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Abstract: Whether metal-free chiral phosphoric acid or chiral met-
al phosphate functions as an active catalyst was confirmed in three
reactions. In the aza-Friedel–Crafts and aza-ene-type reactions, a
metal-free chiral phosphoric acid, namely, a chiral Brønsted acid,
was verified to be the active catalyst. In contrast, the substitution
reaction of a-diazoacetate with aldimine was accelerated by a salt-
containing chiral phosphoric acid and hence chiral metal phosphate
presumably functioned as an active catalyst.

Key words: asymmetric catalysis, enantioselectivity, Friedel–
Crafts reaction, organocatalysis, substitution

Chiral Brønsted acids have emerged as efficient catalysts
for enantioselective transformations, and reactions using
these chiral acid catalysts have become a rapidly growing
area in asymmetric synthesis.1 Among the acid catalysts,
binaphthol-derived chiral phosphoric acids 1 indepen-
dently reported by Akiyama and our group in 2004,2 as
well as amide analogues 2 developed by Yamamoto and
Nakashima,3 are some of the most efficient chiral Brøn-
sted acid catalysts identified to date (Figure 1) and have
been utilized as versatile enantioselective catalysts for nu-
merous organic transformations.4

Figure 1 Binaphthol-derived chiral phosphoric acids 1 and amide
analogues 2 as chiral Brønsted acid catalysts

In recent years, several researchers have diverted their at-
tention to chiral phosphoric acids contaminated with alka-
li or alkaline-earth metal salts. Ding and co-workers
demonstrated that the treatment of chiral phosphoric acid
with an acid dramatically improved the catalytic activity
in the enantioselective Baeyer–Villiger oxidation,5 al-
though they did not clearly mention the reason for the im-
provement of the catalytic activity. Shortly thereafter,
Rueping and co-workers reported the formation of the cal-

cium salt of chiral phosphoramide 2a (G = 4-MeOC6H4),
6

and treatment of the calcium salt with an acid resulted in
the formation of metal-free, completely protonated, phos-
phoramide 2a that functioned as a catalytically active spe-
cies. Meanwhile, in early 2007, we reported the
enantioselective Friedel–Crafts reaction of enecarbamates
3 with indoles 4 catalyzed by 1a (Scheme 1).7 During the
course of this study, we also observed that the catalytic ac-
tivity could be significantly improved by treatment of 1a
with an acid.8 Until the report by Ishihara and co-workers
in 2010,9 it had been considered that metal contamination
affected only the catalytic activity and not the enantio-
selectivity.10 This is because it seems unlikely that alkali
or alkaline-earth metal phosphates would function as an
active catalyst for enantioselective transformations, al-
though the catalytic activities of these metal salts have
been little exploited11,12 with the exception of the activa-
tion of trimethylsilyl cyanide.13 However, in 2010, Ishiha-
ra and co-workers reported that not only metal-free chiral
phosphoric acid but also calcium phosphate functioned as
an efficient enantioselective catalyst for the direct Man-
nich-type reaction of N-Boc aldimines with a broad range
of 1,3-dicarbonyl compounds.9 They also pointed out that
binaphthol-derived chiral phosphoric acids 1 readily cap-
ture adventitious metal impurities, alkali and alkaline-
earth metal salts, during purification using silica gel to
generate a salt-containing chiral phosphoric acid,6b,10,14

and hence the acid treatment of silica gel purified chiral
phosphoric acids 1 has a substantial influence on the cat-
alytic performance. In fact, they clearly demonstrated dif-
ferences in the catalytic performance between calcium
phosphate and metal-free phosphoric acid, where a judi-
cious choice of substituent G introduced at the 3,3¢-posi-
tions of the binaphthyl backbone was required to achieve
high enantioselectivities in the direct Mannich-type reac-
tion. More importantly, these catalysts provided products
with opposite absolute configuration even when catalysts
having the same axial chirality were used. We therefore
confirmed whether metal-free chiral phosphoric acid or
chiral metal phosphate is the active catalyst in the reac-
tions reported before 2006 by our group.15–17 Herein we
report the reaction outcomes using acid-washed, thus met-
al-free, chiral phosphoric acids 1 in three transformations
of N-acyl aldimines, namely, the Friedel–Crafts reac-
tion,15 the substitution reaction of a-diazoacetates,16 and
the aza-ene-type reaction,17 and compared the outcomes
with the results obtained using silica gel purified 1.
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Scheme 1 Friedel–Crafts reaction of enecarbamates 3 with indoles
4 catalyzed by acid-washed metal-free chiral phosphoric acid 1a

At the outset, we washed silica gel purified 1 with aque-
ous HCl solution (2 M) to prepare metal-free phosphoric
acid, namely, acid-washed 1 (method A).18 Then, in an ef-
fort to eliminate acid contaminants, acid-washed 1 (meth-
od A) was further subjected to short-path column
chromatography using metal-free extra pure silica gel19 to
afford acid-washed 1 (method B). We initially investigat-
ed the catalytic performance of the three types of phos-
phoric acid 1b (G = hexamethylterphenyl), namely, silica
gel purified15 and acid-washed (method A and B) phos-
phoric acids, in the aza-Friedel–Crafts reaction of N-Boc
aldimines 6 with 2-methoxyfurane (7) (Scheme 2). All
three catalysts 1b exhibited similar catalytic performance
to afford Friedel–Crafts products 8 with comparable enan-
tioselectivities and the same absolute configuration albeit
with a slight decrease in the chemical yield when the two
metal-free acids, acid-washed 1b (method A and B), were
used. These results strongly suggest that metal-free chiral
phosphoric acid is an active catalyst in the aza-Friedel–
Crafts reaction.

Scheme 2 Aza-Friedel–Crafts reaction of N-Boc aldimines 6 with
2-methoxyfurane (7)

In 2005, we reported the substitution reaction of a-diazo-
acetates 9 with N-benzoyl aldimines 10 catalyzed by 1c
(G = 9-anthryl).16 In the present study, we investigated the
catalytic performance in the substitution reaction using
three types of catalyst 1c (Scheme 3). In the original pa-
per, a-substituted product 11 was afforded as the sole
structural isomer in the presence of silica gel purified 1c.16

In sharp contrast, the catalytic reaction using acid-washed
1c (method A and B) yielded a,b-unsaturated ester 12 as
the sole product, instead of 11. These results imply that
the carbon–carbon bond-forming reaction of a-diazoace-
tates 9 with aldimines 10 was accelerated by either salt-
containing or metal-free chiral phosphoric acid to give in-
termediate A.20,21 The subsequent reaction course was di-
vided into two pathways depending upon the catalyst
employed. Under the influence of silica gel purified 1c,
the salt-containing chiral phosphoric acid, the a-proton of
intermediate A is deprotonated exclusively to give substi-
tution product 11 through path a (indicated by dashed ar-
rows). Although it is not known which metal species of
the salt-containing chiral phosphoric acid functioned as
the active catalyst for the substitution reaction,22 metal-
free acid is not the efficient catalyst for the substitution re-
action and instead, intermediate A undergoes 1,2-migra-
tion of the phenyl group with concomitant elimination of
a nitrogen molecule via path b (indicated by solid arrows)
to yield 12.20,21a

Scheme 3 Reaction of a-diazoacetates 9 with N-benzoyl aldimines
10

Finally, we examined the aza-ene-type reaction of N-ben-
zoyl aldimines 13 with enecarbamates 14 using three
types of chiral phosphoric acid 1c (Scheme 4).17 In the
previous report, silica gel purified 1c  displayed marked
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catalytic efficiency, and the catalyst loading could be re-
duced to as low as 0.05 mol%. However, in the evaluation
of the catalytic performance, we employed 2 mol% each
of 1c to exclude experimental errors. The reaction cata-
lyzed by acid-washed 1c (method A and B) proceeded
smoothly. After the hydrolysis of imine products 15, cor-
responding ketones 16 were obtained in nearly quantita-
tive yields and hence the metal-free acids are catalytically
more active than the salt-containing acid, silica gel puri-
fied 1c. In addition, the absolute stereochemistry of ke-
tones 16 was the same R configuration for all cases albeit
a slight decrease in enantioselectivity. These results clear-
ly reveal that the aza-ene-type reaction is efficiently cata-
lyzed by metal-free chiral phosphoric acid, not by chiral
metal phosphate.

Scheme 4 Aza-ene-type reaction of N-benzoyl aldimines 13 with
enecarbamates 14

In summary, we have documented whether metal-free
chiral phosphoric acid or chiral metal phosphate func-
tioned as an active catalyst in three reactions. In the aza-
Friedel–Crafts and aza-ene-type reactions, a metal-free
acid, namely, chiral Brønsted acid, was verified to be the
active catalyst by comparing its reaction outcome with
those of silica gel purified and acid-washed chiral phos-
phoric acids. In contrast, we ascertained that the substitu-
tion reaction of a-diazoacetate with aldimine is efficiently
accelerated by the silica gel purified acid catalyst, where
chiral metal phosphate presumably participates in the cat-
alytic cycle.

As summarized above, either Brønsted acid or metal
phosphate is catalytically active, although their activities
are dependent on the type of reaction. In past experiments,
our unintentional use of silica gel purified ‘salt-contain-
ing’ chiral phosphoric acids led to substantial confusion in
the development of chiral Brønsted acid catalysis. We
identified chiral phosphoric acids by HRMS, NMR, and
IR spectroscopy, despite the fact that these analytical
methods are not effective for the detection of the forma-
tion of metal salts. Our lack of detailed attention to struc-
tural identification is responsible for the erroneous full
characterization of silica gel purified chiral phosphoric
acids. Elemental analysis is clearly more important than
HRMS for identifying elemental composition and deter-

mining the purity of a compound.14 On the other hand, the
accidental use of salt-containing chiral phosphoric acid
has opened new avenues in the field of enantioselective
catalysis. Indeed, after the report by Ishihara and co-work-
ers,9 a couple of excellent enantioselective catalyses have
been accomplished by means of chiral calcium phos-
phates.12 The derivatization of chiral phosphoric acids
with alkali, alkaline-earth, and other metal salts has broad-
ened the scope for the development of enantioselective ca-
talysis by chiral phosphate salts.11 Further studies along
this line are in due course in our laboratory.
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