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R = Aryl, vinyl, alkynyl, enolate

Nu = Grignard, thiol, amine

The oxetane ring is useful in drug discovery as a bioisostere for both the geminal dimethyl group and the carbonyl group. A convenient,
straightforward approach to access structurally diverse 3-aminooxetanes through the reactivity of oxetan-3-tert-butylsulfinimine and the

corresponding sulfinylaziridine is described.

The replacement of a geminal dimethyl group with an
oxetane ring is a potentially useful exercise in drug discov-
ery." Although presenting a similar van der Waals volume
to a geminal dimethyl group, an oxetane ring can be more
stable to oxidative metabolism and exhibit decreased lipo-
philicity, two properties that can confer an enhanced phar-
macokinetic profile."® The decreased lipophilicity can also
mitigate undesirable off-target effects, such as hERG channel
binding” and hPXR activation.®> Additionally, studies suggest
that an oxetane ring can also act as a stable surrogate for
the carbonyl group; both groups have similar hydrogen-bond
basicity,* but oxetanes do not have the same electrophilic
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reactivity or susceptibility toward a-epimerization of
stereocenters. '

During the course of a medicinal chemistry program, we
became interested in preparing a 3-aryl-3-aminooxetane
(Figure 1) in order to examine the possibility of replacing
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Figure 1. Oxetanes as potential bioisosteres for the geminal
dimethyl or carbonyl group.

the dimethyl group in a key pharmacophore for the reasons
outlined above. At the time, we found no reports of this
structural motif, which was surprising given the apparent low
degree of structural complexity.’
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One attractive approach to the synthesis of 3-aryl-3-
aminooxetanes involved the 1,2-addition of an arylmetal
nucleophile into an activated oxetan-3-imine, as it could
potentially allow for the modular, late-stage introduction of
the oxetane ring onto an appropriate aryl building block
(Figure 2). We chose to utilize Ellman’s fert-butylsulfinimine
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Figure 2. Retrosynthesis of 3-aryl-3-aminooxetanes, and preparation
of sulfinimine 1.

chemistry because of the availabilty of 2-methyl-2-propane-
sulfinamide, the well-studied reactivity of tert-butylsulfin-
imines, and the ease of removal of the tert-butylsulfinyl group
to provide the deprotected amines.®

Condensation of commercially available oxetan-3-one with
racemic 2-methyl-2-propane-sulfinamide at 60 °C, utilizing
titanium(IV) ethoxide as a dehydrating reagent,®® provided
oxetan-3-tert-butylsulfinimine (1) as a slightly volatile oil.”
With access to sulfinimine 1, we began to explore its
reactivity toward organometallic reagents. Phenyllithium
underwent 1,2-addition to 1 at —78 °C in tetrahydrofuran to
give the tert-butylsulfinyl protected 3-phenyl-3-aminooxetane
in 91% yield (Table 1, entry 1). It is noteworthy that the
addition proceeds in high yield without the use of trimethyl-
aluminum as a Lewis acid, as is typically required to enhance
the yield in the addition of organolithium reagents to
N-sulfinyl ketimines.®* We next examined several other
phenyllithium reagents, including electron-deficient (Table
1, entries 2—5) and electron-rich (Table 1, entries 6—8)
aromatic rings. The required aryllithium reagents were each
generated by lithium—halogen exchange® of the correspond-
ing bromides and underwent clean 1,2-addition to give
products 2b—2h in good to excellent yield.

Selective removal of the fert-butylsulfinyl group®® was
accomplished in the presence of the potentially acid-labile
oxetane ring by brief (1—5 min) treatment of a solution of
2a in methanol at 0 °C with hydrochloric acid (4 N in
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Table 1. Aryllithium Additions into 1 To Access Protected
3-Aryl-3-aminooxetanes
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dioxane, 1.5 equiv) to give the pure hydrochloride salt of
3-phenyl-3-aminooxetane (3) in 91% yield after trituration
with diethyl ether. Prolonged exposure to hydrochloric acid
should be avoided, as the ring-opened chlorohydrin 4 begins
to form (Scheme 1) under the deprotection conditions.’

Scheme 1. Removal of the fert-Butylsulfinyl Group To Give 3

HN-SSo  4NHal NH,Cl 4N HCl NH,CI
o\ (1.5 equiv) o\ (2.5 equiv) Ny
o MeOH o MeOH
0 °C, 5 min 22°C,6h OH
2a 91% 3 92% 4
(by 'H NMR)

Although our initial goal was to prepare 3-aryl-3-ami-
nooxetanes, we next decided to explore further the reactivity
of sulfinimine 1 toward diverse nucleophiles for the prepara-
tion of a variety of 3-substituted-3-aminooxetanes. Several
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representative heterocycles bearing an acidic hydrogen were
metalated with n-butyllithium, and the corresponding anions
underwent 1,2-addition to 1 to generate 5f—5i in excellent
yield (Table 2, entries 6—9).

Table 2. Addition of Diverse Nucleophiles to 1 To Access
Substituted 3-Aminooxetanes”

1 HN-S
R-BrorR-H — R-Li 3o R\
5a-5i
entry R conditions® addition time  product yield (%)
5 R-H, #-BuLi
1 Z -78°C 10 min 5a 62
™S 30 min
2% R-H,n-BuLi
2 \/0\”/ ~78°C 30 min 5h 82
o 10 min
¢°*Z R-H, n-BuLi
3 —78°C 10 min 5c 80
30 min
- R-Br,+BuLi
N ,
4 @Aﬁ —78 —22°C 30 min 5d 67
1h
o R-H,LDA
5 —78°C 3h 5e 91
- .
OJ\’%“ 30 min
0% R-H, n-BuLi
6 g ~78 —0°C 15 min sf 76
\
1h
S5z R-H, n-BuLi
7 g 78 0°C 30 min 5g 82
\ N
30 min

R-H, n-BuLi

N %~ 5
8 @_\fl —78°C 30 min 5h 98
30 min
Ny RH nBuli
9 d —78°C 30 min si 78
1h

“Entries 1—3 and 5—9 performed in THF, entry 4 performed in 3:2
hexanes/diethyl ether.

Branching out from aryllithium substrates, we examined
several classes of carbanions across a range of nucleophil-
icity. Ethyl propiolate, phenylacetylene, and trimethylsilyl-
acetylene were deprotonated with n-butyllithium, and each
of the corresponding anions added to 1 in good yield to give
3-alkynyl-3-aminooxetanes 5a—5c in protected form'® (Table
2, entries 1—3). The trimethylsilylacetylene adduct (5a) could
be selectively deprotected to give either the free amine (HCI,

(9) After 5 min at 22 °C, only the desired deprotected product was
observed. However, after 30 min at 22 °C, the ratio of 3 to 4 was 85:15 by
'"H NMR, and after 6 h at 22 °C with 2.5 equiv of HCI, the ratio of 3 to 4
was 8:92.

(10) Representative deprotection of select examples can be found in
Supporting Information.
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MeOH, 0 °C, 1—5 min, 95%)" or the free alkyne (K,COs,
MeOH—CH,Cl,, 5 min, 22 °C, 94%),'" allowing selective
elaboration of either the terminal alkyne'? or amine func-
tionality. Vinyllithium reagents'? (Table 2, entry 4) also
added to 1 efficiently, giving access to allylic aminooxetanes
in good yield. Finally, lithium enolates'* underwent addition
to 1 in excellent yield to give -(3-aminooxetane)-esters
(Table 2, entry 5).

Primary alkyllithium reagents such as n-butyllithium and
(2-phenylethyl)lithium'? added to 1 in poor yield (17% and
18%, respectively). Attempts at optimizing the reaction
conditions suggested that competitive deprotonation of the
oxetane ring within 1 was a source of low conversion and
side-products; conversion was not improved by the addition
of excess n-butyllithium (4 equiv), and deuterium quench
experiments indicated that 1 recovered from the reaction
mixture was enriched in deuterium.'®

Having explored the reactivity of 1 toward several classes
of nucleophiles, we next examined the possibility of generat-
ing a sulfinylaziridine from sulfinimine 1. Ring-opening
reactions of a spiro-aziridine would expand the product scope
to homologated 3-aminooxetanes. Treatment of sulfinimine
1 with dimethyloxosulfonium methylide'” (DMSO, 22 °C,
2 h) generated the novel, highly strained aziridine 6 in 83%
yield (Scheme 2).

Scheme 2. Synthesis and Ring-Opening Reactions of 6
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Aziridine 6 could be opened with phenylmagnesium
bromide (promoted by Cul)'® to give a benzyl substituted
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3-aminooxetane (7) in excellent yield (98%). In addition to
carbon-based nucleophiles, aziridine 6 could also be opened
efficiently with sulfur-based'® (thiophenol, triethylamine, 60
°C) and nitrogen-based19 (benzylamine, 130 °C) nucleo-
philes, further expanding the product scope of this methodol-
ogy for generating substituted 3-aminooxetanes.

In conclusion, we have described here the synthesis of
oxetan-3-tert-butylsulfinimine (1) and demonstrated the util-
ity of 1 in reactions with a variety of organolithium reagents
for the straightforward synthesis of 3-aminooxetanes. As
outlined above, the product 3-aminooxetanes are of general

(16) Recovered 1 was 50% mono-deuterated by MS analysis when 1
was treated with n-BuLi (1 equiv, —78 °C, 1 h), followed by addition of
deuterated acetic acid at —78 °C.
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C.; Reddy, R. E. Tetrahedron: Asymmetry 1995, 6, 1511-1514.
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interest to medicinal chemists for use as bioisosteres for the
geminal dimethyl group. We have also described the conver-
sion of 1 to the novel sulfinylaziridine 6, enabling access to
an expanded product scope by ring-opening reactions of 6
with both carbon- and heteroatom-based nucleophiles.
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