-2.41 (m, 1H), 1.57-1.55 (d, *J* = 9.8 Hz, 1H), 1.43 (s, 3H), 1.40 (s, 3H), 1.21 (s, 3H), 0.64 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 158.1, 155.5, 154.4, 141.3, 135.2, 130.6, 126.5, 120.7, 119.0, 118.2, 117.4, 74.3, 53.3, 46.5, 43.2, 42.5, 30.8, 28.3, 26.2, 20.9. IR (KBr): 3393, 2953, 2869, 1583, 1471, 1384, 1293, 1253, 1122, 898, 852, 761, 749, 608 cm⁻¹. MS *m/z*: 323 (M⁺, 71), 290 (23), 264 (84), 250 (87), 236 (46), 222 (100), 210 (14), 128 (10), 59 (23). HRMS-EI (m/z): $[M]^+$ calcd for $C_{21}H_{25}NO_2$, 323.1885; found, 323.1876.

Typical procedure for the enantioselective addition of diethylzinc to aldehydes catalyzed by the ligand 10

Aldehyde (0.5 mmol) was added to a solution of ligand 10 (14.0 mg, 2.5 μ mol) in toluene (1.0 mL) at room

temperature, and then a solution of diethylzinc (1.0 mL, 1 M in hexane) was added and stirred for 30 h. The reaction was quenched by adding 1 M HCl (0.5 mL), and the reaction mixture was extracted three times with ethyl acetate. The combined extracts then were dried over anhydrous magnesium sulfate. After filtering and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate–hexane (1:19) as the mobile phase, thus producing products. The enantiomeric excess of products was determined by HPLC (Chiralcel OD-H column, flow rate 0.25 mL/min, 10% 2-propanol in hexane, 254 nm UV detector).

The enantiomeric excesses of products were determined by the following methods.

Method A: To a solution of product (0.05 mmol) in dichloromethane (2 mL) was added acetic anhydride (0.07 mL) and pyridine (0.03 mL), and stirred for 3 h. After concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing the product. The enantiomeric excess of products were determined by HPLC (Chiralcel OD-H column, flow rate 0.25 mL/min, 10% 2-propanol in hexane, 254 nm UV detector, and EZChromTM Chromatography Data System.)

Method B: To a solution of product (0.05 mmol) in dichloromethane (2 mL) was added benzoyl chloride (0.07 mL) and pyridine (0.03 mL), and stirred for 12 h. After concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing the product. The enantiomeric excess of products were determined by HPLC (Chiralcel OD-H or OJ-H column, flow rate 0.25 or 0.5 mL/min, 10% 2-propanol in hexane, 254 nm UV detector, and EZChromTM Chromatography Data System.)

Method C: To a solution of product (0.05 mmol) in dichloromethane (2 mL) was added (+)-MTPA (21.1 mg, 0.09 mmol), DMAP (cat.) and DCC (41.3 mg, 0.2 mmol), and stirred for 12 h. After filtration and concentration, the residue was purified by flash column chromatography using silica gel as the stationary phase and ethyl acetate-hexane (1:19) as the mobile phase, thus producing the product. The enantiomeric excesses of products were determined by ¹⁹F NMR spectrum.

(S)-1-Phenyl-propan-1-ol 20

Yield: 86%. $[\alpha]^{20.6}{}_{\rm D}$ -44.9° (*c* 1.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.38-7.32 (m, 4H), 7.31-7.25 (m,

1H), 4.59-4.56 (t, J = 6.5 Hz, 1H), 2.16 (br, 1H), 1.86-1.71 (m, 2H), 0.94-0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 144.6, 128.4, 127.5, 126.0, 76.0, 31.9, 10.2. IR (KBr): 3374, 2982, 2964, 2876, 1492, 1453, 1330, 1200, 1095, 1012, 973, 761, 699, 544 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of *R* isomer 23.20 min, t_R of *S* isomer 24.76 min, *R* : *S* = 10.49 : 89.50, ee%: 79%.

(S)-1-o-Tolyl-propan-1-ol 21

Yield: 70%. $[\alpha]^{20.5}_{D}$ -44.8° (*c* 1.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.47-7.45 (d, *J* = 7.4 Hz, 1H), 7.26-7.13 (m, 3H), 4.87-4.84 (t, *J* = 6.4 Hz, 1H), 2.35 (s, 3H), 1.99 (br, 1H), 1.80-1.73 (m, 2H), 1.01-0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 142.8, 134.6, 130.3, 127.1, 126.2, 125.3, 72.0, 30.9, 19.1, 10.4. IR (KBr): 3368, 3065, 3024, 2964, 2876, 1487, 1461, 1379, 1091, 1052, 973, 750, 726 cm⁻¹.

(S)-1-o-Tolylpropyl acetate 21-1

Yield: 75.4%. $[\alpha]^{20.1}{}_{\rm D}$ -67.5° (*c* 0.85, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.35-7.33 (dd, *J* = 7.3, 2.1 Hz, 1H), 7.22-7.17 (m, 2H), 7.16-7.13 (m, 1H), 5.92-5.88 (m, 1H), 2.41 (s, 3H), 2.08 (s, 3H), 1.95-1.75 (m, 2H), 0.94-0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 170.5, 155.9, 139.2, 135.2, 130.3, 127.5, 126.1, 125.8, 108.9, 78.0, 74.0, 65.2, 30.6, 29.7, 28.9, 21.3, 19.3, 10.1. IR (KBr): 2923, 2851, 1736, 1459, 1371, 1237, 1078, 1017, 801, 757, 721 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of *R* isomer 15.80 min, t_R of *S* isomer 16.92 min, *R* : *S* = 12.07 : 87.92, ee%: 75%.

(S)-1-m-Tolylpropan-1-ol 22

Yield: 65%. $[\alpha]^{20.7}{}_{\rm D}$ -31.9° (*c* 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.26-7.23 (t, *J* = 7.2 Hz, 1H), 7.17-7.09 (m, 3H), 4.56-4.53 (t, *J* = 6.5 Hz, 1H), 2.37 (s, 3H), 2.09 (br, 1H), 1.86-1.71 (m, 2H), 0.94-0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 144.6, 138.0, 128.3, 128.2, 126.7, 123.1, 76.1, 31.9, 21.5, 10.2. IR (KBr): 3370, 3026, 2963, 2931, 2875, 1608, 1488, 1456, 1378, 1322, 1158, 1085, 1044, 1015, 975, 784, 703 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of *R* isomer 20.87 min, t_R of *S* isomer 22.84 min, *R* : *S* =11.16: 88.83, ee%: 77%.

(S)-1-p-Tolylpropan-1-ol 23

Yield: 52%. $[\alpha]^{21.1}{}_{\rm D}$ -37.6° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.24-7.22 (d, *J* = 8.1 Hz, 2H), 7.18-7.16 (d, *J* = 8.0 Hz, 2H), 4.56-4.53 (t, *J* = 6.6 Hz, 1H), 2.36 (s, 3H), 2.09 (br, 1H), 1.87-1.68 (m, 2H), 0.93-0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 141.7, 137.1, 129.1, 126.0, 75.9, 31.8, 21.1, 10.2. IR (KBr): 3378, 2963, 2875, 1903, 1614, 1514, 1455, 1378, 1098, 1403, 1012, 973, 902, 816, 538 cm⁻¹. HPLC (Daicel Chiralcel OJ-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 32.70 min, t_R of S isomer 30.74 min, R : S =5.31 : 94.67, ee%: 89%.

(S)-1-(2-Methoxyphenyl)propan-1-ol 24

Yield: 52%. $[\alpha]^{20.8}_{D}$ -9.8° (*c* 1.00, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \delta): 7.32-7.30 \text{ (dd}, J = 7.5, 1.6 \text{ Hz}, 1\text{H}),$ 7.27-7.22 (m, 1H), 6.98-6.94 (t, *J* = 7.5 Hz, 1H), 6.79-6.77 (d, J = 8.2 Hz, 1H), 4.82-4.79 (t, J = 6.6 Hz, 3H), 3.83 (s, J = 6.6 Hz, 3Hz), 3.83 (s, J = 6.6 Hz), 3.833H), 2.79 (br, 1H), 1.85-1.78 (m, 2H), 0.98-0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 156.6, 132.5, 128.2, 127.1, 120.7, 110.5, 72.2, 55.3, 30.2, 10.5. IR (KBr): 3406, 2963, 2876, 2030, 1601, 1491, 1464, 1438, 1287, 1237, 1089, 1046, 1028, 974, 901, 754 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/i-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 26.82 min, t_R of S isomer 25.33 min, R : S = 29.71: 70.29, ee%: 41%.

(S)-1-(3-Methoxyphenyl)propan-1-ol 25

Yield: 87%. α]^{20.6}_D-29.5° (*c* 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.27-7.23 (m, 1H), 6.92-6.90 (m, 2H), 6.82-6.79 (m, 1H), 4.57-4.53 (t, J = 6.6 Hz, 3H), 3.80 (s, 3H), 2.10 (br, 1H), 1.86-1.68 (m, 2H), 0.93-0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 159.7, 146.4, 129.4, 118.3, 112.9, 111.5, 75.9, 55.2, 31.8, 10.2. IR (KBr): 3408, 2963, 2876, 1929, 1602, 1487, 1485, 1318, 1261, 1156, 1084, 1043, 978, 858, 782, 699, 563, 468 cm⁻¹.

(S)-1-(3-Methoxyphenyl)propyl acetate 25-1

Yield: 91%. $[\alpha]^{19.9}_{D}$ -65.2° (*c* 1.10, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \delta)$: 7.28-7.24 (d, J = 7.9 Hz, 1H), 6.92-6.90 (d, J = 7.8 Hz, 1H), 6.88-6.87 (t, J = 2.3 Hz, 1H), 6.84-6.81 (m, 1H), 5.66-5.62 (t, J = 6.9 Hz, 1H), 3.81 (s, 3H), 2.10 (s, 3H), 1.94-1.74 (m, 2H), 0.90-0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 170.4, 159.6, 142.2, 129.4, 118.9, 113.0, 112.3, 76.8, 55.2, 29.3, 21.3, 9.9. IR (KBr): 2968, 2938, 2878, 1735, 1603, 1587, 1491, 1456, 1436, 1371, 1238, 1160, 1083, 1042, 1020, 967, 876, 783, 699 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 19.31 min, t_R of S isomer 20.91 min, R : S = 12.43 : 87.57, ee%: 75%.

(S)-1-(4-Methoxyphenyl)propan-1-ol 26

Yield: 40%. $[\alpha]^{21.0}_{D}$ -15.1° (*c* 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.25-7.21 (m, 2H), 6.88-6.85 (m, 2H), 4.51-4.47 (t, J = 6.7 Hz, 1H), 3.78 (s, 3H), 2.28 (br,

1H), 1.84-1.64 (m, 2H), 0.89-0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 158.9, 136.9, 127.2, 113.7, 75.6, 55.2, 31.8, 10.2. IR (KBr): 3400, 2962, 2934, 2875, 2054, 1888, 1612, 1585, 1513, 1463, 1301, 1097, 1037, 974, 830, 548 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 28.56 min, t_R of S isomer 30.61 min, R : S = 33.95 : 66.05, ee%: 33%.

(S)-1-(2-Chlorophenyl)propan-1-ol 27

Yield: 72%. $[\alpha]^{20.8}_{D}$ -23.4° (*c* 1.05, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \delta): 7.53-7.51 \text{ (dd}, J = 7.7, 1.7 \text{ Hz}, 1\text{H}),$ 7.33-7.30 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.29-7.25 (m, 1H), 7.20-7.16 (m, 1H), 5.06-5.03 (m, 1H), 2.37 (br, 1H), 1.85-1.68 (m, 2H), 0.99-0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 142.0, 132.0, 129.3, 128.3, 127.2, 127.0, 71.9, 30.5, 10.1. IR (KBr): 3367, 3067, 2967, 2877, 1573, 1590, 1466, 1437, 1102, 1048, 1032, 976, 752, 702, 460 cm^{-1} .

(S)-1-(2-Chlorophenyl)propyl benzoate 27-1

Yield: 81%. $[\alpha]^{20.8}_{D}$ +51.7° (*c* 1.00, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \delta)$: 8.13-8.11 (dd, J = 5.0, 1.3 Hz, 2H),7.60-7.56 (m, 1H), 7.49-7.45 (m, 3H), 7.39-7.37 (dd, J = 7.6, 1.5 Hz, 1H), 7.27-7.19 (m, 2H), 6.35-6.32 (t, J = 6.4 Hz, 3H), 2.07-1.99 (m, 2H), 1.06-1.02 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 165.7, 138.7, 133.1, 132.3, 130.3, 129.7, 129.7, 128.7, 128.5, 128.3, 127.0, 127.0, 74.5, 28.6, 9.9. IR (KBr): 3065, 2971, 2936, 1720, 1601, 1451, 1314, 1268, 1177, 1109, 1069, 1026, 944, 754, 712, 463 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 16.56 min, t_R of S isomer 18.61 min, R : S = 30.31 : 69.69, ee%: 39%.

(S)-1-(3-Chlorophenyl)propan-1-ol 28

Yield: 91%. $[\alpha]^{21.0}_{D}$ -29.8° (*c* 0.95, CHCl₃). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \delta): 7.33-7.32 \text{ (m, 1H)}, 7.28-7.24 \text{ (t, } J =$ 7.9 Hz, 1H), 7.24-7.21 (m, 1H), 7.20-7.18 (m, 1H), 4.56-4.53 (t, *J* = 6.5 Hz, 3H), 2.22 (br, 1H), 1.81-1.66 (m, 2H), 0.92-0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 146.7, 134.3, 129.7, 127.6, 126.2, 124.2, 75.3, 31.9, 10.0. IR (KBr): 3366, 3065, 2966, 2877, 1942, 1869, 1598, 1575, 1477, 1462, 1432, 1261, 1198, 1084, 1044, 1015, 977, 881, 785, 698, 508 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of R isomer 22.84 min, t_R of S isomer 21.81 min, R : S =8.17:91.82, ee%: 83%.

(S)-1-(4-Chlorophenyl)propan-1-ol 29

Yield: 93%. $[\alpha]_{D}^{21.3}$ -31.4° (*c* 1.00, CHCl₃). ¹H NMR

(400 MHz, CDCl₃, δ): 7.30-7.28 (dd, J = 6.5, 1.8 Hz, 2H), 7.24-7.22 (dd, J = 2.8, 1.8 Hz, 2H), 4.55-4.51 (t, J = 6.6 Hz, 1H), 2.31 (br, 1H), 1.81-1.63 (m, 2H), 0.90-0.86 (t, J = 7.4Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 143.0, 133.0, 128.5, 127.4, 75.2, 31.9, 10.0. IR (KBr): 3366, 2966, 2933, 2877, 1902, 1597, 1492, 1463, 1409, 1090, 1013, 975, 902, 824, 548, 527, 461 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R of *R* isomer 22.60 min, t_R of *S* isomer 21.49 min, *R* : *S* = 12.48 : 87.51, ee%: 75%.

3-(1-Hydroxypropyl)benzonitrile 30

Yield: 94%. $[\alpha]^{20.4}{}_{\rm D}$ -27.4° (*c* 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.61-7.60 (s, 1H), 7.56-7.54 (m, 1H), 7.53-7.50 (m, 1H), 7.44-7.40 (t, *J* = 7.6 Hz, 1H), 4.63-4.60 (t, *J* = 6.4 Hz, 1H), 2.61 (br, 1H), 1.79-1.67 (m, 2H), 0.91-0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 146.2, 131.0, 130.5, 120.6, 129.1, 118.9, 112.2, 74.7, 32.0, 9.8. IR (KBr): 3437, 3068, 2967, 2934, 2877, 2231, 1965, 1903, 1583, 1434, 1320, 1229, 1149, 1089, 1047, 981, 901, 801, 693, 490 cm⁻¹.

1-(3-Cyanophenyl)propyl acetate 30-1

Yield: 89%. $[\alpha]^{21.5}{}_{\rm D}$ -57.5° (*c* 0.50, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.61-7.53 (m, 3H), 7.46-7.43 (t, *J* = 8.0 Hz, 1H), 5.66-5.63 (t, *J* = 6.2 Hz, 1H), 2.10 (s, 3H), 1.96-1.75 (m, 2H), 0.90-0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 170.1, 142.3, 131.4, 130.9, 130.0, 129.2, 118.6, 112.7, 76.1, 29.2, 21.0, 9.6. IR (KBr): 2971, 2930, 2230, 1737, 1372, 1235, 1085, 1043, 1021, 903, 800, 694, 517, 488 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R 23.55 and 24.81 min. ee%: 79%.

4-(1-Hydroxypropyl)benzonitrile 31

Yield: 91%. $[\alpha]^{19.7}{}_{\rm D}$ -26.0° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.57-7.55 (d, *J* = 7.8 Hz, 2H), 7.42-7.40 (d, *J* = 8.3 Hz, 2H), 4.64-4.61 (t, *J* = 6.4 Hz, 1H), 2.74 (br, 1H), 1.73-1.67 (m, 2H), 0.89-0.86 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 150.2, 132.2, 126.7, 119.0, 110.8, 74.9, 32.0, 9.8. IR (KBr): 3435, 2967, 2934, 2877, 2229, 1608, 1503, 1460, 1408, 1202, 1097, 1046, 1016, 980, 965, 847, 564 cm⁻¹.

1-(4-Cyanophenyl)propyl benzoate 31-1

Yield: 90%. $[\alpha]^{20.6}{}_{\rm D}+35.4^{\circ}$ (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 8.09-8.07 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.66-7.64 (d, *J* = 8.4 Hz, 2H), 7.61-7.57 (t, *J* = 7.5 Hz, 1H), 7.52-7.45 (m, 4H), 5.93-5.90 (t, *J* = 7.0 Hz, 1H), 2.10-1.92 (m, 2H), 1.00-0.97 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 165.7, 146.1, 133.3, 132.4, 129.9, 129.7, 128.5, 128.3, 127.0, 118.7, 111.7, 29.5, 9.8. IR (KBr): 3063, 2972, 2936, 2229, 1720, 1610, 1451, 1314, 1270, 1176, 1110, 1069, 1025, 842, 711, 561 cm⁻¹. HPLC (Daicel Chiralcel OJ-H, hexane/*i*-PrOH = 90:10, flow rate 0.25 mL/min), t_R 33.15 and 38.18 min. ee%: 71%.

1-(3-(Dimethylamino)phenyl)propan-1-ol 32

Yield: 87%. $[\alpha]^{21.9}{}_{\rm D}$ -25.7° (*c* 1.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.24-7.20 (t, *J* = 7.8 Hz, 2H), 6.74-6.64 (m, 3H), 4.56-4.53 (t, *J* = 6.6 Hz, 1H), 2.96 (s, 6H), 1.87-1.74 (m, 3H), 0.96-0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 150.8, 145.7, 129.1, 114.3, 111.8, 110.1, 76.6, 40.7, 31.8, 10.4. IR (KBr): 3390, 2961, 2874, 1604, 1581, 1498, 1438, 1350, 1228, 1138, 1046, 997, 965, 909, 853, 776, 698, 467 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90:10, flow rate 0.50 mL/min), t_R 19.83 and 28.23 min ee%: 77%.

(S)-1-Cyclohexylpropan-1-ol 33

Yield: 77%. $[\alpha]^{19.9}{}_{\rm D}$ -5.3° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 3.30-3.25 (m, 1H), 1.80-1.65 (m, 5H), 1.55-0.98 (m, 9H), 0.97-0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 77.5, 43.2, 29.3, 27.8, 26.8, 26.6, 26.4, 26.2, 10.2. IR (KBr): 3371, 2926, 2852, 1449, 1123, 971, 892 cm⁻¹.

(*S*,*2R*)-1-Cyclohexylpropyl 3,3,3-trifluoro-2-methoxy-2phenylpropanoate 33-1

Yield: 57%. $[\alpha]^{21.7}{}_{\rm D}+15.9^{\circ}$ (*c* 1.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.58-7.57 (m, 2H), 7.41-7.38 (m, 4H), 4.91-4.89 (m, 1H), 3.58-3.56 (m, 3H), 1.76-1.58 (m, 8H), 1.23-1.00 (m, 7H), 0.93-0.89 (t, *J* = 7.4 Hz, 2H), 0.81-0.78 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 129.4, 128.2, 127.4, 82.6, 55.7, 55.4, 40.2, 34.9, 28.6, 27.5, 26.3, 26.1, 26.0, 25.5, 24.7, 23.5, 9.8. IR (KBr): 3031, 2932, 2855, 1743, 1496, 1451, 1256, 1183, 1121, 1081, 1055, 1018, 994, 898, 765, 716, 645 cm⁻¹. ¹⁹F NMR (376 MHz, CDCl₃, δ): -71.19 (*R*) and -71.23 (*S*); *R* : *S* = 1.00 : 9.63, ee%: 81%.

(S)-Nonan-3-ol 34

Yield: 57%. $[\alpha]^{22.0}_{D}$ +4.3° (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 3.52-3.47 (m, 1H), 1.51-1.27 (m, 13H), 0.93-0.89 (t, *J* = 7.4 Hz, 3H), 0.87-0.84 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 73.3, 36.9, 31.8, 30.1, 29.4, 25.6, 22.6, 14.0, 9.8. IR (KBr): 3348, 2950, 2858, 1464, 1378, 1337, 1123, 1057, 966, 724, 599 cm⁻¹.

((*S*,2*R*)-)-Nonan-3-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 34-1

Yield: 38%. $[\alpha]^{22.1}{}_{D}$ +3.6° (*c* 1.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.57-7.55 (m, 2H), 7.41-7.39 (m,

4H), 5.06-5.03 (m, 1H), 3.58-3.56 (m, 3H), 1.70-1.56 (m, 4H), 1.28-1.20 (m, 8H), 0.95-0.82 (m, 6H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 166.4, 132.6, 129.5, 128.3, 127.4, 78.8, 55.4, 33.0, 31.6, 29.0, 26.7, 24.8, 22.5, 14.0, 9.6. IR (KBr): 3307, 3065, 2932, 2857, 2119, 1961, 1744, 1496, 1452, 1256, 1168, 1122, 994, 765, 716, 644, 508 cm⁻¹. ¹⁹F NMR (376 MHz, CDCl₃, δ): -71.29 (*R*) and -71.37 (*S*); *R* : *S* = 1.00 : 4.86, ee%: 65%.

(E,S)-1-Phenylpent-1-en-3-ol 35

Yield: 67%. $[\alpha]^{21.6}{}_{\rm D}$ -3.6° (*c* 1.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ): 7.40-7.39 (d, *J* = 7.4 Hz, 2H), 7.35-7.31 (t, *J* = 7.2 Hz, 2H), 7.27-7.24 (t, *J* = 7.2 Hz, 1H), 6.60-6.56 (d, *J* = 6.8 Hz, 1H), 6.26-6.20 (dd, *J* = 15.9, 6.8 Hz, 1H), 4.23-4.18 (m, 1H), 2.50 (br, 1H), 1.73-1.63 (m, 2H), 1.01-0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃, δ): 136.9, 132.5, 130.3, 128.6, 127.6, 126.5, 74.3, 30.3, 9.8. IR (KBr): 3655, 3026, 2964, 2875, 1946, 1876, 1803, 1599, 1493, 1450, 1331, 1130, 1058, 1006, 965, 896, 747, 693, 551 cm⁻¹. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 90 : 10, flow rate 0.25 mL/min), t_R of *R* isomer 7.71 min, t_R of *S* isomer 11.03 min, *R* : *S* = 30.69 : 69.31, ee%: 39%.

ACKNOWLEDGEMENTS

The authors thank Ms. L. M. Hsu, at the Instruments Center, National Chung Hsing University, for her help in obtaining HRMS, and the National Science Council of the Republic of China, for financially supporting this research under contract NSC 97-2113-M-259-002-MY3.

REFERENCES

- (a) Bosnich, B. Asymmetric Catalysis; Martinus Nijhoff: Dordrecht, 1986. (b) Kagan, H. B. Comprehensive Organic Chemistry, Vol. 8; Pergamon: Oxford, 1992. (c) Brunner, H.; Zettlmeier, W. Handbook of Enantioselective Catalysis; VCH: Weiheim, 1993. (d) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994. (e) Ojima, I. Catalytic Asymmetric Synthesis; VCH: New York, 1993. (f) Doyle, M. P. Advances in Catalytic Processes, Vol. 1; JAI: London, 1995. (g) Gawley, R. E.; Aube, J. Principles of Asymmetric Synthesis; Pergamon: London, 1996. (h) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis I–III; Springer-Verlag Berlin Heidelberg: New York, 1999.
- (a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (b) Noyori, R.; Kitamura, M. Angew. Chem. 1991, 103, 34; Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
- (a) Oguni, N.; Omi, T. *Tetrahedron Lett.* 1984, 25, 2823. (b)
 Bolm, C.; Muniz, K.; Hildebrand, J. P. Org. Lett. 1999, 1,

491. (c) Kitamura, M.; Oka, H.; Noyori, R. *Tetrahedron* **1999**, 55, 3605. (d) Dosa, P. I.; Fu, G. C. *J. Am. Chem. Soc.* **1998**, *120*, 445.

- 4. (a) Wilken, J.; Winter, M.; Stahl, I.; Martens, J. Tetrahedron: Asymmetry 2000, 11, 1067. (b) Dimitrov, V.; Dobrikov, G.; Genov, M. Tetrahedron: Asymmetry 2001, 12, 1323. (c) Chen, Y. K.; Costa, A. M.; Walsh, P. J. J. Am. Chem. Soc. 2001, 123, 5378. (d) Dahmen, S.; Braese, S. Chem. Commun. 2002, 26. (e) Nugent, W. A. Org. Lett. 2002, 4, 2133. (f) Li, M.; Yuan, K.; Li, Y.-Y.; Cao, B.-X.; Sun, J.; Hou, X.-L. Tetrahedron: Asymmetry 2003, 14, 3347. (g) Dahmen, S. Org. Lett. 2004, 6, 2113-2116. (h) Wu, X.-W.; Zhang, T.-Z.; Yuan, K.; Hou, X.-L. Tetrahedron: Asymmetry 2004, 15, 2357. (i) Huang, J.; Ianni, J. C.; Antoline, J. E.; Hsung, R. P.; Kozlowski, M. C. Org. Lett. 2006, 8, 1565. (j) Lauterwasser, F.; Gall, J.; Hoefener, S.; Braese, S. Adv. Syn. Catal. 2006, 348, 2068. (k) Sokeirik, Y. S.; Omote, M.; Sato, K.; Kumadaki, I.; Ando, A. Tetrahedron: Asymmetry 2006, 17, 2654. (1) Chai, Z.; Liu, X.-Y.; Zhang, J.-K.; Zhao, G. Tetrahedron: Asymmetry 2007, 18, 724. (m) Chang, T.-C.; Chen, C. J. Chin. Chem. Soc. 2008, 55, 606. (n) Yang, X.-F.; Hirose, T.; Zhang, G.-Y. Tetrahedron: Asymmetry 2008, 19, 1670. (o) Pisani, L.; Superchi, S. Tetrahedron: Asymmetry 2008, 19, 1784. (p) Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774. (q) Wu, Z.-L.; Wu, H.-L.; Wu, P.-Y.; Uang, B.-J. Tetrahedron: Asymmetry 2009, 20, 1556. (r) Ananthi, N.; Balakrishnan, U.; Velmathi, S.; Vinu, A.; Ariga, K. Tetrahedron: Asymmetry 2009, 20, 1731. (s) Banerjee, S.; Groeper, J. A.; Standard, J. M.; Hitchcock, S. R. Tetrahedron: Asymmetry 2009, 20, 2154. (t) Lesniak, S.; Rachwalski, M.; Sznajder, E.; Kielbasinski, P. Tetrahedron: Asymmetry 2009, 20, 2311. (u) Cheng, K.; Kelly, A. R.; Kohn, R. A.; Dweck, J. F.; Walsh, P. J. Org. Lett. 2009, 11, 2703. (v) Blocka, E.; Jaworska, M.; Welniak, M.; Kozakiewicz, A.; Wojtczak, A. Tetrahedron: Asymmetry 2010, 21, 571. (w) Kim, H.; Hong, J. Org. Lett. 2010, 12, 2880.
- (a) Zhang, F.-Y.; Yip, C.-W.; Cao, R.; Chan, A. S. C. Tetrahedron: Asymmetry 1997, 8, 585. (b) Kostova, K.; Genov, M.; Philipova, I.; Dimitrov, V. Tetrahedron: Asymmetry 2000, 11, 3253. (c) Chen, Y.; Yekta, S.; Martyn, L. J. P.; Zheng, J.; Yudin, A. K. Org. Lett. 2000, 2, 3433. (d) Fan, Q.-H.; Liu, G.-H.; Chen, X.-M.; Deng, G.-J.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1559. (e) Jiang, H.; Hu, A.; Lin, W. Chem. Commun. 2003, 96. (g) Du, H.; Ding, K. Org. Lett. 2003, 5, 1091. (f) Hua, J.; Lin, W. Org. Lett. 2004, 6, 861. (h) Hatano, M.; Miyamoto, T.; Ishihara, K. Adv. Syn. Catal. 2005, 347, 1561. (i) Harada, T.; Ukon, T. Tetrahedron: Asymmetry 2007, 18, 2499. (j) Gou, S.; Judeh, Z. M. A. Tetrahedron Lett. 2009, 50, 281, (k) Palais, L.; Babel, L.; Quintard, A.; Belot, S.; Alexakis, A. Org. Lett. 2010, 12, 1988.
- 6. (a) Shi, M.; Sui, W.-S. *Tetrahedron: Asymmetry* 2000, *11*, 835. (b) Dangel, B. D.; Polt, R. *Org. Lett.* 2000, *2*, 3003. (c) Wipf, P.; Wang, X. *Org. Lett.* 2002, *4*, 1197. (d) Braga, A. L.;

Pyridylphenol Enantioselective Addition Et₂Zn Aldehyde

Paixao, M. W.; Luedtke, D. S.; Silveira, C. C.; Rodrigues, O.
E. D. Org. Lett. 2003, 5, 2635. (e) Blay, G.; Fernandez, I.;
Marco-Aleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry
2005, 16, 1207. (f) Hui, A.; Zhang, J.; Fan, J.; Wang, Z. Tetrahedron: Asymmetry 2006, 17, 2101. (g) Liu, S.; Wolf, C.
Org. Lett. 2007, 9, 2965. (h) Murtinho, D.; Elisa, S. S. M.;
Rocha Gonsalves, A. M. d'A. Tetrahedron: Asymmetry
2010, 21, 62. (i) Qi, G.; Judeh, Z. M. A. Tetrahedron: Asymmetry 2010, 21, 429.

- (a) Dreher, S. D.; Katz, T. J.; Lam, K.-C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815. (b) Yang, X.-W.; Shen, J.-H.; Da, C.-S.; Wang, H.-S.; Su, W.; Liu, D.-X.; Wang, R.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron Lett. 2001, 42, 6573. (c) Omote, M.; Nishimura, Y.; Sato, K.; Ando, A.; Kumadaki, I. Tetrahedron 2006, 62, 1886.
- (a) Ruzziconi, R.; Piermatti, O.; Ricci, G.; Vinci, D. Synlett 2002, 747. (b) Chen, Y.-J.; Lin, R.-X.; Chen, C. Tetrahedron: Asymmetry 2004, 15, 3561. (c) Zhong, Y.-W.; Jiang, C.-S.; Xu, M.-H.; Lin, G.-Q. Tetrahedron 2004, 60, 8861. (d) Ricci, G.; Ruzziconi, R. Tetrahedron: Asymmetry 2005, 16, 1817.
- 9. (a) Zhang, X.; Guo, C. Tetrahedron Lett. 1995, 36, 4947. (b) Qiu, J.; Guo, C.; Zhang, X. J. Org. Chem. 1997, 62, 2665. (c) Shi, M.; Wang, C.-J. Tetrahedron: Asymmetry 2002, 13, 2161. (d) Sun, J.; Pan, X.; Dai, Z.; Zhu, C. Tetrahedron: Asymmetry, 2008, 19, 2451. (e) Lin, Z.-C.; Chen, C. J. Chin. Chem. Soc. 2010, 57, 726.
- 10. (a) Schmidt, B.; Seebach, D. Angew. Chem. 1991, 103, 1383.
 (b) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron 1994, 50, 4363. (c) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Stappenbeck, F. J. Am. Chem. Soc. 1999, 121, 6944. (d) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc. 2000, 122, 4893. (e) Berberich, S. M.; Cherney, R. J.; Colucci, J.; Courillon, C.; Geraci, L. S.; Kirkland, T. A.; Marx, M. A.; Schneider, M. F.; Martin, S. F. Tetrahedron 2003, 59, 6819.
- (a) Harmata, M.; Kahraman, M. *Tetrahedron: Asymmetry* 2000, *11*, 2875. (b) Mikami, K.; Angelaud, R.; Ding, K.; Ishii, A.; Tanaka, A.; Sawada, N.; Kudo, K.; Senda, M. *Chem. Eur. J.* 2001, *7*, 730. (c) Abato, P.; Seto, C. T. *J. Am. Chem. Soc.* 2001, *123*, 9206. (d) Dahmen, S.; Braese, S.

Chem. Commun. **2002**, 26. (e) Priego, J.; Mancheno, O. C.; Cabrere, S.; Carretero, J. C. *J. Org. Chem.* **2002**, 67, 1346. (f) Tseng, S.-L.; Yang, T.-K. *Tetrahedron: Asymmetry* **2004**, *15*, 3375. (g) Wu, P.-Y.; Wu, H.-L.; Uang, B.-J. *J. Org. Chem.* **2006**, *71*, 833. (h) Gilani, M.; Wilhelm, R. *Tetrahedron: Asymmetry* **2008**, *19*, 2346. (i) Martinez, R.; Zoli, L.; Ramon, D. J.; Yus, M.; Cozzi, P. G. *Tetrahedron: Asymmetry* **2008**, *19*, 2600. (j) Wu, P.-Y.; Wu, H.-L.; Shen, Y.-Y.; Uang, B.-J. *Tetrahedron: Asymmetry* **2009**, *20*, 1837. (k) Yoshida, K.; Toyoshima, T.; Akashi, N.; Imamoto, T.; Yanagisawa, A. *Chem. Commun.* **2009**, 2923. (l) Huang, X.-R.; Chen, C. *Tetrahedron: Asymmetry* **2010**, *21*, 2999.

- (a) Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 6327. (b) Kitamura, S.; Oka, H.; Noyori, R. Tetrahedron 1999, 55, 3605. (c) Rosner, T.; Sears, P. J.; Nugent, W. A.; Blackmond, D. G. Org. Lett. 2000, 2, 2511. (d) Vázquez, J.; Pericás, M. A.; Maseras, F. Lledós, A. J. Org. Chem. 2000, 65, 7303.
- 13. Lin, R.-X.; Chen, C. J. Mol. Catal. A-Chem. 2006, 243, 89.
- 14. Nayak, M. K.; Chakraborti, A. K. *Tetrahedron Lett.* **1997**, *38*, 8749.
- (a) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111. (b) Kang, S.-W.; Ko, D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2003, 5, 4517. (c) Vyskočil, Š.; Jaracz, S.; Smrčina, M.; Štícha, M.; Hanuš, V.; Polášek, M.; Koovský, P. J. Org. Chem. 1998, 63, 7727. (d) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071. (e) Mikami, K.; Angelaud, R.; Ding, K.; Ishii, A.; Tanaka, A.; Sawada, N.; Kudo, K.; Senda, M. Chem. Eur. J. 2001, 7, 730. (f) Yoshida, K.; Toyoshima, T.; Akashi, N.; Imamoto, T.; Yanagisawa, A. Chem. Commun. 2009, 2923. (g) Coeffard, V.; Müller-Bunz, H.; Guiry, P. J. Org. Biomol. Chem. 2009, 7, 1723. (h) Binder, C. M.; Bautista, A.; Zaidlewicz, M.; Krzemiński, M. P.; Oliver, A.; Singaram, B. J. Org. Chem. 2009, 74, 2337. (i) Qi, G.; Judeh, Z. M. A. Tetrahedron: Asymmetry 2010, 21, 429.
- The ortho-substituent constants were reported by Charton, M. J. Am. Chem. Soc. 1969, 91, 6649. The para- and metasubstituent constants obtained from Johnson, C. D. The Hammett Equation; University Press: Cambridge, 1973; p 3.