

Article

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Access to Imidazolidine Fused Sulfamidates and Sulfamides Bearing a Quaternary Center via 1,3-Dipolar Cycloaddition of Non-stabilized Azomethine Ylides

Joydev K. Laha, and Krupal P. Jethava

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b00116 • Publication Date (Web): 16 Mar 2017 Downloaded from http://pubs.acs.org on March 16, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	
2	
3	
4	
5	
6	
7	Access to Imidazolidine Fused Sulfamidates and Sulfamides Bearing a Quaternary Center
8	
9	via 1,3-Dipolar Cycloaddition of Non-stabilized Azomethine Ylides
10	
10	
10	
12	
13	
14	Joydev K. Laha* and Krupal P. Jethava
15	
16	
1/	
18	
19	
20	
21	Department of Pharmaceutical Technology (Process Chemistry)
22	
23	
24	National Institute of Pharmaceutical Education and Research
25	
26	
27	S. A. S. Nagar, Punjab 160062, India
28	
29	
30	E-mail: jlaha@niper.ac.in
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

ABSTRACT

A 1,3–dipolar cycloaddition reaction of non-stabilized azomethine ylides and cyclic *N*-sulfonyl imines has been developed providing a workable access to imidazolidine fused sulfamidates, sulfamides, and benzosultams bearing a quaternary center. Distinct from the available literature, this current work enables to make entry, for the first time, into the novel imidazolidine fused sulfamidates and sulfamides. Furthermore, the selective imidazolidine ring opening accompanied by CH₂ extrusion yielded tetra-substituted sulfamidates with an aminomethyl group. In addition, imidazolidine ring opening coupled with SO₂ extrusion provided synthetically useful 1,2–diamines.

INTRODUCTION

The incorporation of a sulfonamide group is often a useful practice in medicinal chemistry for improving pharmacological potency and/or absorption, distribution, metabolism, and excretion (ADME) properties of the lead compound.¹ In an effort to mimic the pharmacological potency and ADMET properties of sulfonamides, exploration of a sulfamidate or sulfamide group has been the current trend of research in contemporary sulfonamide chemistry. This connectivity reinforces medicinal chemists to extensive designing and synthesis of sulfamidates and sulfamides. As a result, a large variety of sulfamidates including acylic and cyclic sulfamidates have been synthesized either by preparing first time,² or derivatization of the prepared sulfamidates.³ However, aryl sulfamidates or their derivatives fused with nitrogen heterocycles have been limited. Perhaps most importantly, sulfamidates impart additional features when fused to a nitrogen heterocycle leading to specific biological activities.⁴ While several nitrogen heterocycle fused sulfamidates have been investigated, imidazolidine fused cyclic sulfamidates remain unexplored in drug design despite imidazolidines are common integral parts of many pharmaceutical agents.⁵ Imidazolidines are also attractive synthetic intermediates in organic synthesis, often employed in the preparation of 1,2-diamines.⁶ In this horizon, imidazolidine fused aryl sulfamidates would be appealing although their non-availability could be a serious concern. Based upon this theme, imidazolidine fused aryl sulfamidates have appeared as an attractive synthetic target.

The synthesis of five or six membered heterocycle fused sulfamidates currently available in the literature was achieved largely by [3+2] or [4+2] annulation approaches, which are truly different from pericyclic cycloaddition reactions (Scheme 1). In 2013, He and co-workers

reported a formal [4+2]-cycloaddition of sulfamidate and enones/ynones for the synthesis of piperid-4-ones.⁷ Bode et al. and Zhang et al. independently reported a protocol for the annulation of sulfamidates to the synthesis of six-membered nitrogen heterocycle fused sulfamidates using a NHC catalyst⁸ or an organocatalyst.⁹ A formal [3+2]-cycloaddition of *N*-arylsulfonyl imines with allenes¹⁰ or methyl cyanoacetates¹¹ to the synthesis of five-membered fused sulfamidates was demonstrated by Gao et al. delivering sulfamidate fused dihydropyrroles and 2-imidazolines, respectively. While several of these fused sulfamidates have been prepared elegantly, the limitations in the current literature may include a) lacking invariably a quaternary center in the prepared fused sulfamidates, b) rare precedence of imidazolidine fused sulfamidates, and c) nitrogen heterocycle fused sulfamides hitherto been unknown.

Scheme 1. Synthetic Approaches to Nitrogen Heterocycles Fused Sulfamidates

Understanding the versatile reactivity of cyclic *N*-arylsulfonyl imine towards annulation learned from the current literature and based on our own experiences in 1,3-dipolar cycloadditions of cyclic azomethine ylides with electron-deficient alkenes,¹² we surmised that a 1,3-dipolar

cycloaddition involving a non-stabilized azomethine ylide and cyclic *N*-arylsulfonyl imine could give a direct access to imidazolidine fused sulfamidates. However, the important questions that remain to implement this cycloaddition are, whether: a) a non-stabilized azomethine ylide could undergo 1,3–dipolar cycloaddition reaction¹³ with cyclic *N*-sulfonylimines, as they could possibly undergo Michael addition,¹⁴ b) a single, easily accessible protocol could be developed to synthesize imidazolidine fused sulfamidates bearing a quaternary center, c) a broad scope for cycloaddition reactions in terms of the preparation of sulfamidates or sulfamides, and d) use of an *N*-alkyl azomethine ylide previously unexplored. Herein, we describe 1,3-dipolar cycloaddition reactions of non-stabilized azomethine ylides and cyclic *N*-sulfonyl imines providing a workable access to novel imidazolidine fused sulfamidates, sulfamidates, sulfamides, and benzosultams bearing a quaternary center. The key features of the current work may include synthesis of a novel class of sulfamidates and sulfamides reported for first time, previously unexplored 1,3-dipolar cycloaddition reactions of non-stabilized azomethine spile azomethine ylides with cyclic *N*-sulfonyl imines, nucleophile dependent ring opening of fused sulfamidates yielding tetra-substituted sulfamidates containing an aminomethyl group or 1,2-diamines.

RESULTS AND DISCUSSION

Previously, we demonstrated that cycloaddition of cyclic azomethine ylides and electrondeficient alkenes could offer an expedient access to bridged azabicyclic compounds.¹² The azomethine ylides were generated from their corresponding suitable precursors by reaction with Ag(I)F in CH₃CN at room temperature. As the reaction of azomethine ylides and *N*-sulfonyl imines have not been explored previously,¹⁴ our initial investigation was largely focused on 1,3dipolar cycloaddition of azomethine ylide, generated from **2a**, with a cyclic *N*-sulfonyl imine **1a** (Table 1). Reaction of **1a** and **2a** in the presence of 2.2 equiv Ag(I)F in anhydrous DCM at room temperature gave cycloadduct **3aa** in 80% yield (entry 1). Under the condition, the azomethine ylide, generated in situ from **2a** by reaction with Ag(I)F, undergoes a [3+2]-cycloaddition with **1a** giving the cycloadduct **3a** with a quaternary center. To improve the homogeneity of the reaction, two other solvents were investigated (entries 2-3), which resulted THF as our choice. In line with our previous study,¹² other fluoride source, e.g.; CsF, or reduced molar quantity (2.0 equiv) of Ag(I)F had adverse effects (entries 4-5). Thus, an optimized condition entailed reaction of **1a** and **2a** in the presence of Ag(I)F in anhydrous THF at room temperature for 1 h affording imidazolidine fused sulfamidate **3aa** in 85% isolated yield.

Table 1. Optimization Study^a

	Me + N 1a 2a	IS Fluoride source Solvent Temp, 1 h	O O S N Me 3aa
Entry	Fluoride source	Solvent	Yield of 3aa (%)
1	AgF	Anhy. DCM	80
2	AgF	Anhy. THF	85
3	AgF	Anhy. CH ₃ CN	43
4	CsF	Anhy. THF	00
5 ^b	AgF	Anhy. THF	71

^a **1a** (0.2 mmol), **2a** (0.22 mmol), fluoride source (0.44 mmol), temp., 1 h; ^b 2.0 equiv AgF

The cyclic N-sulfonyl aldimines or ketimines 1a-g and 4a-c were prepared by the reaction of 2hydroxy benzaldehydes or acetophenones or 2-amino acetophenones and sulfamoyl chloride (see the Supporting Information).⁹⁻¹⁰ The azomethine ylide precursors **1a-f** were easily prepared from their corresponding amines that are commercially available.¹² Thus, heating benzylamine (1 equiv) and iodomethyltrimethylsilane (2.5 equiv) in the presence of powdered K₂CO₃ in anhydrous MeCN at 90 °C for 72 h gave the azomethine vlide precursors (see the Supporting Information). The study was subsequently extended to establish the scope of 1,3-dipolar cycloaddition of different azomethine ylides with cyclic N-sulfonyl imines (Scheme 2). The reaction of azomethine vlide **2b** bearing an electron-donating -OMe group at the *meta*-position of aryl ring afforded 3ab in 90% yield (entry 1). The other azomethine ylide precursors bearing -Me or -Cl group at the para-position when reacted with sulfamidate 1a, gave the desired products 3ac and 3ad in 89% and 83% yields, respectively (entry 2-3). Likewise, when sulfamidate **1b** having a phenyl group on imine double bond was reacted with azomethine ylide 2a, it also produced imidazolidine fused sulfamidate 3ba in 75% yield (entry 4). N-ASulfonyl imine **1b** embedded in a naphthalene ring was also a viable substrate affording **3ba** although in somewhat reduced yield (65%) (entry 5). The scope of 1,3-dipolar cycloaddition was also extended to the cyclic N-arylsulfonyl aldimines. While the reaction of unsubstituted aldimine 1d and azomethine ylide 2a gave 3da in 88% (entry 6), reaction of 1d and azomethine ylide, generated in situ from the precursor 2b or 2c, afforded 3db and 3dc in 92% and 89% yields, respectively (entry 7-8). When the azomethine ylide, generated in situ from 2a was subjected to the reaction with 1e, the cycloadduct 3ea was obtained in 75% yield (entry 9). However, an improved yield of 86% was observed when -OMe substituent was present on both the reacting partners, yielding imidazolidine fused sulfamidate **3eb** in 86% yield (entry 10). A substrate **1f** containing an OCF_3 group also underwent cycloaddition producing imidazolidine fused sulfamidates **3fa** in excellent yield (entry 11).

However, compound **1g** with an electron-withdrawing group exerts diminishing effect producing **3ga** in reduced yield (68%) (entry 12). Central to this investigation was the realization, for the first time, of a 1,3-dipolar cycloaddition of non-stabilized ylides and cyclic *N*-arylsulfonyl imines, which could smoothly occur under a mild condition affording imidazolidine fused sulfamidates containing a quaternary center.

Furthermore, the compatibility of a nitrogen analogue of *N*-arylsulfonyl imines towards cycloaddition with the non-stabilized azomethine ylides was studied (Scheme 3).

Scheme 3. Synthesis of Imidazolidine Fused Cyclic Sulfamides

Disappointingly, the reaction of **4a** and azomethine ylide **2a** under the standard conditions did not form the cycloadduct **5aa** (entry 1). This could be attributed to the free NH group present in **4a**. Indeed, *N*-benzyl protection in **4a** largely stopped this adventitious problem. Thus, cycloaddition of azomethine ylide derived from **2a** underwent smooth [3+2]-addition with **4b** producing cycloadduct **5ba** in 60% yield (entry 2). Likewise, **2a** underwent smooth [3+2]-addition with **4b** producing with **4c** containing a phenyl group affording cycloadduct **5ca** in 54% yield (entry 3). Pivotal to this investigation was to uncover the use of *N*-arylsulfonyl imine **4b-4c** as suitable reactant partners in the 1,3-dipolar

cycloaddition reaction of azomethine ylides yielding imidazolidine fused sulfamides **5ba-5ca** bearing a quaternary center that were previously unknown.

The wide scope of the cycloaddition was further demonstrated in the synthesis of enantiomerically pure imidazolidine fused sulfamidates (Scheme 4). The cycloaddition of the azomethine ylide derived from precursor 3e containing a stereocenter at the benzylic position was investigated. Thus, when chiral azomethine vlide 3e was employed in the cycloaddition reaction with 1d, two diastereomers were formed in a 1:1 ratio with a combined 83% yield of 6de (entry 1). The two diastereoisomers were easily separated by flash silica chromatography and distinguished by proton NMR spectroscopy. While the aforesaid 1,3-dipolar cycloadditions involve N-benzyl azomethine ylides, preparation of N-alkyl azomethine ylides and their cycloadditons with electron-deficient alkenes remain unexplored. Gratifyingly, azomethine ylide derived from the precursor 2f undergoes cycloaddition eventfully with 1d delivering imidazolidine fused sulfamidate **6df** in 72% yield (entry 2). Moreover, **2f** also reacted smoothly with 1a giving sulfamidate 6af with 83% yield (entry 3). The key features of this part of investigation were: a) demonstration, for the first time, of a 1,3-dipolar cycloaddition involving chiral azomethine ylides and N-arylsulfonyl imine, b) the use of N-alkyl azomethine ylides in 1,3-dipolar cycloaddition with N-sulfonyl imine furnishing sulfamidates containing a quaternary center.

Scheme 4. Synthesis of other Imidazolidine Fused Cyclic Sulfamidates

A selective ring opening of the imidazolidine ring in imidazolidine fused sulfamidates while elusive could potentially be used to prepare tetra-substituted sulfamidates. Treatment of **3ea** and **3ab** with TBAF (3 equiv) in THF at 80 °C gave tetra-substituted sulfamidates **7a-7b** in 93-96% yield (Eqn 1). The cleavage of imidazolidine ring is accompanied by -CH₂ extrusion yielding tetra-substituted sulfamidates containing an aminomethyl functionality that could be used as a synthetic handle for further chemical transformation. Distinct from the literature, the selective ring opening of imidazolidine ring could complement the reported conditions performed under strong acidic conditions.⁸ In contrast, when imidazolidine fused sulfamidate **3da** was treated with LAH, we observed SO₂ extrusion as well as C-N bond cleavage of imidazolidine generating 1,2diamine functionality in *ortho*-phenol and formed compound **7c** in 97% yield (Eqn 2). Thus, distinct from the literature reports, nucleophile dependent ring opening of imidazolidine fused sulfamidates paved ways to the synthesis of 1,2-diamine derivatives.

More recently, five membered benzosultams received special attention to synthetic chemists for variety of derivatization.¹⁵ Thus, the protocol was further extended to benzosultam where O or N is absent (Scheme 5). Under the standard conditions, reaction of **8a** with azomethine ylide precursor **2d** or **2f** afforded imidazolidine fused benzosultams **9ad** and **9af** in excellent yields (73% and 78%, respectively) bearing a quaternary center. The synthesis of such fused heterocycle with a quaternary center is unknown in the literature.

Scheme 5. Imidazolidine Fused Benzosultam Synthesis

In summary, we have developed a protocol for the synthesis of novel class of compounds, imidazolidine fused sulfamidates, sulfamides and benzosultams bearing a quaternary center. The chemistry developed to prepare these compounds involve a 1,3–dipolar cycloaddition reaction of non-stabilized azomethine ylides and *N*-arylsulfonyl aldimine or ketimines. Furthermore, the selective imidazolidine ring opening accompanied by CH_2 extrusion generated tetra-substituted

sulfamidates with an aminomethyl group. In addition, imidazolidine ring opening coupled with SO₂ extrusion provided synthetically useful 1,2–diamines.

EXPERIMENTAL SECTION

General Methods. Unless noted otherwise, all reagents and solvents were purchased from commercial sources and used as received. All reactions were performed in a screw-capped vial. The proton (¹H) and carbon (¹³C) NMR spectra were obtained using a 400 MHz using Me₄Si as an internal standard and are reported in δ units. Coupling constants (J values) are reported in Hz. Column chromatography was performed on silica gel (100-200#, 230-400#). High resolution mass spectra (HRMS) were obtained using the electron spray ionization (ESI) technique and as TOF mass analyzer. IR spectra are reported in cm^{-1} units. All melting points were taken using a melting point apparatus equipped with a calibrated thermometer and are uncorrected. Following compounds were prepared according to literature procedure: 4-Methylbenzo[e][1,2,3]oxathiazine 2,2-dioxide (1a),^{9a} N-Benzyl-1-(trimethylsilyl)-N-((trimethylsilyl)methyl) methanamine (2a),¹⁶ 4-Methylnaphtho[2,1-e][1,2,3]oxathiazine 2,2-dioxide (1c),^{9a} Benzo[e][1,2,3]oxathiazine 2,2-7-Methoxybenzo[*e*][1,2,3]oxathiazine (1e).¹⁰ (1d),¹⁰ dioxide 2,2-dioxide 6-Nitrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (1g),¹⁷ 4-Methyl-1H-benzo[c][1,2,6] thiadiazine 2,2-dioxide $(4a)^{18}$ 3-phenylbenzo[*d*]isothiazole 1,1-dioxide $(8a)^{19}$

General Procedure for the Synthesis of Azomethine ylide Precursors (2a-f)

In an oven-dried screw-cap vial (15 mL) with a magnetic bar, benzylamine (1 mmol), iodomethyltrimethylsilane (2.5 mmol), and powdered K_2CO_3 (5 mmol) were taken. (Note: powdered K_2CO_3 was oven-dried at 100 °C for 2 h before use). The reagents were purged twice with nitrogen. Under nitrogen atmosphere, anhydrous acetonitrile (5 mL) was added, and the septum was replaced with a teflon coated screw cap. The reaction mixture was heated at 90 °C for 72 h. Then, the reaction mixture was passed through a small celite bed, and the bed was washed with ethyl acetate (10 mL). The filtrate was concentrated under vacuum and purified by neutral alumina column chromatography with 100% hexane or 1% (ethyl acetate: hexane) as eluent.

General Procedure for the Synthesis of Imidazolidine Fused Sulfamidates (3, 6), Sulfamides (5) and Benzosultam (9)

In an oven-dried aluminium foil coated screw-cap vial with a magnetic bar, cyclic sulfonylimine (0.2 mmol, 1 equiv) and Ag(I)F (0.44 mmol, 2.2 equiv) were taken. [Note: Ag(I)F was completely dried under vacuum at 55-60 °C at least for 30 min with aluminium foil coating before use]. The vial was purged three times with nitrogen and kept under ice bath. A solution of the azomethine ylide precursor (0.22 mmol, 1.1 equiv) in anhydrous THF (1 mL) was added dropwise . The ice-bath was removed, and the reaction mixture was stirred at room temperature for 1-2 h under nitrogen atmosphere. The reaction was monitored by TLC. Then, the reaction mixture was diluted with 5 mL CH₂Cl₂ and passed through a celite bed. The filtrate was concentrated *in vacuo* and purified by column chromatography (100-200# silica, ethyl acetate : hexane) to give the desired imidazolidine fused sulfamidate or sulfamide or benzosultam.

General Procedure for the -CH₂ Extrusion Reaction (compound 7*a*-*b*)

To a solution of imidazolidine fused sulfamidate (0.2 mmol) in anhydrous THF (1 mL), TBAF-3H2O (3 equiv) was added, and the reaction mixture was heated at 80 °C for 5 h. Silica gel (100-200#) was added to the reaction mixture, and the excess solvent was evaporated. The silica gel mixed with the crude product was loaded on the column, which upon chromatography (ethyl acetate /hexane = 3:7 - 7:3) afforded the desired product.

General Procedure for the $-SO_2$ Extrusion Reaction (compound 7c)

To a suspension of lithium aluminum hydride (27 mg, 0.72 mmol) in anhydrous THF (1 mL), [Note: *LAH should be handled very carefully due to its explosive nature*] solution of imidazolidine fused sulfamidate (40 mg. 0.12 mmol) was added drop wise under ice-cooling. The mixture was refluxed for 6 hr and cooled naturally to room temperature, and then to 0 °C with an ice bath. The reaction mixture was quenched by drop wise addition 10% NaOH solution (1 mL) at 0 °C and stirred for 30 min at same temperature. The resulting suspension was passed through celite bed and filtrate was concentrated *in vacuo*. The crude was purified by short column chromatography (100-200# silica) with ethyl acetate as an eluent to get desire product.

2-Benzyl-10b-methyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]oxathiazine 5,5-

dioxide (**3aa**): Pale yellow oil; Yield 85% (56 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.23 (m, 4H), 7.20 (dt, J = 7.5, 1.3 Hz, 1H), 7.15–7.10 (m, 3H), 7.02 (dd, J = 8.2, 1.4 Hz, 1H), 4.43 (d, J = 7.0 Hz, 1H), 4.16 (d, J = 7.0 Hz, 1H), 3.71–3.59 (m, 2H), 3.29 (d, J = 10.3 Hz, 1H), 3.06 (d, J = 10.3 Hz, 1H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 137.1, 129.1, 128.6, 128.4, 127.6, 127.5, 126.6, 125.9, 119.0, 72.7, 69.1, 68.8, 57.2, 27.4; HRMS (ESI-TOF) m/z: [M

+ H]⁺ Calcd for $C_{17}H_{19}N_2O_3S$ 331.1116; Found 331.1112; IR (Neat): 3029, 2925, 2853, 1448, 1398, 1179 cm⁻¹.

7-Methoxy-4-phenylbenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (1b)¹⁸: Off-white solid; 67% Yield (97 mg); mp. 139-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.72 (m, 2H), 7.71–7.65 (m, 1H), 7.61–7.54 (m, 3H), 6.91–6.86 (m, 2H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.9, 171.4, 166.5, 157.1, 134.1, 133.4, 132.9, 130.5, 128.8, 113.1, 109.9, 103.6, 56.4, 45.0; HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₄H₁₁NO₄S 289.0409; Found 289.0412; IR (KBr): 3062, 2927, 2814, 1320, 1171 cm⁻¹.

6-(Trifluoromethoxy)benzo[*e*][1,2,3]oxathiazine 2,2-dioxide (1f): To a solution of 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (1.0 mmol) in DMA (1 mL) at room temperature was added freshly prepared ClSO₂NH₂ (2.0 mmol, prepared according to reported procedure¹⁰) in small portions, and the resulting solution was stirred for 18 h. The reaction was quenched with ice-cold H₂O (10 mL), and CH₂Cl₂ (20 mL) was added to the water. The aqueous layer was separated and extracted with CH₂Cl₂ (2 x 10 mL), and the combined organic layers were washed with saturated NaHCO₃ solution (50 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by small column chromatography to obtain the desired product **7** as brown yellow oil (67% yield, 178 mg); ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 7.67–7.61 (m, 1H), 7.60 (s, 1H), 7.40 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 152.3, 146.0, 130.4, 122.6, 120.2 (q, *J* = 258 Hz), 120.6, 115.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₈H₅F₃NO₄S 267.9891; Found 267.9897.

N-(3-Methoxybenzyl)-1-(trimethylsilyl)-N-((trimethylsilyl)methyl)methanamine (2b):

Transparent liquid; Yield 70% (228 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.22 (t, *J* = 7.8Hz, 1H), 6.96 (d, *J* = 2.0Hz, 1H), 6.92 (d, *J* = 6.9 Hz, 1H), 6.79 (dd, *J* = 7.8, 2.1 Hz, 1H), 3.83 (s, 3H),

3.40 (s, 2H), 1.92 (s, 4H), 0.07–0.05 (m, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 142.8, 129.0, 121.0, 113.7, 112.4, 66.1, 55.1, 50.5, -1.2; HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₆H₃₁NOSi₂ 309.1944; Found 309.1951; IR (Neat): 3029, 2954, 1602, 1448, 1247 cm⁻¹.

N-(4-Methylbenzyl)-1-(trimethylsilyl)-N-((trimethylsilyl)methyl)methanamine (2c): Transparent liquid; 73% Yield (213 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.22 (d, J = 8.0 Hz, 2H), 7.16–7.12 (d, J = 8.0 Hz, 2H), 3.40 (s, 2H), 2.37 (s, 3H), 1.92 (s, 4H), 0.07 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 133.4, 131.2, 129.4, 66.5, 51.6, -0.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₃₂NSi₂ 294.2073; Found 294.2079; IR (Neat): 3032, 2956, 1611, 1245 cm⁻¹.

N-(4-Chlorobenzyl)-1-(trimethylsilyl)-N-((trimethylsilyl)methyl)methanamine (2d): Transparent liquid; 82% Yield (256 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.26 (m, 4H), 7.16–7.12 (m, *J* = 8.0 Hz, 2H), 3.40 (s, 2H), 2.37 (s, 3H), 1.92 (s, 4H), 0.09 - 0.05 (m, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 140.6, 133.4, 131.2, 129.4, 66.5, 51.6, -0.01; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₉ClNSi₂ 314.1527; Found 314.1529; IR (Neat): 3029, 2955, 1607, 1247 cm⁻¹.

(*S*)-1-Phenyl-N,N-bis((trimethylsilyl)methyl) ethanamine (2e): Transparent liquid; Yield 70% (205 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 3.94 (q, *J* = 6.6 Hz, 1H), 1.91 (dd, *J* = 14.5 Hz, 4H), 1.30 (d, *J* = 6.5 Hz, 4H), 0.05 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 128.1, 127.6, 126.3, 60.7, 44.4, 9.2, -1.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₃₂NSi₂ 294.2073; Found 294.2077; IR (Neat): 3030, 2955, 2926, 1662, 1453, 1248, cm⁻¹.

2-Phenyl-N,N-bis((**trimethylsilyl**)**methyl**)**ethanamine** (2f): Transparent liquid; Yield 82% (243 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.27 (m, 2H), 7.22–7.20 (m, 3H), 2.74 (dd, *J* = 10.8, 6.8 Hz, 1H), 2.64 (dd, *J* = 10.8, 6.8 Hz, 1H), 2.05 (s, 4H), 0.11–0.05 (m, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 128.9, 128.3, 125.7, 63.0, 50.2, 33.1, -1.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₃₂NSi₂ 294.2073; Found 294.2075; IR (Neat): 3028, 2954, 2926, 1660, 1455, 1248 cm⁻¹.

2-(3-Methoxybenzyl)-10b-methyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-

c][1,2,3]oxathiazine 5,5-dioxide (3ab): Light yellow oil; Yield 90% (65 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.26 (m, 1H), 7.23–7.11 (m, 3H), 7.02 (dd, *J* = 8.3, 1.3 Hz, 1H), 6.78 (dd, *J* = 8.2, 2.4Hz, 1H), 6.74–6.67 (m, 2H), 4.47 (d, *J* = 7.0 Hz, 1H), 4.15 (d, *J* = 7.0 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 2H), 3.30 (d, *J* = 10.0 Hz, 1H), 3.03 (d, *J* = 10.3 Hz, 1H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 150.0, 138.7, 129.5, 129.1, 127.5, 126.6, 125.8, 120.6, 118.9, 113.4, 72.7, 69.2, 68.7, 56.9, 55.1, 27.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂O₄S 361.1222; Found 361.1225; IR (Neat): 3038, 2923, 1447, 1387 cm⁻¹.

10b-Methyl-2-(4-methylbenzyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]

oxathiazine 5,5-dioxide (3ac): Off-white solid; 89% Yield (61 mg); mp. 111-113 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.29 (m, 1H), 7.23 (dt, J = 7.5, 1.3 Hz, 1H), 7.18–7.13 (m, 1H), 7.13–7.09 (m, 2H), 7.08–7.02 (m, 3H), 4.45 (d, J = 7.0 Hz, 1H), 4.18 (d, J = 7.0 Hz, 1H), 3.70–3.58 (m, 2H), 3.31 (d, J = 10.3 Hz, 1H), 3.08 (d, J = 10.3 Hz, 1H), 2.35 (s, 3H), 1.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 137.3, 133.9, 129.2, 129.0, 128.4, 127.5, 126.5, 125.8, 118.9, 72.7, 69.0, 68.7, 56.9, 27.4, 21.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂O₃S 345.1273; Found 345.1277; IR (KBr): 2980, 2829, 1580, 1449, 1397, 1175 cm⁻¹.

2-(4-Chlorobenzyl)-10b-methyl-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]

oxathiazine 5,5-dioxide (3ad): Off-white solid; 83% Yield (60 mg); mp. 118-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.30 (m, 1H), 7.30–7.20 (m, 3H), 7.18–7.12 (m, 1H), 7.12–7.02 (m, 3H), 4.46 (d, *J* = 7.0 Hz, 1H), 4.16 (d, *J* = 7.0 Hz, 1H), 3.70–3.57 (m, 2H), 3.30 (d, *J* = 10.3 Hz, 1H), 3.06 (d, *J* = 10.3 Hz, 1H), 1.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 135.6, 133.4, 129.6, 129.2, 128.7, 127.4, 126.5, 125.9, 118.9, 72.6, 69.1, 68.7, 56.4, 27.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₈ClN₂O₄S 365.0727; Found 365.0729; IR (KBr): 2989, 2829, 1613, 1488, 1397 cm⁻¹.

2-Benzyl-8-methoxy-10*b*-phenyl-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo[1,5-*c*][1,2,3]

oxathiazine 5,5-dioxide (3ba): Transparent oil; 75% Yield (48 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.53 (m, 2H), 7.41–7.29 (m, 6H), 7.28–7.23 (m, 2H), 7.07 (d, J = 8.5 Hz, 1H), 6.84 (dd, J = 8.7, 2.6 Hz, 1H), 6.69 (d, J = 2.5 Hz, 1H), 4.47 (t, J = 6.5 Hz, 2H), 3.88 (s, 3H), 3.77–3.65 (m, 3H), 3.40 (d, J = 10.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 151.3, 141.5, 137.1, 129.5, 128.6, 128.5, 128.3, 128.1, 127.7, 127.7, 116.3, 112.3, 103.9, 73.4, 73.0, 70.0, 57.3, 55.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₄S 423.1379; Found 423.1382; IR (Neat): 3062, 3027, 2927, 2814, 1452, 1320 cm⁻¹.

2-Benzyl-3a-methyl-1,2,3,3a-tetrahydroimidazo[1,5-c]naphtho[2,1-e][1,2,3]oxathiazine

11,11-dioxide (**3ca**): Pale yellow oil; Yield 65% (49 mg); ¹H NMR (400 MHz, CDCl₃): δ 8.27–8.21 (m, 1H), 7.88–7.83 (m, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.66–7.58 (m, 2H), 7.30–7.27 (m, 3H), 7.19–7.13 (m, 3H), 4.53 (d, J = 7.0 Hz, 1H), 4.27 (d, J = 7.0 Hz, 1H), 3.75–3.65 (m, 2H), 3.42 (d, J = 10.5 Hz, 1H), 3.17 (d, J = 10.3 Hz, 1H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 137.0, 133.5, 128.5, 128.2, 127.6, 127.5, 127.4, 127.3, 125.6, 125.4, 124.6, 122.7, 121.9, 121.3, 72.8, 69.2, 68.3, 57.4, 27.9; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{21}N_2O_3S$ 381.1273; Found 381.1281; IR (Neat): 2959, 2855, 1634, 1459, 1276 cm⁻¹.

2-Benzyl-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo[1,5-*c*][1,2,3]oxathiazine 5,5-dioxide (3da): Transparent oil; Yield 88% (56 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.38 (m, 4H), 7.25 - 7.29 (m, 2H), 7.23 (td, *J* = 8, 1 Hz, 1H), 7.05 - 7.11 (m, 2H), 5.17 (dd, *J* = 6.5, 4.8 Hz, 1H), 4.42 (d, *J* = 7.5 Hz, 1H), 4.25 (d, *J* = 7.3 Hz, 1H), 3.83–3.68 (m, 2H), 3.53 (ddd, *J* = 11.2, 6.7, 0.8 Hz, 1H), 3.21 (dd, *J* = 11.0, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 137.0, 129.1, 128.6, 128.5, 128.4, 127.6, 126.5, 125.8, 118.9, 72.7, 61.6, 59.9, 57.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₇N₂O₃S 317.0960; Found 317.0963; IR (Neat): 2925, 2854, 1399, 1179 cm⁻¹.

2-(3-Methoxybenzyl)-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo[1,5-*c*][1,2,3]oxathiazine 5,5dioxide (3db): Pale yellow oil; Yield 92% (64 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.29 (m, 1H), 7.27–7.17 (m, 2H), 7.11–7.05 (m, 2H), 6.87–6.81 (m, 3H), 5.16 (dd, *J* = 6.5, 4.5 Hz, 1H), 4.43 (d, *J* = 7.3 Hz, 1H), 4.23 (d, *J* = 7.3 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 2H), 3.55–3.47 (m, 1H), 3.20 (dd, *J* = 11.0, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 150.5, 138.9, 129.6, 129.1, 126.5, 125.9, 122.8, 120.8, 119.1, 113.8, 113.4, 72.3, 61.5, 60.0, 57.7, 55.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₄S 347.1066; Found 347.1061; IR (Neat): 2926, 2836, 1600, 1585, 1488, 1397 cm⁻¹.

2-(4-Methylbenzyl)-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo[1,5-*c*][1,2,3] oxathiazine 5,5dioxide (3dc): Transparent oil; 89% Yield (58 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.30 (m, 1H), 7.26–7.20 (m, 1H), 7.16 (s, 4H), 7.08 (d, *J* = 8.3 Hz, 2H), 5.17 (dd, *J* = 6.3, 4.8 Hz, 1H), 4.41 (d, *J* = 7.3 Hz, 1H), 4.25 (d, *J* = 7.3 Hz, 1H), 3.78–3.66 (m, 2H), 3.56–3.46 (m, 1H), 3.20 (dd, *J* = 11.2, 4.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 137.4,

134.2, 129.3, 129.0, 128.6, 126.5, 125.9, 122.8, 119.1, 72.3, 61.5, 59.9, 57.6, 21.1; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{19}N_2O_3S$ 331.1116; Found 331.1119; IR (Neat): 2980, 2829, 1580, 1449, 1397, 1175 cm⁻¹.

2-Benzyl-8-methoxy-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo[1,5-*c*][1,2,3]oxathiazine 5,5dioxide (3ea): Pale yellow oil; Yield 75% (52 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.22 (m, 3H), 7.20–7.16 (m, 2H), 6.86 (dd, *J* = 8.7, 0.6 Hz, 1H), 6.70 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.51 (d, *J* = 2.5 Hz, 1H), 5.02 (dd, *J* = 6.3, 4.5 Hz, 1H), 4.31 (d, *J* = 7.3 Hz, 1H), 4.16–4.10 (m, 1H), 3.74 (s, 3H), 3.67 (d, *J* = 3.3 Hz, 2H), 3.39 (ddd, *J* = 11.0, 6.5, 0.8 Hz, 1H), 3.08 (dd, *J* = 11.0, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 151.2, 137.3, 128.6, 127.7, 127.1, 114.4, 112.8, 103.9, 72.2, 61.6, 59.6, 58.0, 55.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₄S 347.1066; Found 347.1071; IR (Neat): 3029, 2956, 2924, 1662, 1449 cm⁻¹.

8-Methoxy-2-(3-methoxybenzyl)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]

oxathiazine 5,5-dioxide (3eb): Pale yellow oil; Yield 86% (64 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.23–7.28 (m, 1H), 6.93–6.98 (m, 1H), 6.82–6.87 (m, 3H), 6.78 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.60 (d, *J* = 2.5 Hz, 1H), 5.11 (dd, *J* = 6.3, 4.3 Hz, 1H), 4.41 (d, *J* = 7.3 Hz, 1H), 4.22 (d, *J* = 7.3 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.74 (s, 2H), 3.43–3.51 (m, 1H), 3.17 (dd, *J* = 11.0, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 159.8, 151.2, 138.9, 129.6, 127.1, 120.8, 114.4, 113.8, 113.3, 112.8, 103.9, 72.2, 61.6, 59.6, 57.8, 55.7, 55.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂O₅S 377.1171; Found 377.1166; IR (Neat): 2925, 2847, 1483, 1445 cm⁻¹.

2-Benzyl-9-(trifluoromethoxy)-1,2,3,10b-tetrahydrobenzo[e]imidazo[1,5-c][1,2,3]

oxathiazine 5,5-dioxide (3fa): Pale yellow oil; Yield 80% (64 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.38 (m, 3H), 7.18–7.28 (m, 3H), 7.09–7.15 (m, 1H), 6.96 (d, *J* = 3 Hz, 1H),

5.16 (dd, J = 6.5, 4.3 Hz, 1H), 4.44 (d, J = 7.3 Hz, 1H), 4.23 (d, J = 7.2 Hz, 1H), 3.77 (s, 2H), 3.45–3.53 (m, 1H), 3.22 (dd, J = 11.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.8, 146.2, 146.1, 136.9, 128.7, 128.5, 127.9, 124.4, 122.0, 120.6, 120.4 (J = 240 Hz), 119.2, 72.2, 61.2, 60.0, 57.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₆F₃N₂O₄S 401.0783; Found 401.0792; IR (Neat): 2923, 2843, 1490, 1403 cm⁻¹.

2-Benzyl-9-nitro-1,2,3,10*b*-tetrahydrobenzo[*e*]imidazo [1,5-*c*][1,2,3]oxathiazine 5,5-dioxide (**3ga**): Pale yellow oil; Yield 68% (49 mg); ¹H NMR (400 MHz, CDCl₃): δ 8.24 (dd, *J* = 8.9, 2.4 Hz, 1H), 8.05 (d, *J* = 2.8 Hz, 1H), 7.37–7.31 (m, 4H), 7.26–7.22 (m, 2H), 5.25 (dd, *J* = 6.3, 3.8 Hz, 1H), 4.46 (d, *J* = 7.0 Hz, 1H), 4.18 (d, *J* = 7.0 Hz, 1H), 3.77 (q, *J* = 13.1 Hz, 2H), 3.54 (dd, *J* = 10.9, 6.4 Hz, 1H), 3.29 (dd, *J* = 10.9, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 155.1, 144.9, 136.5, 128.8, 128.5, 128.1, 128.0, 124.7, 122.4, 120.3, 72.0, 61.3, 60.2, 57.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₆N₃O₅S 362.0811; Found 362.0809; IR (Neat): 2959, 2833, 1463, 1275 cm⁻¹.

1-Benzyl-4-methyl-1*H***-benzo**[*c*][1,2,6]thiadiazine 2,2-dioxide (4b): Following a reported procedure,¹⁸ 4a was prepared. In the substrate 4a, benzyl bromide (1.2 equiv, 0.5 mmol), triethylamine (1.2 equiv, 0.6 mmol) and THF (2 mL) were added and heated at 60 °C for 4 h. The reaction mixture was diluted with ethyl acetate (10 mL), extracted with water (2 x 5 mL). The organic layer was concentrated under vacuum and purified by column chromatography (100-200# Silica). Yellow solid; 64% Yield (91 mg); mp 183-185 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.54 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.45–7.40 (m, 2H), 7.39–7.33 (m, 2H), 7.33–7.27 (m, 1H), 7.20–7.15 (m, 1H), 7.12–7.08 (m, 1H), 5.24 (s, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.8, 142.5, 135.7, 135.3, 129.3, 129.0, 127.9, 126.9, 122.3,

118.6, 116.7, 49.7, 24.3; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₁₅N₂O₂S 287.0854; Found 287.0860.

6-Chloro-4-phenyl-1*H***-benzo**[*c*][**1,2,6**]**thiadiazine 2,2-dioxide** (**4c'**): Following the reported procedure,¹⁸ **4c'** was prepared from (2-amino-5-chlorophenyl)(phenyl) methanone as a substrate. After reaction, the crude was purified by column chromatography (100-200#) using Hexane and EtOAc to obtain the desired cyclic sulfonylimine as yellow sticky solid. ¹H NMR (400 MHz, CDCl₃): δ 7.73–7.68 (m, 2H), 7.68–7.64 (m, 1H), 7.60–7.52 (m, 4H), 7.22 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 173.7, 140.7, 135.8, 134.7, 132.4, 130.8, 130.5, 128.8, 128.0, 119.9, 117.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂S 293.0152; Found 293.0157.

1-Benzyl-6-chloro-4-phenyl-1*H***-benzo**[*c*][**1,2,6**] **thiadiazine 2,2-dioxide (4c)**: To the substrate **4c'**, benzyl bromide (1.2 equiv) and triethylamine (1.2 equiv) in THF (2 mL) were added, and the mixture was heated at 60 °C for 4 h. The reaction mixture was diluted with ethyl acetate (10 mL) and extracted with water (2 x 5 mL). The organic layer was concentrated under vacuum and purified by column chromatography (100-200# Silica). Yellow solid; 64% Yield (91 mg); mp 121-123 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74–7.68 (m, 2H), 7.66 (td, *J* = 7.5, 1.6 Hz, 1H), 7.63–7.52 (m, 4H), 7.44–7.40 (m, 2H), 7.40–7.34 (m, 2H), 7.34–7.30 (m, 1H), 7.20 (d, *J* = 9.0 Hz, 1H), 5.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 142.3, 135.5, 135.0, 132.5, 131.3, 130.8, 129.1, 128.8, 128.2, 127.9, 127.0, 120.0, 118.9, 50.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₆ClN₂O₂S 383.0621; Found 383.0630.

2,6-Dibenzyl-10*b*-methyl-**2,3,6,10***b*-tetrahydro-1*H*-benzo[*d*]imidazo[1,5-*b*][1,2,6]thiadiazine **5,5-dioxide** (**5ba**): Yellow solid; Yield 60% (50 mg); mp. 121-123 °C; ¹H NMR (400 MHz,

CDCl₃): δ 7.34–7.30 (m, 2H), 7.27–7.20 (m, 6H), 7.12–7.08 (m, 2H), 7.05–6.99 (m, 2H), 6.96–6.90 (m, 1H), 6.69–6.64 (m, 1H), 5.09 (d, *J* = 17.1 Hz, 1H), 4.79 (d, *J* = 17.1 Hz, 1H), 4.30 (d, *J* = 6.8 Hz, 1H), 4.05 (d, *J* = 6.8 Hz, 1H), 3.62 (d, *J* = 13.3 Hz, 1H), 3.54 (d, *J* = 13.1 Hz, 1H), 3.25 (d, *J* = 9.8 Hz, 1H), 2.98 (d, *J* = 10.0 Hz, 1H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.1, 137.5, 136.8, 128.8, 128.5, 128.4, 128.1, 127.7, 127.5, 127.4, 126.7, 126.5, 125.6, 122.9, 116.6, 72.8, 69.9, 69.1, 57.5, 49.2, 28.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₆N₃O₂S 420.1746; Found 420.1742; IR (KBr): 3028, 2927, 2857, 1487, 1179 cm⁻¹.

2,6-Dibenzyl-9-chloro-10b-phenyl-2,3,6,10b-tetrahydro-1H-benzo[d]imidazo[1,5-

b][1,2,6]thiadiazine 5,5-dioxide (5ca): Yellow semi-solid; Yield 54% (55 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.51 (m, 2H), 7.38–7.29 (m, 8H), 7.28–7.24 (m, 3H), 7.22–7.19 (m, 3H), 7.17–7.16 (m, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 5.04 (d, *J* = 16.6 Hz, 1H), 4.84 (d, *J* = 16.6 Hz, 1H), 4.48–4.39 (m, 2H), 3.72 (d, *J* = 3.0 Hz, 2H), 3.56–3.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.5, 137.9, 137.2, 136.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.1, 128.0, 128.0, 127.7, 127.7, 127.5, 126.9, 119.9, 73.6, 72.2, 68.9, 57.4, 49.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₇ClN₃O₂S 516.1513; Found 516.1521; IR (KBr): 3029, 2924, 2853, 1483, 1370, 1174 cm⁻¹.

2-((*S*)-1-Phenylethyl)-1,2,3,10*b*-tetrahydrobenzo[*e*] imidazo[1,5-*c*][1,2,3]oxathiazine 5,5dioxide (6de): Transparent sticky oil; Yield 83% (diastereomeric ratio 1:1, 55 mg); 1st diastereomer: ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.36 (m, 4H), 7.14–7.23 (m, 3H), 7.07 (dd, *J* = 7.8, 0.8 Hz, 1 H), 6.95–7.02 (m, 1H), 5.10 (dd, *J* = 6.1, 3.4 Hz, 1 H), 4.53 (d, *J* = 6.5 Hz, 1H), 4.18 (d, *J* = 6.3 Hz, 1H), 3.51 (q, *J* = 6.5 Hz, 1H), 3.24 (dd, *J* = 10.3, 6.0 Hz, 1H), 3.03 (dd, *J* = 10.3, 4.0 Hz, 1H), 1.35 (d, *J* = 6.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 143.6, 129.0,

128.7, 127.6, 126.9, 126.1, 125.7, 122.6, 118.9, 70.2, 62.0, 61.0, 60.1, 22.9; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₇H₁₉N₂O₃S 331.1116; Found 331.1123; IR (Neat): 2925, 2852, 1454, 1399, 1190 cm⁻¹. 2nd diastereomer: ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.38 (m, 2H), 7.27–7.31 (m, 2H), 7.20–7.26 (m, 3H), 7.09–7.13 (m, 1H), 7.07 (dd, *J* = 7.9, 0.8 Hz, 1H), 5.17 (dd, *J* = 6.4, 3.4 Hz, 1H), 4.28 (d, *J* = 6.8 Hz, 1H), 4.06 (d, *J* = 6.8 Hz, 1H), 3.48 (q, *J* = 6.5 Hz, 1 H), 3.41 (dd, *J* = 10.2, 3.4 Hz, 1H), 3.25 (dd, *J* = 10.2, 3.4 Hz, 1H), 1.37 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 143.3, 129.1, 128.7, 127.7, 126.9, 126.4, 125.8, 122.8, 119.1, 70.8, 62.1, 61.2, 59.6, 22.8.

2-Phenethyl-1,2,3,10*b***-tetrahydrobenzo**[*e*]**imidazo**[**1,5**-*c*][**1,2,3**]**oxathiazine 5,5**-**dioxide** (**6df**): Light yellow oil; Yield 72% (48 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.21 (m, 5H), 7.17–7.13 (m, 2H), 7.13–7.09 (m, 1H), 7.06 (dd, *J* = 1.3, 8.3 Hz, 1H), 5.13 (dd, *J* = 4.0, 6.3 Hz, 1H), 4.47 (d, *J* = 7.0 Hz, 1H), 4.19–4.16 (m, 1H), 3.49–3.42 (m, 1H), 3.26 (dd, *J* = 4.0, 10.8 Hz, 1H), 282–2.76 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 139.1, 129.1, 128.6, 128.5, 126.4, 126.4, 125.9, 122.7, 119.1, 72.3, 62.0, 60.3, 55.5, 35.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₃S 331.1116; Found 331.1119; IR (Neat): 2959, 2930, 2873, 1454, 1287 cm⁻¹.

b-Methyl-2-phenethyl-1,2,3,10*b*-tetrahydrobenzo[*e*] imidazo[1,5-*c*][1,2,3]oxathiazine 5,5dioxide (6af):Pale yellow oil; Yield 83% (57 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.30 (m, 1H), 7.28–7.19 (m, 5H), 7.11–7.07 (m, 2H), 7.04 (dd, *J* = 8.0, 1.3 Hz, 1H), 4.53 (d, *J* = 6.8 Hz, 1H), 4.12 (d, *J* = 6.8 Hz, 1H), 3.38 (d, *J* = 9.8 Hz, 1H), 3.05 (d, *J* = 10.0 Hz, 1H), 2.78–2.64 (m, 4H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 139.2, 129.1, 128.6, 128.4, 127.4, 126.5, 126.3, 125.9, 119.0, 72.8, 69.4, 69.2, 54.9, 35.1, 27.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $C_{18}H_{21}N_2O_3S$ 345.1273; Found 345.1277; IR (Neat): 2959, 2853, 1400, 1283, 1178 cm⁻¹.

4-((Benzylamino)methyl)-7-methoxy-3,4-dihydro benzo[e][1,2,3]oxathiazine 2,2-dioxide (7a): Yellow solid; 93% Yield (62 mg); mp 139-141 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.29 (m, 3H), 7.27–7.22 (m, 2H), 7.07 (d, J = 8.8 Hz, 1H), 6.77 (dd, J = 8.7, 2.6 Hz, 1H), 6.56 (d, J = 2.5 Hz, 1H), 4.84 (m, 1H), 3.81 (s, 3H), 3.78 (s, 2H), 3.45 (dd, J = 12.7, 3.9 Hz, 1H), 3.03 (dd, J = 3.8, 12.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 152.9, 138.8, 128.7, 128.1, 127.6, 126.4, 112.5, 111.6, 103.9, 55.8, 55.6, 53.5, 49.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₉N₂O₄S 335.1066; Found 335.1063; IR (KBr): 3404, 2923, 2852, 1626, 1506, 1456, 1377, 1188 cm⁻¹.

4-(((3-Methoxybenzyl)amino)methyl)-4-methyl-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2dioxide (7b): Yellow solid; 97% Yield (67 mg); mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.17 (m, 4H), 7.04 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.86–6.81 (m, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 2.0 Hz, 1H), 3.82 (s, 3H), 3.67 (s, 2H), 3.30 (d, *J* = 12.5 Hz, 1H), 2.70 (d, *J* = 12.5 Hz, 1H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 151.2, 140.6, 129.7, 129.7, 126.1, 125.8, 124.6, 120.2, 119.5, 113.5, 112.9, 62.3, 58.2, 55.2, 53.2, 27.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₁N₂O₄S 349.1222; Found 349.1226; IR (KBr): 3417, 2960, 2930, 2873, 1726, 1582, 1448, 1378, 1286 cm⁻¹.

2-(1-Amino-2-(benzyl(methyl)amino)ethyl)phenol (**7c**): Pale yellow oil; Yield 97% (30 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.30 (m, 5H), 7.20–7.13 (m, 1H), 6.95 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.88–6.76 (m, 2H), 4.24 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.74–3.62 (m, 1H), 3.62–3.53 (m, 1H), 2.90 (t, *J* = 11.9 Hz, 1H), 2.43 (dd, *J* = 12.7, 3.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.3, 129.1, 128.6, 128.4, 127.9, 127.3, 125.2, 118.9, 117.3, 62.4, 53.6, 41.9, 29.7;

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₂₁N₂O 257.1654; Found 257.1656; IR (Neat): 3547, 2925, 2855, 1612, 1514, 1456, 1159 cm⁻¹.

2-(3-Methoxybenzyl)-9*b***-phenyl-1,2,3,9***b***-tetrahydrobenzo**[*d*]**imidazo**[**1,5**-*b*]**isothiazo**[*5*,5-**dioxide (9ad):** Transparent oil; 73% Yield (59 mg); ¹H NMR (400 MHz, CDCl₃): δ 8.05–8.03 (m, 1 H), 8.00–7.98 (m, 2H), 7.83–7.75 (m, 4H), 7.53–7.48 (m, 2H), 7.21–7.17 (m, 1H), 6.80–6.78 (m, 1H), 6.72–6.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 143.8, 142.3, 138.9, 134.9, 129.5, 129.3, 129.2, 128.9, 127.9, 126.6, 125.6, 123.1, 121.4, 113.3, 71.3, 65.9, 60.4, 56.4, 55.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₃S 407.1429; Found 407.1437; IR (Neat): 2926, 2839, 1624, 1400, 1196 cm⁻¹.

2-Phenethyl-9*b***-phenyl-1,2,3,9***b***-tetrahydrobenzo**[*d*]**imidazo**[**1,5**-*b*]**isothiazole 5,5**-**dioxide** (**9af**): Transparent oil; Yield 78% (60 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, *J* = 7.7 Hz, 1H), 7.72–7.67 (m, 2H), 7.62–7.56 (m, 1H), 7.55–7.46 (m, 2H), 7.43–7.37 (m, 2H), 7.34–7.29 (m, 1H), 7.2–7.23 (m, 2H), 7.23–7.18 (m, 1H), 7.14–7.09 (m, 2H), 5.05 (d, *J* = 9.3 Hz, 1H), 4.00–3.91 (m, 1H), 3.82 (d, *J*= 8.8 Hz, 1H), 3.27 (d, *J* = 9.8 Hz, 1H), 2.83–2.54 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 143.7, 142.3, 139.4, 134.8, 133.6, 129.4, 129.0, 128.7, 128.4, 128.0, 126.3, 125.6, 123.9, 121.4, 71.3, 66.9, 54.4, 35.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₂S 391.1480; Found 391.1483; IR (Neat): 2957, 2927, 2879, 1455, 1286 cm⁻¹.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H and ¹³C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jlaha@niper.ac.in

ORCID

Joydev K. Laha: 0000-0003-0481-5891

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We greatly appreciate the Science & Engineering Research Board (SERB) of DST, New Delhi for financial support. K.P.J. thanks the NIPER, S.A.S. Nagar for a research fellowship.

REFERENCES

- a) Lima, L. M.; Barreiro, E. J. *Curr. Med. Chem.* 2005, *12*, 23-49; b) Ballatore, C.; Huryn,
 D. M.; Smith, A. B. *ChemMedChem* 2013, *8*, 385-395.
- a) Nicolaou, K.; Huang, X.; Snyder, S. A.; Bheema Rao, P.; Bella, M.; Reddy, M. V. Angew. Chem. Int. Ed. 2002, 41, 834-838; b) Meléndez, R. E.; Lubell, W. D. Tetrahedron 2003, 59, 2581-2616; c) Bower, J. F.; Rujirawanich, J.; Gallagher, T. Org. Biomol. Chem. 2010, 8, 1505-1519.
- 3. Selected References: a) Jiang, C.; Lu, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2014, 53, 9936-9939; b) Martínez, J. I.; Smith, J. J.; Hepburn, H. B.; Lam, H. W. Angew. Chem. Int.

The Journal of Organic Chemistry

Ed. **2016**, *128*, 1120-1124 and references cited therein; c) Ursinyova, N.; Bedford, R. B.; Gallagher, T. *Eur. J. Org. Chem.* **2016**, *2016*, 673-677; d) Zhang, Y.-F.; Chen, D.; Chen, W.-W.; Xu, M.-H. *Org. Lett.* **2016**, *18*, 2726-2729.

- a) Stokker, G.; Deana, A.; DeSolms, S.; Schultz, E.; Smith, R.; Cragoe Jr, E.; Baer, J.; Russo, H.; Watson, L. *J. Med. Chem.* 1982, 25, 735-742; b) Dehmlow, H.; Aebi, J. D.; Jolidon, S.; Ji, Y.-H.; Von der Mark, E. M.; Himber, J.; Morand, O. H. *J. Med. Chem.* 2003, 46, 3354-3370; c) Peters, R. H.; Chao, W.-R.; Sato, B.; Shigeno, K.; Zaveri, N. T.; Tanabe, M. *Steroids* 2003, 68, 97-110; d) Singh, S. K.; Reddy, P. G.; Rao, K. S.; Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y. K.; Venkateswarlu, A. *Bioorg. Med. Chem. Lett.* 2004, 14, 499-504.
- a) Unno, R.; Yamaguchi, T.; Usui, T.; Kakigami, T.; Fukushima, M.; Mizuno, K.; Baba,
 Y.; Kurono, M. *Chem. Pharm. Bull.* **1994**, *42*, 1474-1478; b) Snider, B. B.; Wu, X. *Org. Lett.* **2007**, *9*, 4913-4915; c) Jiang, X.; Wang, Y.; Zhang, G.; Fu, D.; Zhang, F.; Kai, M.;
 Wang, R. *Adv. Synth. Catal.* **2011**, *353*, 1787-1796; d) Sadarangani, I. R.; Bhatia, S.;
 Amarante, D.; Lengyel, I.; Stephani, R. A. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 2507-2509.
- a) Izquierdo, C.; Esteban, F.; Ruano, J. L. G.; Fraile, A.; Alemán, J. Org. Lett. 2015, 18, 92-95; b) Rousseau, J.-F.; Chekroun, I.; Ferey, V.; Labrosse, J. R. Org. Process Res. Dev. 2015, 19, 506-513.
- Liu, Y.; Kang, T.-R.; Liu, Q.-Z.; Chen, L.-M.; Wang, Y.-C.; Liu, J.; Xie, Y.-M.; Yang, J.-L.; He, L. Org. Lett. 2013, 15, 6090-6093.
- Kravina, A. G.; Mahatthananchai, J.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 9433-9436.

- 9. a) An, Q.; Shen, J.; Butt, N.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 4496-4499;
 b) An, Q.; Li, J.; Shen, J.; Butt, N.; Liu, D.; Liu, Y.; Zhang, W. Chem. Comm. 2015, 51, 885-888; c) An, Q.; Shen, J.; Butt, N.; Liu, D.; Liu, Y.; Zhang, W. Adv. Synth. Catal. 2015,357, 3627-3638; d) Fei, J.; Qian, Q.; Sun, X.; Gu, X.; Zou, C.; Ye, J. Org. Lett. 2015, 17, 5296-5299.
- Yu, H.; Zhang, L.; Yang, Z.; Li, Z.; Zhao, Y.; Xiao, Y.; Guo, H. J. Org. Chem. 2013, 78, 8427-8436.
- Gao, Z.; Zhang, L.; Sun, Z.; Yu, H.; Xiao, Y.; Guo, H. Org. Biomol. Chem. 2014, 12, 5691-5697.
- a) Pandey, G.; Laha, J. K.; Mohanakrishnan, A. *Tetrahedron Lett.* **1999**, *40*, 6065-6068; b)
 Pandey, G.; Laha, J. K.; Lakshmaiah, G. *Tetrahedron* **2002**, *58*, 3525-3534.
- 13. a) Weinreb, S. M., N-sulfonyl imines—Useful synthons in stereoselective organic synthesis. In *Stereoselective Heterocyclic Synthesis II*, Springer 1997; pp 131-184; b)
 Wang, C. S.; Zhu, R. Y.; Zheng, J.; Shi, F.,; Tu, S. J. *J. Org. Chem.* 2015, 512-520; c) Dai, W.; Jiang, X. L.; Wu, Q.; Shi, F.; Tu, S. J. *J. Org. Chem.* 2015, 5737-5744; d)
 Sun, X. X.; Zhang, H. H.; Li, G. H.; He, Y. Y.; Shi, F. *Chem. Eur. J.* 2016, 17526-17532
- 14. a) Xie, H.; Zhu, J.; Chen, Z.; Li, S.; Wu, Y. J. Org. Chem. 2010, 75, 7468-7471; b) Xiong,
 X. F.; Zhang, H.; Peng, J.; Chen, Y. C. Chem. Eur. J. 2011, 17, 2358-2360; c) Sun, Y.-H.;
 Xiong, Y.; Peng, C.-Q.; Li, W.; Xiao, J.-A.; Yang, H. Org. Biomol. Chem. 2015, 13, 79077910; d) Muthusamy, S.; Kumar, S. G. Org. Biomol. Chem. 2016, 14, 2228-2240; e) Wang,
 Y.-M.; Zhang, H.-H.; Li, C.; Fan, T.; Shi, F. Chem. Commun. 2016, 52, 1804-1807.
- a) Rommel, M.; Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 17266-17267; b)
 Nishimura, T.; Ebe, Y.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 2092-2095; c) Hepburn,

H. B.; Lam, H. W. Angew. Chem. Int. Ed. 2014, 53, 11605-11610; d) Li, B.-S.; Wang, Y.;
Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun. 2015, 6:6207
doi:10.1038/ncomms7207; e) Mei, S.-T.; Wang, N.-J.; Ouyang, Q.; Wei, Y. Chem.
Commun. 2015, 51, 2980-2983.

- 16. Pandey, G.; Lakshmaiah, G.; Kumaraswamy, G. J. Am. Chem. Soc. 1992, 1313-1314.
- 17. Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew. Chem. 2009, 121, 4583-4586.
- Wang, Y.-Q.; Yu, C.-B.; Wang, D.-W.; Wang, X.-B.; Zhou, Y.-G. Org. Lett. 2008, 10, 2071-2074.
- 19. Pham, M. V.; Cramer, N. Chem. Eur. J. 2016, 22, 2270-2273.