
A Case Study in Catalyst Generality: Simultaneous, Highly-
Enantioselective Brønsted- and Lewis-Acid Mechanisms in
Hydrogen-Bond-Donor Catalyzed Oxetane Openings
Daniel A. Strassfeld, Russell F. Algera, Zachary K. Wickens, and Eric N. Jacobsen*

Cite This: J. Am. Chem. Soc. 2021, 143, 9585−9594 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Generality in asymmetric catalysis can be manifested in
dramatic and valuable ways, such as high enantioselectivity across a wide
assortment of substrates in a given reaction (broad substrate scope) or as
applicability of a given chiral framework across a variety of mechanistically
distinct reactions (privileged catalysts). Reactions and catalysts that display
such generality hold special utility, because they can be applied broadly and
sometimes even predictably in new applications. Despite the great value of
such systems, the factors that underlie generality are not well understood.
Here, we report a detailed investigation of an asymmetric hydrogen-bond-
donor catalyzed oxetane opening with TMSBr that is shown to possess
unexpected mechanistic generality. Careful analysis of the role of
adventitious protic impurities revealed the participation of competing
pathways involving addition of either TMSBr or HBr in the enantiodetermining, ring-opening event. The optimal catalyst induces
high enantioselectivity in both pathways, thereby achieving precise stereocontrol in fundamentally different mechanisms under the
same conditions and with the same chiral framework. The basis for that generality is analyzed using a combination of experimental
and computational methods, which indicate that proximally localized catalyst components cooperatively stabilize and precisely orient
dipolar enantiodetermining transition states in both pathways. Generality across different mechanisms is rarely considered in catalyst
discovery efforts, but we suggest that it may play a role in the identification of so-called privileged catalysts.

■ INTRODUCTION

The birth of the field of modern asymmetric catalysis can be
tied to the discovery made over a half century ago that chiral
small molecules can promote reactions of interest with very
high, “enzyme-like” levels of enantioselectivity.1 The practical
and fundamental implications of such transformations became
well-appreciated, fueling intensive research in the ensuing years
that has produced a continuously expanding list of
enantioselective catalytic organic reactions. A small subset of
those reactions has proven to be remarkably accommodating of
changes in substrate structure, enabling their broad application
(e.g., Figure 1A).2 The development of such reactions remains
a challenging and rarely met objective, but from a conceptual
standpoint, their generality can be rationalized fairly simply: in
such processes, the chiral catalyst exerts precise geometric
control on the prochiral reaction site, but selectivity does not
rely on interactions with the variable substituents on the
substrate.3 Another, quite different type of generality emerged
unexpectedly throughout the development of the field of
asymmetric catalysis, wherein certain chiral scaffolds have
proven to be effective at inducing high levels of enantiose-
lectivity across a wide range of mechanistically unrelated
reactions (e.g., Figure 1B).4 These so-called privileged chiral
catalysts or frameworks have proven enormously enabling for

the discovery of new enantioselective, catalytic processes.
Indeed, there are examples of extraordinarily useful new
transformations5 and new modes of catalysis6 or new classes of
reactions7 that were developed with reliance on chiral
frameworks which were identified previously for different
purposes. Analysis of privileged chiral scaffolds identified to
date has provided some insight into their common features:
most notably, structural rigidity achieved through chelation of
a ligand to a reactive metal center and C2 symmetry to create
stereochemically equivalent reactive sites.4a,8 However, these
characteristics are also common to many chiral frameworks
that are not broadly applicable in asymmetric catalysis and are
absent from several of the privileged frameworks that have
been identified. Unfortunately, fuller elucidation of the
structural features that underlie the privileged nature of such
catalysts is confounded by the difficulty of studying systems
that differ not only in mechanism but also in nearly every other
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key reaction parameter (e.g., identity of substrates, additives,
and other reagents, solvents, temperature, etc.)
Over the past decade, thioureas, ureas, and squaramides with

the general structure 1 (Figure 1C) have emerged as a
privileged class of organocatalysts capable of inducing high
levels of enantioselectivity in transformations proceeding
through a variety of mechanisms, including ion-pairing
catalysis involving nucleophilic addition to sp2 and sp3-
hybridized cationic electrophiles, concerted nucleophilic
substitution reactions, enantioseletive proton transfers, and

direct activation of electrophiles via LUMO lowering.9 As part
of this body of work, we recently reported that squaramide 1a
catalyzes the highly enantioselective opening of a structurally
diverse set of 3-substituted oxetanes with TMSBr (Figure
2A).9l Here, we report a detailed mechanistic investigation

revealing that the reaction proceeds through competing
Brønsted-acid and Lewis-acid mechanisms (Figure 1D), both
of which contribute significantly to product formation under
typical reaction conditions. The participation of multiple,
highly enantioselective reaction channels leading to the same
enantiomer of product in a single transformation provided an
opportunity to study the catalyst features that underlie
mechanistic generality without the confounding variables that
typically hinder such comparisons. Analysis of the mechanism
of stereoinduction in the competing pathways revealed the
engagement of colocalized, reinforcing secondary interactions
that cooperatively stabilize the transition state leading to the
major enantiomer of product in both mechanisms. We advance
that the presence of such reinforcing sites may be a common
feature in privileged catalysts that operate via attractive
noncovalent interactions.

Figure 1. (A) The Sharpless epoxidation represents a prototypical
example of substrate generality in an asymmetric catalytic reaction.
Even though the reaction scope is limited to allylic alcohols, it
tolerates extensive variation in the alkenyl substituents, thereby
enabling its broad application in synthesis. (B) The cinchona alkaloids
are prototypical privileged chiral frameworks for asymmetric catalysis.
Such systems are capable of inducing high enantioselectivity across a
range of mechanistically unrelated reactions (refs 4a, 10). (C) Dual
H-bond donors containing an aryl-pyrrolidne-tert-leucine motif with
the general structure 1 have emerged as a privileged class of chiral
organocatalysts. (D) The addition of TMSBr to oxetanes catalyzed by
chiral squaramide 1a can proceed simultaneously by fundamentally
different, yet highly enantioselective Lewis- and Brønsted-acid
mechanisms.

Figure 2. (A) Chiral squaramide-catalyzed addition of TMSBr to
oxetanes (ref 9l). (B) Original mechanistic hypothesis for the oxetane
ring-opening reaction. (C) Catalyst 1a reproducibly affords highly
enantioenriched products, but reactions catalyzed by other structur-
ally similar H-bond donors fail to provide reproducible levels of
enantioselectivity.
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■ RESULTS AND DISCUSSION

Earlier studies from our lab established that chiral squaramide
derivatives capable of dual H-bond-donor interactions promote
heterolysis of silyl triflates via anion abstraction and activate
the resulting electrophile-triflate ion-pairs through anion-
binding catalysis.9e,h,11 We initially reasoned that a similar
Lewis-acid-activation mechanism could be operative in the
oxetane-opening with TMSBr (Figure 2B).9l However,
observations made during the development of that reaction
provided compelling evidence that this proposal was at best
incomplete. In particular, the rate of the reaction was found to
decrease quite dramatically with increasing scale (Figure S4),
an effect that could not be ascribed simply to changes in mass
transport given the homogeneous nature of the reaction
mixtures. Additionally, an important difference was observed
between the behavior of optimal catalyst 1a and other chiral
squaramide dertivatives in the same family: the reaction
catalyzed by 1a afforded product 3 with reproducibly high
levels of enantioselectivity (e.e.), whereas suboptimal catalysts
such as 1b-1d afforded product with highly variable e.e.’s
(Figure 2C).
The hydrolysis of Lewis acids or metal salts to yield

Brønsted acids as potentially active reagents is well
documented in racemic chemistry12,13 and has also been
considered in the context of asymmetric catalysis.14−18 One
example directly relevant to the system analyzed here can be
found in the asymmetric chiral phosphoric acid-catalyzed
oxetane opening developed by Sun and co-workers, which
relies on the controlled hydrolysis of a silyl chloride to generate
HCl.19 We considered whether HBr generated by the
hydrolysis of TMSBr could account for the observed variability
in reaction performance. Using the enantioselective conversion
of 3-phenyloxetane (2) to trimethylsilyl-protected bromohy-
drin 3 as a model reaction, we tested this hypothesis through
the controlled introduction of HBr into the reaction medium.
High levels of enantioselectivity were maintained in the
presence of catalytic levels of HBr,20 but reaction rates were
increased by over an order of magnitude compared to the
reaction carried out with the rigorous exclusion of HBr (Figure
3A/Table S1).21,22

The positive rate dependence on added proton sources
suggested that HBrrather than TMSBrcould be the active
reagent in the oxetane-opening reaction. Consistent with that
hypothesis, stoichiometric quantities of squaramide 1a were
shown to mediate the reaction of oxetane 2 with HBr23 to
afford bromohydrin 4 in 98% e.e. (Figure 3B). In addition, 1a
proved effective as a catalyst (2 mol % loading) for the opening
of 2 with HCl, affording the chlorohydrin analogue of 4 in 92%
e.e. at 4 °C (Figure S42).24 Taken together, these results
implicate a mechanism involving cocatalysis by 1a and HBr
wherein enantioselective oxetane ring opening by HBr is
followed by silylation of bromohydrin 4 by TMSBr to afford 3
and regenerate HBr.
The identification of the HBr cocatalyed mechanism

accounts for the variation of rate with reaction scale given
that adventious water is expected to be present in greater ratios
in small-scale reactions. However, it does not provide a
satisfactory explanation for the irreproducible enantioselecti-
vies observed with suboptimal catalysts (Figure 2C). Provided
temperature is well controlled, variability in enantioselectivity
is indicative of competing reaction mechanisms. The obvious
candidate for such a competing pathway would be the racemic,

uncatalyzed ring-opening addition of HBr to the oxetane.
However, under the relevant, low [HBr] reaction conditions,
the uncatalyzed reaction is very slow and cannot account for
the observed variability in e.e. (Figure S48). Thus, the data are
most consistent with competing catalytic mechanisms being
involved, and we hypothesized that the originally proposed
silyl-Lewis-acid mechanism might also be operative. To test
this possibility, we sought to identify a base that could
completely suppress the HBr pathway without interfering with
the activity of the HBD catalyst. The additive had to be
selected carefully, because salts introduced either as anionic
bases or as the conjugate acids of neutral bases are generally
strong inhibitors of anion-binding pathways due to competitive
association to the hydrogen-bond-donor active site.25 Gratify-
ingly, trimethylsilyldiazomethane, which has previously been
demonstrated to function as a noninterfering base in hydrogen-
bond-donor catalyzed cation-olefin cyclizations,9p was found to
neutralize HBr rapidly and quantiatively without any
deleterious effect on the squaramide catalyst under the
standard reaction conditions (Figure 4A). In the presence of
TMSCHN2 the reaction of oxetane 2 with TMSBr was
observed to proceed at appreciable rates but more slowly and
with similar levels of enantioselectivity relative to the HBr-co-

Figure 3. (A) Effect of HBr (generated by the photochemical reaction
of Br2 in toluene) on reaction rate (black dots) and enantioselectivity
(red dots) ([1a] = 0.002 M, [2]0 = 0.1 M, [TMSBr]0 = 0.2 M). The
reaction with [HBr] = 0 was conducted in the presence of TMSCHN2
as a base (see text). Reaction rates were determined via in situ FTIR
monitoring using a ReactIR (see General Procedure for ReactIR
experiments in the Supporting Information). (B) Enantioselective
addition of HBr to 2 promoted by 1a.
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catalyzed reaction (Figure 4B). A distinct TMSBr-mediated
reaction must therefore be operative alongside the HBr
cocatalyzed pathway, with both pathways contributing to the
formation of product 3 with high levels of enantioenrichment
in the presence of catalyst 1a. Moreover, this phenomenon is
not limited to model oxetane 2. A survey of the 1a-catalyzed
opening of 2 and 6 additional oxetanes selected to represent
the diversity of the originally reported reaction scope (3-aryl,
3-alkyl, 3-heteratomic, and 3,3-disubstituted oxetanes) revealed
an average difference of <5% e.e. between the two
mechanisms.26

The observations outlined above and extensive ground state
and kinetic analyses conducted in the absence (Figures S9,
S12−S24) and presence (Figures S36−S41) of added
TMSCHN2 are consistent with a scenario in which the two
catalytic mechanisms outlined in Figure 6A are operating
simultaneously in the 1a-catalyzed ring-opening addition of
TMSBr to oxetanes. In the Lewis-acid pathway, which is the
only pathway operative in the presence of TMSCHN2, kinetic
analysis revealed a first-order dependence on the concen-

trations of squaramide 1a, oxetane 2, and TMSBr, which is
consistent with rate-determining oxetane ring-opening via
bromide addition.27 In the absence of TMSCHN2, both the
Lewis-acid and Brønsted-acid pathways are operative. Under
these conditions and at steady-state,28 a first-order dependence
on TMSBr, a first-order dependence on [1a], and a positive
order in [2] with a nonzero y-intercept are observed. The
positive order in [2] can be ascribed to contribution of the
Lewis-acid pathway, while the nonzero intercept reflects a
zeroth-order dependence on [2] for the Brønsted-acid
pathway. On the basis of the combination of this zeroth-
order dependence and positive orders for TMSBr, 1a, and HBr
concentrations (Figure 3A), the alcohol silylation step that
affords 3 with regeneration of the squaramide-HBr complex29

is proposed to be rate-determining in the Brønsted acid
pathway. A primary kinetic isotope effect was observed in a
one-pot competition experiment between unlabeled and
2,4-13C2-2 in the presence of TMSCHN2 (see Supporting
Information for details). Taken together with the previously
reported9l primary KIE observed in an analogous experiment
in the absence of TMSCHN2, we conclude that bromide
delivery is enantiodetermining for both mechanisms.
The recognition that two distinct catalytic pathways are

operative in the enantioselective oxetane-opening reaction
catalyzed by 1a enabled the successful development of a
scalable protocol. In the case of substrate 2, the challenge of
reproducibly achieving optimal rates without compromising
enantioselectivity can be met by maximizing the HBr-co-
catalyzed pathway, without participation of the racemic
uncatalyzed reaction which intervenes at high [HBr] (Figure
3A).30 The conversion of 1 g of 2 to 3 was thus achieved in
89% yield and 97% e.e. using 1 mol % of 1a and 6.5 mol %
added H2O (Figure 5). Catalyst 1a was reisolated from the
reaction in 90% yield and displayed undiminished activity and
enantioselectivity in a subsequent reaction (Figure S6).

The enantiodetermining ring-opening transition states for
the Brønsted and Lewis acid pathways were modeled
computationally in order to assess the catalyst features
responsible for high stereocontrol in both pathways (complete
computational details and computational references are
provided in the SI). In the Brønsted acid cocatalyzed pathway,
TSprotic-R and TSprotic-S were identified as the lowest energy
transition states leading to the major and minor product
enantiomers (Figure 6B). TSsilyl-R and TSsilyl-S were the lowest
energy enantiomeric transition states located for the Lewis acid
pathway (Figure 6C). The computational model was validated
by comparison of predicted and measured enantioselectivity
for a series of chiral catalysts with varied aryl pyrrolidine
fragments (Figure 7). Although the computational models

Figure 4. (A) Reaction time-course measured using in situ FTIR
monitoring. Upon the addition of TMSCHN2 (green -4000 s), the
rate of consumption of 2 (black) decreases but continues at a lowered
rate. Upon the addition of HCl (8000 s), the TMSCHN2 is rapidly
consumed. Following complete consumption of TMSCHN2 the rate
of oxetane consumption increases. (B) The reaction run in the
presence of TMSCHN2 proceeds with high enantioselectivity and at a
rate that is slower but still competitive with the HBr cocatalyzed
pathway.

Figure 5. Addition of trace water allows for high reactivity and
enantioselectivity with reduced loadings of squaramide 1a in a gram-
scale reaction of oxetane 2 with TMSBr.
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Figure 6. (A) Proposed reaction mechanisms consisting of competing Brønsted and Lewis acid pathways. (B) Computed lowest energy major (R)
and minor (S) transition states for the Brønsted acid pathway (ΔΔE‡ = 2.6 kcal/mol). (C) Computed lowest energy major (R) and minor (S)
transition states for the Lewis acid pathway (ΔΔE‡ = 2.5 kcal/mol). Transition states were optimized at SMD (Et2O) − B97D/def2-SVP. The
electronic energies were corrected by single-point refinement at SMD (Et2O) − B97D3/def2-TZVP.
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overestimate the magnitude of the enantioselectivities, the
model reproduces the trends in the data (R2 = 0.92) including
the inversion in the sense of enantioinduction for the Lewis
acid pathway with catalyst 1g.31

Qualitative analysis of TSsilyl-R and TSsilyl-S reveals
significant similarity between the two transition structures: in
both, the forming C−Br and breaking C−O bonds are
positioned almost identically relative to the catalyst, and the
two transition structures can be overlaid to a significant degree
(Figure S63). However, the developing α-silyloxy methylene
group, which is predicted to bear much of the positive
electrostatic potential (Figure S62), is positioned differently in
the two structures. In TSsilyl-R, this methylene group points
toward the amide and the 9-phenanthryl substituent of the
catalyst, in an ideal orientation for stabilizing cation-π and
cation-dipole interactions.32 In contrast, the methylene is
oriented away from the arene and amide in TSsilyl-S, resulting
in attenuated stabilizing interactions relative to those in the
major pathway. In the Brønsted acid pathway, additional
conformational constraint is provided by a hydrogen-bonding
interaction between the protonated oxetane and the amide.
This interaction can be readily accommodated in the transition
state leading to the major enantiomer, such that the position
and conformation of the oxetane as it undergoes ring opening
in the catalyst active site is similar in TSsilyl-R and TSprotic-R,
allowing the cation-π interaction to be maintained. However,
in TSprotic-S, maintenance of the anchoring H-bond requires
the disrupting of the rest of the network of interactions
between the catalyst and substrate, including the proposed
cation-π interaction.
The computationally derived hypothesis that cation-π

interactions play a critical role in enantioinduction was tested
experimentally by evaluating the extended series of aryl-
pyrrolidinosquaramides 1a−1g in the reactions of 2 with
TMSBr and HBr (Figure 8A). In consistency with the models,
selectivity for the R-enantiomer in both pathways was observed
to correlate with the ability of the aryl substituent to engage in
a cation-π interaction, with electron-deficient or less polar-
izable arenes affording decreased selectivity for the R-
enantiomer.32,33 Furthermore, all catalysts induced higher
selectivity for the R-product in the HBr cocatalyzed reactions
of 2 relative to the Lewis acid pathway, consistent with the
proposed reinforcing hydrogen-bonding interaction in the
Brønsted acid mechanism. The results in Figure 8A,B also
provide a clear explanation for why enantioselectivities under

the original screening conditions were more consistent with
catalyst 1a than with less selective catalysts (Figure 2C):
squaramide 1a is the only catalyst tested that is highly
enantioselective for both the Brønsted acid and the Lewis acid
pathways, with every other catalyst showing large differences in
e.e. or even favoring alternate enantiomers of product for the
two pathways. Under the original reaction conditions
employed for the catalyst optimization studiesin which the
concentration of HBr was not controlled carefullyboth
pathways are kinetically competent and therefore contribute
significantly to product formation. As the optimization
experiments were designed, only a catalyst that is highly
enantioselective for both mechanisms can generate product in
consistently high e.e.’s.
The fact that catalyst 1a induces high enantioselectivity

across different mechanisms in the oxetane ring-opening is
intriguing and touches on the broader phenomenon of
privileged chiral catalysts.4a The electrostatic potential map

Figure 7. Predicted ΔΔE‡ vs experimental ΔΔG‡ for the Lewis acid
pathways for catalysts 1a−1g and the Brønsted acid pathway for
catalyst 1a. See Figure 8 for catalyst structures, Table S11 for
tabulated data, and Figures S7 and S34 for experimental details.

Figure 8. (A) Enantioselectivity for the reaction of 2 catalyzed by 1a−
1g determined both for the HBr-promoted reaction and with TMSBr
in the presence of TMSCHN2 (average of two runs, see Figures S7
and S33 for details). (B) Graphical representation of relative
enantioselectivities of the Brønsted and Lewis acid mechanisms for
reactions of 2 catalyzed by 1a−1g.
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of 1a (Figure 9A) reveals an electron-rich pocket (in red)
defined by the amide and 9-phenanthryl substituent positioned

adjacent to the H-bond donor motif (in blue). While the
protonated and silylated transition states in the oxetane
opening present dramatically different steric features, they
possess dipoles that display charge similarly within the catalyst
active site (Figure 9B,C). The precise nature (i.e., cation-π,
charge-dipole, H-bonding) and relative strengths of the
stabilizing interactions differ between the two pathways (see
Figure S67 and S68 for a detailed analysis), but through
cooperation between the arene and the amide, the catalyst can
stabilize positive charge in the major transition states to a
significant degree from both the protonated and the silylated
oxetane. The presence of multiple, reinforcing sites for
secondary interactions may be a general feature of privileged
scaffolds that underlies their ability to stabilize or destabilize a
diverse range of transition states.

■ CONCLUSION
Given the intrinsic challenges associated with attaining
stereocontrol with small-molecule catalysts, observation of
high enantioselectivity might, in principle, be taken as evidence
of a “well behaved” transformation that proceeds through a
single mechanistic pathway (or an ensemble of closely related
transition states) rather than through distinct, completing
mechanisms.34 The unexpected discovery detailed here, that
the squaramide-catalyzed ring opening of oxetanes with
TMSBr proceeds through competing Lewis- and Brønsted-
acid reaction pathways, adds to a growing body of evidence35

that high enantioselectivity can be manifested despite the
availability of distinct mechanistic pathways to the same
product. It is noteworthy that the participation of competing
mechanisms remained unrecognized throughout the course of
our reaction development and scope studies, only becoming
apparent upon scale-up efforts and subsequent careful
mechanistic analysis. Thus, in optimizing enantioselectivity in
the oxetane opening, we unwittingly optimized a catalyst for
generality across two different mechanisms. Caution should of
course be exercised before attempting to draw general
conclusions from a specific case study such as this one, but
given that detailed mechanistic investigations of new
asymmetric reactions rarely if ever precede catalyst optimiza-
tion efforts, such scenarios could be more common than is
generally appreciated. Given the truism that “you get what you
screen for,”36 this study raises the intriguing question of
whether the discovery of remarkably general chiral catalysts
over the past several decades might be tied in part to the
optimization of reactions that are not always “well behaved.”
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modelling and comparisons between predicted and measured IR
spectra, which indicate a bridging interaction between the protonated
amide and the squaramide-bound bromide. See Figures S15-S17 for a
detailed discussion.
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higher levels of enantioselectivity than the Brønsted-acid pathway (see
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Information).
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(33) These data offer a striking contrast to those obtained in an H-
bond-donor catalyzed multicomponent synthesis of chiral homoallylic
amines (ref 9h.), where (poly)fluorinated phenyl substituents on the
aryl pyrrolidine moiety of the catalyst provided higher levels of
enantioselectivity than phenylpyrrolidine. In that transformation,
differential stabilization by dispersive π-stacking interactions, rather
than differential cation-π interactions, were concluded to contribute
to enantioinduction.
(34) Indeed, the participation of competing catalyzed pathways
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example: (c) Denmark, S. E.; Fu, J. On the Mechanism of Catalytic,
Enantioselective Allylation of Aldehydes with Chlorosilanes and
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