COMMUNICATION

Factors Controlling the Equilibrium of Pt-Catalyzed [1,2]- versus [1,3]-Acyloxy Migration

Eun Jin Cho^{*[a]}

The development of reactions involving electrophilic transition-metal-catalyzed activation of alkynes have revealed the various hidden reactivity of alkynes.^[1] In platinum- and gold-catalyzed reactions, the substituent pattern and electronic variation on and near the alkyne have profound impacts on the reaction pathway of substrates. When activated by platinum or gold, the propargylic acetate **1** has a propensity to undergo [1,2]-acyloxy migration to form vinyl carbenoid **2**, or, it generates allenyl acetate **3** by [1,3]-acyloxy migration, an example of [3,3]-sigmatropic rearrangement (Figure 1).^[2] It is widely accepted that terminal or internal alkynes with an electron-withdrawing R substituent preferentially undergo reactions through pathway **A**,^[3,4] whereas reactions of other internal alkynes generally proceed through pathway **B**.^[5]

Figure 1. Pt- and Au-catalyzed reaction pathways of propargylic esters.

Although these two competing pathways are generally assumed to be reversible, this theory lacks direct experimental evidence.^[6] Furthermore, controlling the [1,2]- versus [1,3]acyloxy migration is a mechanistically controversial issue.^[7] Herein, clear evidence for the reversible interconversion be-

[a]	Prof. Dr. E. J. Cho
	Department of Chemistry and Applied Chemistry
	Hanyang University
	55 Hanyangdaehak-ro, Sangnok-gu
	Ansan, Kyeonggi-do, 426-791 (Korea)
	Fax: (+82)31-400-5457
	E-mail: echo@hanyang.ac.kr
	Supporting information for this article is available on the WWW
	under http://dx.doi.org/10.1002/chem.201103799.

tween carbenoid 2 and allene 3 is presented. In addition, it is shown that [1,2]- versus [1,3]-acyloxy migration can be controlled by reaction temperature, alkyne substituent pattern, and the nature of the catalyst.

First, the interconversion between the carbenoid and allene intermediates was observed from the reactions of substrates containing a propargylic alkoxy group. These reactions were found to be dependent on the reaction temperature. It was previously reported that reactions of alkoxy group-containing substrates (of type **4**) generated exclusively 1,3-dienes **6** with PtCl₂ under CO at 40–60 °C through [1,2]-acyloxy migration followed by a [1,2]-hydride shift (Figure 2).^[8]

Figure 2. The formation of 1,3-diene by using propargylic esters containing an alkoxy group.

However, at a lower reaction temperatures, the same substrates could also yield allenes through a [1,3]-acyloxy migration under otherwise identical conditions (5 mol % PtCl₂ under CO^[9] in toluene). The reaction of **7a** produced a mixture of [1,2]- and [1,3]-acyloxy-migrated products **8a** and **9a**, respectively, in a ratio of 1.5:1 at room temperature, whereas only 1,3-diene **8a** was generated at 60 °C (Table 1,

Table 1.	Product	distribution	dependent	on reaction	temperature.
----------	---------	--------------	-----------	-------------	--------------

$^{OAc} \times_{F}$	OMe	5 mol % F	РtCl ₂ /CC (0.05 м)	R	OAc OMe + 8 R	OAc OMe 9
Entry	Rea	action		Т [°С]	Yield ^[a] [% (Z/E ratio)]
	R=Me				R=	Me
1	AcO	OMe	7a	25 60	8a , 48 (5.3:1 8a , 80 (2:1)) 9a , 32 9a , 0
	$R = CH_2C$	CH ₂ CH ₂ C	H_2		$R = CH_2CI$	$H_2CH_2CH_2$
	A00 //	∕_ _{OMe}		25	8b , 33 (2:1)	9b , 57
2		>	7b	60	8b , 70 (2:1)	9b , 0
		-				

[[]a] Isolated product yield.

Chem. Eur. J. 2012, 18, 4495-4498

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- 4495

WILEY CONLINE LIBRARY

entry 1). The reaction of 7b, which gave exclusively 8b at 60°C, also generated a mixture of 8b and 9b in a ratio of 1: 1.7 (Table 2, entry 2).^[10] These results imply that, at a higher temperature, the initially formed allenes revert back to the starting materials so that the equilibrium eventually drains down to the observed 1,3-diene products.

Reactions of compounds 10 and 15 further demonstrate the temperature-dependent product distribution through the interconversion of [1,2]- and [1,3]acyloxy-migrated intermediates (Scheme 1). The reaction of 10 gave a mixture of 11 and 14 in a ratio of 5:1 at room temperature, but it gave only 14 at 80 °C. This is likely the consequence of interconversion between 11 and 12 through prop-

Scheme 1. Product distribution dependent on reaction temperature.

argylic acetate **10** and an irreversible [1,2]-H shift of **12** to **13** followed by hydrolysis to form **14** at higher temperatures. The reaction of **15**, which contains a propargylic methoxy group and *para*-nitrobenzoate, showed a similar behavior. A mixture of [1,3]- and [1,2]-acyloxy-shifted products **16** and **19** were isolated in a ratio of 6.3:1 at lower temperatures (at 40 °C) but only the [1,2]-acyl-shifted product **19** was obtained at 80 °C.

The conversion of the isolated [1,3]-shifted products to the corresponding [1,2]-shifted products further confirmed the interconversion of allenes and vinyl carbenoids. When isolated allenes **11** and **16** were subjected to the same reaction conditions again (PtCl₂/CO, toluene) at 80 °C, only the [1,2]-shifted products **14** and **19** were generated (Scheme 2). These results should be the consequence of the reverse [1,3]-acyloxy migration of **11** and **16** to propargylic esters **10** and **15** and subsequent [1,2]-acyloxy migration to form vinyl carbenoids followed by their [1,2]-H shift and hydrolysis.

The equilibrium between [1,2]- and [1,3]-acyloxy migrations was also studied with other systems. As expected from the propensity of internal alkynes to undergo [1,3]-acyloxy migration, allene products **21** were obtained from the reactions of **20a–20d** under the same conditions (5 mol % PtCl₂ under CO, toluene, 25 °C; Table 2). Interestingly, unreacted substrates and allenyl intermediates were transformed into α,β -unsaturated ketones **22a–22d** at 80 °C through hydrolysis presumably by adventitious water. The lack of α -alkylidene- β -diketone formation from reactions with PtCl₂ implies a subtle difference in reactivity between Pt- and Au-catalysts.^[11] Based on the observed product distribution, it is also concluded that the irreversible [1,2]-hydride shifts of vinyl Pt-carbenoids **12** and **17** to **13** and **18** in Scheme 1 are much

Scheme 2. Evidence for the interconversion of allenes and carbenoids through reversible acyloxy migration.

Table 2. Enone formation of internal propagylic acetates through [1,3]-acyloxy migration followed by hydrolysis.

AcO	R 5 mol % PtCl ₂ /Co toluene (0.05 M), 29	O 5 °C 21 OAc 80 °C -HOAc	0 R 22
Entry	Substrates	Products	Yield ^[a] [%]
1	Aco 20a	O E E E=CO ₂ Et	91
2	AcO OTIPS	O OTIPS	87
3	AcO AcO AcO 20c		66
4	AcO NTs 20d	O Ts N 22d	80

[[]a] Isolated product yield.

faster than the hydrolysis of allenes **11** and **16**. Otherwise, enone products would be obtained from the hydrolysis of allenes at 80 °C as shown in Table 2.

Although alkynes preferentially undergo [1,3]-acyloxy migration, trace amounts of [1,2]-OAc-shifted products were also obtained from 20c and 20d with major [1,3]-OAc-shifted products 22 c and 22 d in Table 2. In this context, 23 a and **23b** were next used to examine whether [1,2]- versus [1,3]acyloxy migration could be controlled even in electronically unbiased internal alkynes (Scheme 3).^[12] The reactions of 23a and 23b yielded a mixture of products 25 and 27a/27b from [1,3]-acyloxy migration and [1,2]-acyloxy migration, respectively. Acetate 23a gave a 1:3 to 1:4 ratio of 25 (from a [1,3]-OAc shift and hydrolysis) and 27a (from a [1,2]-OAc shift followed by [1,2]-H shift) with the same catalyst system (5 mol % PtCl₂ under CO) in dry toluene at 80 °C. The addition of a small amount of water increased the yield of 25 by promoting the hydrolysis of allene 24a. Interestingly, the use of para-nitrobenzoate gave 27b as a major product via the [1,2]-shift of benzoate and a [1,2]-H shift. It is likely that the use of sterically hindered ester retards the hydrolysis of 24b, reducing the formation of enone compound 25, thus giving 27b as a major product.

Scheme 3. Steric effect of sterically demanding propargylic ester for the selectivity of [1,2]- versus [1,3]-acyloxy migration.

The substituent pattern around the alkyne affects the reaction course as well. The reaction of 23a/23b with a linear 1) alkyl group at the propargylic position generated a mixture of [1,3]- and [1,2]-acyloxy-migrated products, as shown in Scheme 3. However, the reaction of 28 a/28 b with a branched alkyl group at the same position gave only 1,3-diene 32a/ **32b** through [1,2]-acyloxy migration followed by [1,2]-H shift, regardless of the kind of ester (Scheme 4). This suggests that the extra alkyl group at the propargylic center of 29 a/29 b should slow down the deacylation whereby the formation of enone 30 was prohibited. Moreover, the [1,2]-H shift of the tertiary C-H of 31a/31b is faster than that of the corresponding secondary C-H, resulting in the efficient formation of trisubstituted alkene 32 a/32b. It was recognized that reactions of 23a/23b with a secondary C-H bond required a higher reaction temperature (80°C) in Scheme 3, whereas reactions of 28a/28b with a tertiary C-H bond pro-

COMMUNICATION

Scheme 4. Steric effect of the tertiary alkyl group at the propargylic center.

vided products **32a/32b** in excellent yield even at room temperature.

In addition to the reaction temperature and the substituent pattern around the alkyne, the nature of the catalyst also affected the reaction course. Au-catalyzed reactions provided different results from Pt-catalyzed reactions. Although **7a** yielded a mixture of [1,2]- and [1,3]-acyloxy-shifted products with PtCl₂ at room temperature, and only [1,2]shifted product 8a at 60°C as shown in Table 1 and Scheme 5, the same substrate underwent [1,3]-acyloxy migration to give only compound 33 in 72% yield after hydrolvsis with 5 mol % (PPh₃)AuCl/AgSbF₆ (Scheme 5). Similarly, the reaction of 34 with 5 mol% AuCl₃ exclusively provided the [1,3]-OAc shift-hydolysis product 36 in 88% yield at room temperature, whereas the reaction with PtCl₂ gave 1,3diene 38 by [1,2]-acyloxy migration followed by a [1,2]-H shift.^[13] These discrepancies are likely the result of faster hydrolysis of allenes 9a and 35 to 1,3-enone 33 and 36 in Aucatalyzed reactions.

Scheme 5. Effect of the nature of catalysts for the selectivity of [1,2]-versus [1,3]-acyloxy migration.

www.chemeurj.org

In conclusion, clear evidence has been presented for the equilibrium between [1,2]- and [1,3]-acyloxy migration in the Pt-catalyzed reactions of propargylic esters. A temperature-dependent interconversion between vinyl carbenoids (1,2-acyloxy-migrated intermediate) and allenes (1,3-acyloxy-migrated product) has been observed in systems of propargylic esters containing propargylic alkoxy groups. In addition to reaction temperature, several factors exert significant influence in the reaction course of propargylic esters, including the substituent pattern around the alkyne and the nature of the catalysts. Gaining insight into the role of these factors in the Pt-catalyzed reactions of propargylic esters can lead to better control over [1,2]- versus [1,3]-acyloxy migration.

Experimental Section

General procedure for PtCl₂-catalyzed reactions: $PtCl_2$ (5 mol%) was added to a solution of the alkyne in toluene (0.05 M) and CO was bubbled through the solution. The mixture was stirred at the appropriate temperature (25, 40, 60, or 80°C) until the reaction was complete (0.5–2 h). The mixture was cooled to room temperature and the solvent was evaporated under vacuum. Purification by flash chromatography on silica gel (hexane/ethyl ether) afforded the product.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) under Grant NRF-2011-0013118. E.J.C. thanks Prof. Daesung Lee (University of Illinois at Chicago) for the advice and help with this work.

Keywords: acyloxy migration • platinum • propargylic acetate • reaction mechanisms • transition-metal catalysis

- Selected reviews on gold- and platinum-catalyzed reactions: a) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271– 2296; b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211; c) A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478–3519; Angew. Chem. Int. Ed. 2007, 46, 3410–3449; d) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350; e) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351–3378; f) N. D. Shapiro, F. D. Toste, Synlett 2010, 675–691; g) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. Chem. 2011, 7, 1075–1094.
- [2] Reviews on Au- or Pt-catalyzed reactions of propargylic esters:
 a) N. Marion, S. P. Nolan, *Angew. Chem.* 2007, *119*, 2806–2809; *Angew. Chem. Int. Ed.* 2007, *46*, 2750–2752; b) J. Marco-Contelles,
 E. Soriano, *Chem. Eur. J.* 2007, *13*, 1350–1357; c) S. Wang, G. Zhang, L. Zhang, *Synlett* 2010, 692–706.
- [3] V. Rautenstrauch, J. Org. Chem. 1984, 49, 950-952.
- [4] Examples of [1,2]-OAc shift: a) E. Mainetti, V. Mouriès, L. Fensterbank, M. Malacria, J. Macro-Contelles, Angew. Chem. 2002, 114, 2236–2239; Angew. Chem. Int. Ed. 2002, 41, 2132–2135; b) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654–8655; c) D. J. Gorin, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002–18003; d) B. A. B. Prasad, F. K. Yoshimoto, R. Sarpong, J. Am. Chem. Soc. 2005, 127, 12468–12469; e) S.

- Anjum, J. Marco-Contelles, Tetrahedron 2005, 61, 4793-4803; f) E. J. Cho, M. Kim, D. Lee, Eur. J. Org. Chem. 2006, 3074-3078; g) K. Miki, M. Fujita, S. Uemura, K. Ohe, Org. Lett. 2006, 8, 1741-1743; h) E. J. Cho, M. Kim, D. Lee, Org. Lett. 2006, 8, 5413-5416; i) K. Ohe, M. Fujita, H. Matsumoto, Y. Tai, K. Miki, J. Am. Chem. Soc. 2006, 128, 9270-9271; j) A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006-3119; k) C. Fehr, J. Galindo, Angew. Chem. 2006, 118, 2967-2970; Angew. Chem. Int. Ed. 2006, 45, 2901-2904; 1) A. Fürstner, A. Schlecker, Chem. Eur. J. 2008, 14, 3006-3119; m) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9181-9191; n) K .-G. Ji, X.-Z. Shu, J. Chen, S.-C. Zhao, Z.-J. Zheng, L. Lu, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2008, 10, 3919-3922; o) X. Huang, T. Haro, C. Nevado, Chem. Eur. J. 2009, 15, 5904-5908; p) I. D. G. Watson, S. Ritter, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 2056-2057; q) H. Zheng, J. Zheng, B. Yu, Q. Chen, X. Wang, Y. He, Z. Yang, X. She, J. Am. Chem. Soc. 2010, 132, 1788-1789; r) G. Wang, Y. Zou, Z. Li, Q. Wang, A. Goeke, J. Org. Chem. 2011, 76, 5825-5831.
- [5] Selected recent examples of [1,3]-OAc shift in gold- and platinumcatalyzed reactions: a) L. Zhang, J. Am. Chem. Soc. 2005, 127, 16804-16805; b) N. Marion, S. Díez-González, P. de Frémont, A. R. Noble, S. P. Nolan, Angew. Chem. 2006, 118, 3729-3732; S. P. Nolan, Angew. Chem. 2006, 118, 3729-3732; Angew. Chem. Int. Ed. 2006, 45, 3647-3650; c) J. Zhao, C. O. Hughes, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 7436-7437; d) C. H. Oh, A. Kim, W. Park, D. I. Park, N. Kim, Synlett 2006, 2781-2784; e) L. Zhang, S. Wang, J. Am. Chem. Soc. 2006, 128, 1442-1443; f) S. Wang, L. Zhang, Org. Lett. 2006, 8, 4585-4587; g) A. Buzas, F. Istrate, F. Gagosz, Org. Lett. 2006, 8, 1957-1959; h) A. Buzas, F. Gagosz, J. Am. Chem. Soc. 2006, 128, 12614-12615; i) M. Yu, G. Li, S. Wang, G. Zhang, Adv. Synth. Catal. 2007, 349, 871-875; j) A. S. Dudnik, T. Schwier, V. Gevorgyan, Tetrahedron 2009, 65, 1859-1870; k) Y. Wang, C. N. Kuzniewski, V. Rauniyar, C. Hoong, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 12972-12975.
- [6] Reactions of propargylic tertiary acetates with [(IPr)Au(NTf₂)] provided a mixture of [1,2]- and [1,3]-acyloxy-migrated products, see: D. Garayalde, E. Gmez-Bengoa, X. Huang, A. Goeke, C. Nevado, J. Am. Chem. Soc. 2010, 132, 4720–4730.
- [7] a) A. Correa, N. Marion, L. Fensterbank, M. Malacria, S. P. Nolan, L. Cavallo, Angew. Chem. 2008, 120, 730–733; Angew. Chem. Int. Ed. 2008, 47, 718–721; b) P. Mauleon, J. L. Krinsky, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 4513–4520; c) R. Fang, L. Yang, Y. Wang, Org. Biomol. Chem. 2011, 9, 2760–2770.
- [8] E. J. Cho, D. Lee, Adv. Synth. Catal. 2008, 350, 2719-2723.
- [9] For the effects of CO on platinum-catalyzed reactions, see: a) J. M. Lutton, R. W. Parry, J. Am. Chem. Soc. 1954, 76, 4271-4274; b) A. Fürstner, P. W. Davies, T. Gress, J. Am. Chem. Soc. 2005, 127, 8244-8245; c) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024-15025; d) A. Fürstner, C. Aïssa, J. Am. Chem. Soc. 2006, 128, 6306-6307; e) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090-2091; f) L. Lu, X.-Y. Liu, X.-Z. Shu, K. Yang, K.-G. Ji, Y.-M. Liang, J. Org. Chem. 2009, 74, 474-477, and also see ref. [4f].
- [10] Transformations of 7a and 7b to 8a and 8b at 60°C were reported, see ref. [8].
- [11] α-Alkylidene-β-diketones were formed by further activation of allene intermediate with a Au^{III} complex followed by acyl migration, see: S. Wang, L. Zhang, J. Am. Chem. Soc. 2006, 128, 8414–8415.
- [12] Propargylic pivalates with electronically unbiased internal alkynes underwent a gold-catalyzed [1,2]-acyloxy migration, see: L. Zhang, G. Li, G. Zhang, J. Am. Chem. Soc. 2008, 130, 3740–3741.
- [13] A transformation of 34 to 38 at 60 °C was reported, see ref. [8].

Received: December 3, 2011 Published online: March 12, 2012

4498 -