This article was downloaded by: [University of Edinburgh]

On: 10 June 2012, At: 00:15 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

Synthesis and Pesticidal Properties of Thio and Seleno Analogs of Some Common Urea Herbicides

Jerzy Zakrzewski ^a & Maria Krawczyk ^a ^a Institute of Industrial Organic Chemistry, Warsaw, Poland

Available online: 22 Jun 2009

To cite this article: Jerzy Zakrzewski & Maria Krawczyk (2009): Synthesis and Pesticidal Properties of Thio and Seleno Analogs of Some Common Urea Herbicides, Phosphorus, Sulfur, and Silicon and the Related Elements, 184:7, 1880-1903

To link to this article: http://dx.doi.org/10.1080/10426500802391692

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable

for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 184:1880–1903, 2009

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500802391692

Synthesis and Pesticidal Properties of Thio and Seleno Analogs of Some Common Urea Herbicides

Jerzy Zakrzewski and Maria Krawczyk

Institute of Industrial Organic Chemistry, Warsaw, Poland

Thio and seleno analogs of fenuron, isoproturon, chlorotoluron, metoxuron, monuron, and diuron were synthesized from the corresponding aryl amines. Their reaction with thiophosgene leads to isothiocyanates. Aryl amines were also converted (via isocyanides) to isoselenocyanates. The reaction of both isothio- and isoselenocyanates with dimethylamine affords the corresponding thio and seleno analogs of the above-mentioned urea herbicides. Herbicidal activity of the synthesized compounds was slightly lower than the activity of the parent urea herbicides. The thio and seleno analogs as well as the parent ureas showed good fungicidal activity at a concentration of 200 ppm against selected fungi.

Keywords Isocyanides; isoselenocyanates; isothiocyanates; selenoureas; thioureas; urea herbicides

INTRODUCTION

Thio- and selenoureas exhibit a wide scope of biological activity. The importance of thioureas as biologically active compounds (pesticides, bactericides) has been known for a long time, as summarized in a recent review. Pesticidal activities of thioureas have been described, and their fungicidal properties have been recently reviewed. Both thioureas and selenoureas are effective superoxide radical scavengers. Selenoureas act as effective antioxidants and show low toxicity for some human cells. N. N-Unsubstituted selenourea derivatives are tyrosinase inhibitors. The relationship of thione/thiol and selenoureas to their inhibition capacity of peroxidase-catalyzed reactions was demonstrated. [11]

Received 18 March 2008; accepted 6 August 2008.

We thank the Polish State Committee for Scientific Research for financial support (429/E-142/S/2007).

Address correspondence to Jerzy Zakrzewski, Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland. E-mail: zakrzewski@ipo.waw.pl

FIGURE 1 1,1-Dimethyl-3-aryl ureas—parent urea herbicides described in this article.

Isothio- and isoselenocyanates are the most useful intermediates for the synthesis of thio- and selenoureas, respectively. The chemistry of isothio- and isoselenocyanates has been recently reviewed. ¹² The application of isoselenocyanates as useful precursors for selenium-containing heterocycles has been recently reviewed independently by Heimgartner et al. ^[13] and Garud et al. ¹⁴ In our previous articles, we proposed a 4-isoselenocyanate-2,2,6,6-tetramethylpiperidin-1-oxyl as an isoselenocyanate bearing a nitroxyl moiety. ^{15,16}

1,1-Dimethyl-3-aryl ureas such as fenuron, isoproturon, chlorotoluron, metoxuron, monuron, and diuron (Figure 1) are known as urea herbicides. $^{17-19}$

With the exception of ${\bf 3d}$ ($R_n=3\text{-Cl}$, 4-CH_3O , X=S), the thio analogs of the urea herbicides in Figure 1 are known compounds: ${\bf 3a}$ ($R_n=H$, X=S), 20,21 ${\bf 3b}$ ($R_n=4\text{-}i\text{-}C_3H_7$, X=S), 22 ${\bf 3c}$ ($R_n=3\text{-Cl}$, 4-CH_3 , X=S), 6 ${\bf 3e}$ ($R_n=4\text{-Cl}$, X=S), 20,21 ${\bf 3f}$ ($R_n=3,4\text{-Cl}_2$, X=S). 2,22 In particular, ${\bf 3a}$ and ${\bf 3e}$ have been widely described and are commercially available (Aldrich, Rare Chemicals). To the best of our knowledge, the corresponding seleno analogs have not been described to date, except ${\bf 6a}$ ($R_n=H$, X=Se). ${}^{23-25}$ As far as we know, a direct comparison of the pesticidal properties of ArNHC(X)N(CH₃)₂ (X=O, S, Se) has not been reported to date.

Herein we present the synthesis and pesticidal activity of thio and seleno analogs of the above-mentioned herbicides (Figure 1, X = S, Se).

RESULTS AND DISCUSSION

The synthesis of the thio and seleno derivatives of fenuron, isoproturon, chlorotoluron, metoxuron, monuron, and diuron is presented in Scheme 1. The yields of the synthesized derivatives **2–6**, as well as their physicochemical and spectral data, are presented in Tables I–V.

SCHEME 1 (i) CSCl₂, NEt₃, benzene; (ii) HN(CH₃)₂, benzene; (iii) CHCl₃/NaOH, PTC; (iv) Se, CHCl₃.

Appropriate aniline derivatives **1a–f** were converted to the corresponding isothiocyanates **2a–f** using thiophosgene²⁶ in the presence of triethylamine as a catalyst, as described previously.²⁷ Compounds **2a–f** were isolated by means of vacuum distillation and column chromatography, as well as crystallization, and were obtained in 19–73% yield (Table I).

Amines **1a–f** were converted to the corresponding isocyanides **4a–f** in the isonitrile reaction. ^{28–34} Compounds **4a–f** were isolated by means of vacuum distillation as well as column chromatography and were obtained in 32–66% yields (Table III).

Direct selenation of isocyanides **4a–f** with gray selenium³⁵ affords the corresponding isoselenocyanates **5a–f** in analogy to a previously described procedure.^{15,16} Compounds **5a–f** were isolated by means of column chromatography and were obtained in 21–91% yield (Table IV). This is in contrast to a report in the literature,³⁶ where the authors claim that isoselenocyanates cannot be purified chromatographically. Some isoselenocyanates were isolated by means of vacuum distillation, but in these cases, the yields were significantly lower.

Isothio- and isoselenocyanates (**2a–f** and **5a–f**, respectively) were converted to the thio- and selenoureas **3a–f** and **6a–f**, respectively, using dmethylamine in benzene solution as described previously. ^{16,37}

TABLE I Aryl Isothiocyanates 2: Yields, Physicochemical and Spectroscopic Data

		•			-		
	$ m R_n$	Yield [%] (isolation and purification)	b.p. [°C/mm Hg], m.p. [°C]	MS (EI, 70 eV, m/z, int. [%])	$^1\mathrm{H}$ NMR (200 MHz, CDCl $_3$)	¹³ C NMR (50 MHz, CDCl ₃)	IR $(u$, cm $^{-1})^{a)}$
2a	н	65 (distillation)	b.p. $53/0.6$ (68-70/1) ^[38]	135 (M, 100), 77 (59), 51 (20)	7.1 - 7.4 (m, 5 H, C_6 H $_5)$ $^{b)}$	$125.6, 127.5, 129.4, 131.2^{\ b)}$	(film) 2084 (NCS), 1592, 1490, 749, 684 ^{b)}
2b	4 - i - C_3 H $_7$	45 (distillation)	b.p. $123-130/5$ ($252/760$)[41]	177 (77, M), 162 (100, M-CH ₃), 128 (36), 104 (15), 77 (9)	1.23 [d, $J = 7.0$ Hz, 6H, (CH ₃) ₂ CH, 2.90 [septet, $J =$ 7.0 Hz, 1H, (CH ₃) ₂ CH)], 7.17	23.8 [(CH ₃) ₂ CH], 33.9 [(CH ₃) ₂ CH], 125.6, 127.5,	(film) 2960, 2111 (NCS), 1506, 831
2c	3-Cl, 4-CH ₃	68 (chromatog- raphy, hexane) 22 (distillation)	b.p. 98-100/1 (98- 110/3.5) ^[42]	185 (40), 183 (100, M), 149 (32), 148 (69), 125 (8), 104 (6), 90 (4), 89 (8), 76 (5), 75 (5), 63 (14), 51 (6), 50 (6)	2.35 (s, 3H, CH ₃), 7.01 (dd, J = 2.1 Hz, 8.1 Hz, 1H, arom-H), 7.14-7.24 (m, 2H, arom-H),	20.0 (CH ₃), 124.1, 126.3, 130.1, 131.7, 135.1, 135.9	(film) 2103 (NCS), 1602, 1560, 1487, 1051, 812
2d	3-Cl, 4-CH ₃ O	64 (crystalliza- tion, benzene or hexane)	m.p. 86-87 (89) ^[41]	201 (35), (95) M), 186 (37), 184 (100), 158 (23), 156 (60), 63 (20)	3.90 (3, 3H, OCH ₃), 6.87 (d, J= 8.8 Hz, 1H, arom-H, 7.11 (dd, J= 2.4 Hz, 8.8 Hz, 1H, arom-H), 7.27 (d, J= 2.4 Hz, 1H, arom-H), °	56.4 (OCH ₃), 112.3, 123.2, 124.2, 125.1, 127.5, 135.8, 154.3	2111 (NCS), 1494, 1439, 1303, 1265, 1063, 870, 809

TABLE I Aryl Isothiocyanates 2: Yields, Physicochemical and Spectroscopic Data (Continued)

2e 4-Cl 73 (crystalliza- m.p. 44-45 tion, (42-44) ^[44] hexane) 2f 3,4-Cl ₂ 19 (chromatog- m.p. 75-79 raphy, (60-61) ^[46] HA9)	H	$ m R_n$	Yield [%] (isolation and purification)	b.p. [°C/mm Hg], m.p. [°C]	MS (EI, 70 eV, m/z, 1H NMR (200 int. [%]) MHz, CDC!	$^{1}\mathrm{H}$ NMR (200 MHz, CDCl $_{3}$)	$^{13}\mathrm{C}$ NMR (50 MHz, CDCl $_3$)	$\mathrm{IR}\:(\nu\:,\mathrm{cm}^{-1})^{a)}$
3,4-Cl ₂ 19 (chromatog- m raphy, HA9)	2e ⁴	f-Cl	73 (crystalliza- tion, hexane)	m.p. $44-45$ (42-44) $^{[44]}$	171 (35), 169 (M, 100), 113 (10), 111 (30), 85 (5), 75 (21), 50 (8)	7.23 (m, 4H, arom-H) $^{d)}$	127.0, 130.0, 133.1, 136.9	2184 (NCS), 2138, 2099 (NCS), 1483, 1091, 826, 6)
		3,4-Cl ₂	19 (chromatog- raphy, HA9)	m.p. $75-79$ (60-61)[46]	207 (13.5, 20.0) 207 (13.5, 20.5 (68), 203 (100, M), 168 (10), 147 (17), 145 (26), 111 (6), 109 (18), 75 (11), 74 (15)	7.07 (dd, $J = 2.5$ Hz, 8.5 Hz, 1H, arom-H), 7.33 (d, J = 2.5 Hz, 1H, arom-H), 7.42 (d, J = 8.5 Hz, 1H, arom-H), 7.42 (d,	124.9, 127.4, 131.2, 131.5, 133.5, 154.9	(film) 2089, 2034 (NCS), 1586, 1468, 1126, 1034, $813 g^{0}$

 $^{a)}$ KBr unless otherwise stated.

 $^{(b)-g)}$ Spectroscopic data are consistent with: $^{(b)}$ ref. $^{(39,40],c)}$ ref. $^{(43],d)}$ ref. $^{(39,43],e)}$ ref. $^{(39],f)}$ ref. $^{(40,45],g)}$ ref. $^{(47]}$.

TABLE II Aryl Thioureas 3: Yields, Physicochemical and Spectroscopic Data

	$ m R_n$	Yield [%]	Yield [%] m.p. [°C]	MS (EI, 70 eV, m/z, int [%])	$^{1}\mathrm{H}$ NMR (200 MHz) $^{a)}$	$^{13}\mathrm{C~NMR}~(50)$ MHz) $^{a)}$	${ m IR}(u,{ m cm}^{-1}, \ { m KBr})$
33	н	91	.128-130 (132 $^{[21]}$, 133 $^{[20]}$)	180 (100, M), 147 (17), 136 (12), 135 (12), 88 (93), 77 (21), 71 (30), 51 (10), 44 (21) ^b	3.27 (s, 6H, N(CH ₃) ₂), 7.1-7.4 (m, 5H, C ₆ H ₅) ^{c)}	$41.6 [\mathrm{N(CH_3)_2}],$ $125.2, 125.6,$ $128.8, 140.0,$ $182.2 (\mathrm{C=S}) ^{\it o}$	3320, 1592, 1534, 1496, 1375, 1322, 1305, 1144,
39	3b 4- <i>i</i> -C ₃ H ₇	83	125-127	222 (67, M), 189 (24), 179 (6), 177 (9), 162 (21), 159 (9), 152 (40), 137 (24), 128 (13), 88 (100)	1.24 [d, J = 7.2 Hz, 6H, (CH ₃) ₂ CH], 2.90 [septet, J = 7.2 Hz, 1H, (CH ₃) ₂ CH], 3.31 [s, 6H, N(CH ₃) ₂], 7.19 (s, 4H, arom-H)	24.0 [(CH ₃) ₂ CH], 33.6 [(CH ₃) ₂ CH], 41.4 [N(CH ₃) ₂], 125.0, 126.8, 137.4, 146.3, 159.4, 0.6.5)	3286, 2955, 1591, 1538, 1374, 1325, 1260, 1142, 833, 739, 699
3c	3-Cl, 4-CH ₃	47	164 (164.5-166) ^[6]	230 (15), 228 (41, M), 197 (4), 195 (13), 183 (17), 168 (5), 158 (8), 148 (13), 88 (100), 73 (7), 71 (26), 44 (21)	2.34 (s, 3H, CH ₃), 3.34 (s, 6H, N(CH ₃) ₂), 6.99 (s, 1H, NH), 7.09 (dd, J = 2.1 Hz, 8.2 Hz, 1H, arom-H), 7.19 (d, J = 8.2 Hz, 1H, arom-H), 7.25 (d, J = 2.1 Hz, 1H,	19.4 (CH ₃), 19.4 (CH ₃), (N(CH ₃) ₂), 124.2, 126.0, 130.6, 133.3, 133.8, 138.6, 181.8 (C=S)	3280, 1580, 1538, 1495, 1327

(Continued on next page)

arom-H)

3d Yield [%] m.p. [°C] MS (EI, 70 eV, m/z, int [%]) "IH NMR (200) MHz) and m/z, int [%] 3d 3-Cl, 4-CH ₃ O 81 165-167 246 (9), 244 (23, m) (CD ₃ OD): 3.33 MV, 213 (4), g, 6H, N(CH ₃)2), 211 (10), 201 3.91 (s, 3H, N(CH ₃)2), 3.91 (s, 3H, N(CH ₃)	TA	BLE II Aryl	Thiourea	s 3: Yields, Phy	sicochemical a	TABLE II Aryl Thioureas 3: Yields, Physicochemical and Spectroscopic Data (Continued)	Data (Continu	(pa
3-Cl, 4-CH ₃ O 81 165-167 246 (9), 244 (23, in M, 213 (4), 213 (4), 213 (10), 201 (11), 199 (29), 186 (12), 184 (33), 176 (10.5), 174 (29), 156 (10.5), 174 (29), 158 (10), 156 (28), 88 (100), 73 (13), 71 (15), 63 (16), 44 (21), 42 (13) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (15, 124) (11, 13), 169 (100), 113 (15), 111 (45), 88 (100), 75 (36) (100), 75 (36)		$ m R_n$	Yield [%]	m.p. [°C]	MS (EI, 70 eV, m/z, int [%])	$^{1}\mathrm{H~NMR}\left(200\right.\\\mathrm{MHz}\right){}^{a)}$	$^{13}\mathrm{C}\mathrm{NMR}(50)$ MHz) $^{a)}$	$\mathrm{IR}\left(u ight.,\mathrm{cm}^{-1},\ \mathrm{KBr} ight)$
$(10.5), 174$ $(10.5), 174$ $(29), 158 (10), 156 (28), 88$ $(100), 73 (13), 71 (15), 63$ $(10), 44$ $(116), 44$ $(151 21), 71 (15), 42 (13)$ $(151 21), (16), 44$ $(151 21), (16), 44$ $(151 21), (16), 44$ $(151 21), (16), 44$ $(151 21), (16), 183$ $(150-151.5^{(49)}), 171 (33), 169$ $(90), 113 (15), 111 (45), 88$ $(100), 75 (36)$	39	3-Cl, 4-CH ₃ O		165-167	246 (9), 244 (23, M), 213 (4), 211 (10), 201 (11), 199 (29), 186 (12), 184 (33), 176	in (CD ₃ OD): 3.33 (s, 6H, N(CH ₃) ₂), 3.91 (s, 3H, OCH ₃), 7.00 (d, J = 8.5 Hz, 1H, arom-H) 715	in (CD ₃ OD): 41.6 (N(CH ₃) ₂), 56.9 (OCH ₃), 112.9, 122.7, 127, 7, 130.1	3209, 1539, 1506, 1327, 1235, 1139, 1063
4-Cl 91 $149-151$ $216 (14), 214$ 3. $(151^{[21]}, (40, M), 183$ $152^{[20]}, (4), 181 (11), 150-151.5^{[49]})$ $171 (33), 169$ $(90), 113 (15), 111 (45), 88$					(10.5), 174 (29), 158 (10), 156 (28), 88 (100), 73 (13), 71 (15), 63 (16), 49, (13)	(dd, $J = 2.4$ Hz, 8.5 Hz, 1H, arom-H), 7.31 (d, J = 2.4 Hz, 1H, arom-H)	135.7, 154.6, 181.9 (C=S)	
71(37), 51 (8), 50 (16),	ဗို		91	$149 - 151 \ (151^{[21]}, \ 152^{[20]}, \ 150 \cdot 151 \cdot 150 \cdot$	216 (14), 214 216 (14), 214 (40, M), 183 (4), 181 (11), 171 (33), 169 (90), 113 (15), 111 (45), 88 (100), 75 (36), 71 (37), 51 (8), 50 (16),	3.34 (s, 6H, N(CH ₃) ₂), 7.26 (m, 4H, arom-H) ^{f/)}	41.4 (N(CH ₃) ₂), 126.9, 128.6, 130.9, 138.4, 181.6 (C=S)	3284, 1589, 1541, 1492, 1324

3194, 1542, 1476, 1314
41.7 (N(CH ₃) ₂), 124.7, 126.8, 129.4, 130.4, 132.6, 139.4, 182.1 (C=S)
3.35 (s, 6H, N(CH ₃) ₂), 7.03 (bs, NH), 7.18 (dd, J = 2.3 Hz, 8.5 Hz, 1H, arom-H), 7.39 (d, J = 8.5 Hz, 1H, arom-H), 7.42 (d, J = 2.3 Hz, 1H, arom-H), 7.42 (d,
250 (19), 248 (28, M), 217 (6), 215 (9), 205 (24), 203 (35), 147 (9), 145 (14), 111 (5), 109 (14), 88 (100), 71 (26), 44 (22), 42 (13)
$164-166$ $(166.5)^{[2]}$
92
3,4-Cl ₂
3 £

^{a)}CDCl₃ unless otherwise stated.

 $^{b)}$ MS data are consistent with ref. $^{[1]}$ except the literature value for m/z 180 (M, 59) $^{[1]}$. $^{c)}$ ¹H NMR data are consistent with those in ref. $^{[1]}$, two separate CH₃ signals (3.26 and 3.30) are detected

in ref.^[48].

 $^{d/13}\mathrm{C}$ NMR data are consistent with those in ref. [48] two separate CH₃ signals (41.39 and 41.47) are detected in ref^[1].

 $^{f)}\mathrm{Spectroscopic}$ data are consistent with those in $\mathrm{ref.}^{[49]}.$ ^{e)}IR are consistent with those in ref.^[1,48].

TABLE III Aryl Isocyanides 4: Yields, Physicochemical and Spectroscopic Data

	R_n	Yield [%] (isolation and purification)	b.p. [°C/mm Hg], m.p. [°C]	MS (EI, 70 eV, m/z, int [%])	$^{1}\mathrm{H}$ NMR (200 MHz, CDCl $_{3}$)	$^{13}\mathrm{C}\ \mathrm{NMR}\ (50)$ MHz, $^{\circ}\mathrm{CDCl}_3)$	${\rm IR}(\nu\;,{\rm cm}^{-1})^{-a)}$
4a	Н	66 (chromatog- raphy, hexane) 30% (distillation)	b.p. 68-69.5/22, 35-38/0.7 (43-44/1.5 ^[50] , 64/22 ^[51])	103 (M, 100), 77(35), 76 (49), 51 (18), 50 (17) ^{b)}	$7.35~(\mathrm{m},~5\mathrm{H},~~\mathrm{C_6H_5})^{-b)}$	$126.2, 126.4, 129.2, 129.2, 129.3, 164.1 (NC) ^{b)}$	(film) 2126 (NC), 1588, 1486, 1455, 754, 684, 5136)
4 p	4 - i - C_3 H $_7$	33 (distillation)	b.p. 60-61/0.6, 55-56/0.6	145 (31, M), 130 (100, M-CH ₃), 104 (17), 103 (53), 77 (18)	1.23 [d, $J = 7.0$ Hz, 6H, (CH ₃) ₂ CH), 2.92 [septet, J = 7.0 Hz,	23.7 (CH ₃) ₂ CH), 34.0 ((CH ₃) ₂ CH), 126.3, 127.4,	(film): 2963, 2124 (NC), 1508, 837, 550
4c	3-Cl, 4-CH ₃	36 (distillation) 27 (chro- matography	b.p. 65-70/0.6	153 (12), 151 (38), 116 (100), 89 (27).	1H, $(CH_3)_2(CH)$], 7.24 (m, $4H$, C_6H_4) 2.39 (s, $3H$, CH_3), 7.17 (dd, J = 1.7	$129.3, 150.5,$ $163.4 (NC)$ $20.1 (CH_3),$ $124.7, 126.9,$ $131.6, 135.0.$	(film) 2126 (NC), 1487, 1053, 876.
		hexane)		63 (12), 40 (10)	Hz, 8.1 Hz, 1H, arom-H), 7.25 (d, J = 8.1 Hz, 1H, arom-H), 7.36 (d, J = 1.7 Hz, 1H, arom-H)	138.3, 165.1 (NC)	816, 731

4 d	3-Cl. 4-CH ₃ O	32 (chromatog-	m.p. 77-79	169 (30), 167	3.93 (s. 3H.	56.5 (OCH ₃).	2128 (NC).
	,			(91, M), 154	OCH_3), 6.90	111.9, 119.6,	1598, 1498,
		HA9)		(23), 152 (69),	(d, J = 8.8)	123.1, 126.1,	1439, 1278,
				126 (33), 124	Hz, 1H,	128.2, 155.8,	1064, 1018,
				(100)	arom-H), 7.28	164.1 (NC)	869, 818
					(dd, J = 2.4		
					Hz, 8.8 Hz,		
					1H, arom-H),		
					7.42 (d, J =		
					2.4 Hz, 1H,		
					arom-H)		
4e	4-Cl	40 (crystalliza-	m.p. 71-73.5	139 (32), 138	7.26-7.41 (m,	122.7, 127.8,	2126 (NC),
		tion, hexane,	$(73-75)^{[52]}$	(8), 137 (100,	$4\mathrm{H, arom-H})^{b)}$	129.9, 135.6,	1650, 1486,
		then chro-		M), 102 (56),		$165.7~(\mathrm{NC})^{b)}$	1405, 1091,
		matography,		75(21), 51			1017, 830,
		(HA9)		$(19), 50 (30)^{b)}$			
4f	$3,4$ -Cl $_2$	53 (crystalliza-	m.p. 50-53	175 (10), 173	7.24 (dd, J = 2.2)	125.8, 128.4,	3095, 2133
		tion,	$(32-33)^{[53]}$	(65), 171		131.4, 133.8,	
		hexane)		(100, M), 138		134.4, 155.5,	
				(14), 136 (41),		167.2 (NC)	
				100 (38), 75			
				(17), 74(20),	arom-H), 7.49		
				50(19)	(d, $J = 2.2$		
					Hz, 1H,		
					arom-H)		

 $^{^{}a)}{\rm KBr}$ unless otherwise stated. $^{b)}{\rm Spectroscopic}$ data are consistent with those reported in ref. $^{[52]}$.

	ಥ
	Uat
•	၂၁
	cob
	ros S
	ect
ζ	\mathbf{z}
	nd
_	ಡ
•	ııca
	Jen
	30C
•) SIC
2	J d
	ď,
	ğ
	נח
•	Ž
•	X X
•); 2: X10
	ates 5: Y10
	nates 5: Y1
-	syanates 5: Y10
-	ocyanates 5: Yo
	lenocyanates 5: Y10
	selenocyanates 5: Y10
	lsoselenocyanates 5: Y10
	71 Isoselenocyanates 5: Y1
	Aryl Isoselenocyanates 5: Y10
	1V Aryl Isoselenocyanates 5: Y10
	LE IV Aryl Isoselenocyanates 5: Y10
	BLE IV Aryl Isoselenocyanates 5: Y10
	TABLE IV Aryl Isoselenocyanates 5: Yields, Physicochemical and Spectroscopic Data

${ m R}_n$	[\(\text{\tin}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t					
	isolation and (isolation)	b.p. $[^{\circ}C/mm]$ Hg], m.p. $[^{\circ}C]$	MS (EI, 70 eV, m/z, int ¹ H NMR (200 [%]) MHz, CDCI;	$^{1}\mathrm{H}$ NMR (200 MHz, CDCl $_{3}$)	$^{13}\mathrm{C}$ NMR (50 MHz, CDCl $_3$)	${ m IR}(u$, ${ m cm}^{-1})^{-a}$
н	91 (chromatography, HA9 or hexane)		185 (18), 183 (100, M), 181 (49), 103 (28), 77 (77), 51 (30), 50	$7.22-7.42 (\mathrm{m}, 5\mathrm{H}, \mathrm{C}_6\mathrm{H}_5)^{b)}$	$126.0, 128.1, 129.6^{\ b)}$	(film) 2116, 2040 (NCSe), 1589, 1487, 749, 683
4- <i>i</i> -C ₃ H ₇	90 (chromatography, HA9) 77 (distillation)	b.p. 102. 102.5/0.5	227 (18), 226 (11), 225 (97, M), 223 (48), 222 (17), 221 (18), 212 (17), 211 (10), 210 (98, M-CH ₃), 208 (48), 207 (17), 206 (19), 145 (6), 130 (31), 129 (10), 128 (19), 104 (100), 103 (21), 21 (10), 21 (10), 21 (10), 21 (10), 21 (10), 21 (20), 21 (20), 22 (20), 22 (20), 23 (20),	1.23 [d, $J = 7.0$ Hz, 6H, (CH ₃) ₂ CH], 2.91 [septet, J = 7.0 Hz, 1H, (CH ₃) ₂ CH]], 7.21 (s, 4H, C ₆ H ₄)	23.7 (CH ₃) ₂ CH), 33.9 (CH ₃) ₂ CH), 126.0, 127.6, 129.4, 149.4	(film) 2959, 2122 (NCSe), 1504, 831
3-Cl, 4-CH ₃	63 (chromatog- raphy, HA9)		(21), 51 (9), 41 (5), 39 (7) 233 (43), 231 (100, M), 229 (48), 228 (20), 227 (18), 196 (23), 194 (14), 151 (15), 150 (10), 127 (18), 125 (56), 116 (37), 99 (11), 89 (40), 63 (22)	2.37 (s, 3H, CH ₃), 7.09 (dd, J = 2.0 Hz, 8.2 Hz, 1H, arom-H), 7.22 (d, J = 8.2 Hz, 1H, arom-H), 7.30 (d, J = 2.0 Hz, 1H,	20.0 (CH ₃), 124.2, 126.5, 128.2, 131.6, 135.0, 136.7	2160, 2119 (NCSe), 1484, 1050, 863, 813
	3-Cl, 4-CH ₃	ñ	raphy, HA9) 77 (distillation) H ₃ 63 (chromatography, HA9)	raphy, HA9) 102.5/0.5 77 (distillation) H ₃ 63 (chromatography, HA9)	raphy, HA9) 102.5/0.5 (97, M), 223 (48), 77 222 (17), 221 (18), 210 (98, M-CH ₃), 208 (48), 207 (17), 206 (19), 145 (6), 130 (31), 129 (10), 128 (19), 104 (100), 128 (19), 104 (100), 128 (19), 104 (100), 128 (19), 104 (100), 128 (19), 104 (100), 128 (19), 129 (10), 129 (10), 121 (10), 139 (7) 229 (48), 228 (20), 14A9) 227 (18), 196 (23), 14A9) 125 (56), 116 (37), 199 (11), 89 (40), 63 (22)	raphy, HA9) 102.5/0.5 (97, M), 223 (48), Hz, 6H, 77 (212 (17), 221 (18), (CH ₃) ₂ CH], (212 (17), 211 (10), 2.91 [septet, 210 (98, M-CH ₃), $J = 7.0 \text{Hz}$, 208 (48), 207 (17), 1H, 206 (19), 145 (6), (CH ₃) ₂ CH], 130 (31), 129 (10), 7.21 (s, 4H, 128 (19), 104 (100), C ₆ H ₄) (103 (21), 91 (6), 77 (21), 51 (9), 41 (5), 39 (7) (21), 51 (9), 41 (5), 39 (7) (21), 51 (9), 41 (5), 237 (s, 3H, 20 (21), 91 (6), 77 (21), 709 (21), 91 (6), 77 (21), 709 (21), 91 (6), 77 (21), 709 (21), 91 (6), 77 (21), 709 (22) (48), 228 (20), CH ₃), 7.09 (194 (14), 151 (15), Hz, s.2 Hz, 1H, arom-H), 125 (56), 116 (37), 30 (4, $J = 2.0 $ (6, $J = 2.0 $ Hz, 1H, arom-H), 125 (56), 116 (37), 30 (4, $J = 2.0 $ Hz, 1H, arom-H), 200 (22)

2136, 2110 (NCSe), 1494, 3, 1437, 1263, 1060, 1018, 869, 809, 703	2148 (NCSe), 1484, 1404, 1087, 1013, 850, 825	2961, 2150 (NCSe), 2107 (NCSe), 1581, 1465, 1259, 1094, 1030, 862, 808, 715
56.5 (OCH ₃), 112.2, 122.6, 123.2, 125.6, 127.9, 154.9	$127.3, 129.9, 133.8^{\ b)}$	125.5, 128.0, 129.4, 131.4, 132.6, 133.9
3.92 (s, 3H, OCH ₃), 6.88 (d, J = 8.8 Hz, 1H, arom-H), 7.19 (dd, J = 2.4 Hz, 8.8 Hz, 1H, arom-H), 7.33 (d, J = 2.4 Hz, 1H, arom-H), arom-H) arom-H)	7.29 (m, 4H, arom-H) $^{b)}$	7.14 (dd, $J = 2.4$ Hz, 8.6 Hz, 1H, arom-H), 7.40 (d, $J =$ 2.4 Hz, 1H, arom-H), 7.44 (d, $J =$ 8.6 Hz, 1H, arom-H)
5d 3-Cl, 4-CH ₃ O 33 (chromatog- m.p. 112-113 249 (43), 247 (100, M), raphy, PA9) 245 (47), 244 (15), PA9) 232 (91), 234 (39), 232 (91), 230 (43), 229 (13), 229 (13), 229 (15), 206 (18), 204 (41), 202 (9), 201 (6), 200 (7), 169 (8), 167 (19), 156 (18), 124 (42), 63 (32)	219 (43), 217 (M, 100), 215 (47), 214 (15), 213 (17), 139 (25), 137 (75), 113 (18), 111 (55), 102 (20), 75 (61), 51 (14), 50	255 (16), 253 (64), 251 (100, M), 249 (45), 173 (54), 171 (86), 147 (24), 145 (37), 136 (13), 109 (37), 100 (17), 75 (24), 74 (29)
m.p. 112-113	m.p. $70.5-71.5$ $(68-70)^{[55]}$	m.p. 38-39
33 (chromatography, HA9)	59 (chromatog- raphy, hexane)	21 (chromatography, raphy, hexane)
3-Cl, 4-CH ₃ O	4-CI	3,4-Cl ₂
54	5 e	1 2

 $^{a)} \rm KBr$ unless otherwise stated. $^{b)} \rm Spectroscopic data$ are consistent with those reported in ref. $^{[54]}$.

TABLE V Arvl Selenoureas 6: Yields. Physicochemical and Spectroscopic Data

[56] MHz) a) [57] $(108-105)$ $(108-105)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(108-100)$ $(109-100)$		$\mathbf{R}_{\!\scriptscriptstyle \mathrm{n}}$	Yield [%]	m.p. [°C]	MS (EI, 70 eV, m/z, int 1 H NMR (200	$^1\mathrm{H}\mathrm{NMR}(200$	13 C NMR (50	$\mathrm{IR}~(u$, cm^{-1} ,
H 54 $104-105$ $230 (18), 228 (100)$ M), $3.30 (s, 6H)$ 44 $(108-100)$ $110)^{[23,24]}$ $136 (14), 132 (19)$, $(14, 132)$ (19) , $(14, 132)$ (19) , $(14, 132)$ (19) , $(14, 132)$ (19) $(14, 132)$ (19) $(14, 132)$ (19) $(14, 132)$ $(14, 132)$ $(14, 132)$ $(14, 132)$ $(14, 132)$ $(14, 132)$ $(14, 132)$ $(14, 134)$ $(14, $		1		•	[%]	MHz) $^{a)}$	$\mathrm{MHz})^{ a }$	KBr)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ea	H	54	104-105	230 (18), 228 (100, M),	3.30 (s, 6H,	43.5 (N(CH ₃) ₂),	3299, 1592,
$4 \cdot i \cdot C_3H_7 = 82 \qquad 110)^{[23,24]} \qquad 136 \ (14), 132 \ (19), \qquad (m, 5H, C_6H_5), \\ 91 \ (11), 77 \ (20), 71 \qquad 7.55 \ (s, 1H, NH) \\ (14)^{b} \qquad (14)^{b} \qquad (124)^{d} \ J = 6.8 \ Hz, 18, 25 \ (16), 268 \ (26), \qquad (29) \ ($				(108-	226 (49), 147 (87),	$N(CH_3)_2), 7.0-7.4$	125.7, 126.2,	1539, 1496,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$110)^{[23,24]}$	136 (14), 132 (19),	$(m, 5H, C_6H_5),$	128.9, 140.5,	1380, 1316,
$4 \cdot i \cdot C_3 H_7 \qquad 82 \qquad 142 \cdot 146 \qquad 272 (10), 216 (10), 268 (26), \\ (52, M), 268 (26), \\ (52, M), 268 (26), \\ (53, M), 268 (26), \\ (54, M), 268 (26), \\ (55, M), 268 (26), \\ (56, M), 290 [septet, J = 100, 159], \\ (57, 109, 100), 159 \qquad (CH_3)_2 CH), 3.33 \\ (15), 189 (100), 159 \qquad (CH_3)_2 CH), 3.33 \\ (15), 189 (100), 159 \qquad (CH_3)_2 CH), 3.33 \\ (15), 136 (14), 134 \qquad [s, 6H, N(CH_3)_2], \\ (7), 133 (9), 104 (8), \\ (7), 133 (9), 104 (8), \\ (7), 133 (9), 104 (8), \\ (7), 133 (9), 104 (8), \\ (7), 133 (9), 104 (8), \\ (7), 133 (9), 104 (8), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (7), 134 (1), \\ (8), 104 (1), \\ (8), 114, \\ (8), 114, \\ (8), 114, \\ (8), 115 (10), 180 \qquad arom-H) \\ (21), 125 (10), 130 \qquad arom-H) \\ (22), 121 (12), 63 (13), \\ (23), 71 (42), 63 (13), \\ (24), 121 (12), 63 (13), \\ (24), 121 (12), 63 (13), \\ (25), 121 (12), 63 (13), \\ (27), 134 (12), 63 (13), \\ (28), 11 (42), 63 (13), \\ (29), 11 (42), 63 (13), \\ (29), 11 (42), 63 (13), \\ (20), 121 (12), 130 (13), \\ (20), 121 (12), 130 (13), \\ (20), 121 (12), 130 (13), \\ (20), 121 (12), 130 (13), \\ (20), 121 (12), 130 (13), \\ (20), 121 (12), 130 (13), \\ (21), 121 (12), 130 (13), \\ (21), 121 (12), 130 (13), \\ (21), 121 (12), 130 (13), \\ (21), 121 (13)$					91 (11), 77 (20), 71	7.55 (s, 1H, NH)	181.9 (C=Se)	1305, 755,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	4-i-C.H.	68	149-146	$(14)^{(1)}$	1 94 [d J – 6 8 Hz	93.9	8434 3250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	100000	1		(52. M). 268 (26).	6H. (CH ₂), CH].	[(CH ₃),CH].	2957. 1540.
227 (5), 225 (5), 210					267 (10), 266 (10),	2.90 [septet, $J =$	33.6	1375, 1320,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					227 (5), 225 (5), 210	6.8 Hz, 1H,	$[(CH_3)_2CH],$	829
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(5), 189 (100), 159	$(CH_3)_2$ CH)], 3.33	43.4	
$(7), 133 (9), 104 (8), \qquad 7.17 (m, 4H, 91 (7), 78 (4), 77 (6), \qquad C_6H_4)$ $3.\text{Cl}, 4.\text{CH}_3 \qquad 31 \qquad 142.144 \qquad 278 (26), 276 (60, M), \qquad 2.35 (s, 3H, \text{CH}_3), \\ 274 (29), 273 (11), \qquad 3.38 (s, 6H, 272 (10), 233 (11), \qquad N(\text{CH}_3)_2), 7.06$ $231 (25), 229 (12), \qquad (dd, J = 2.0 \text{ Hz}, 228 (6), 227 (5), 197, \qquad 8.0 \text{ Hz}, 1H, (33), 195 (100), 180, \qquad \text{arom-H}), 7.15 - (22), 139 (16), 136, \qquad 7.25 (m, 2H, 35), 125 (23), 89, \qquad \text{arom-H})$ $(29), 71 (42), 63 (13), \qquad 44 (42)$					(15), 136 (14), 134	[s, 6H, $N(CH_3)_2$],	$[N(CH_3)_2],$	
3-Cl, 4-CH ₃ 31 142-144 278 (26), 276 (60, M), 2.35 (s, 3H, CH ₃), 274 (29), 273 (11), 3.38 (s, 6H, 272 (10), 233 (11), 3.38 (s, 6H, 272 (10), 233 (11), 3.38 (s, 6H, 272 (10), 233 (11), 3.38 (s, 6H,					(7), 133 (9), 104 (8),	7.17 (m, 4H,	125.4, 126. 9,	
3-Cl, 4-CH ₃ 31 142-144 278 (26), 276 (60, M), 2.35 (s, 3H, CH ₃), 274 (29), 273 (11), 3.38 (s, 6H, 272 (10), 233 (11), N(CH ₃) ₂), 7.06 231 (25), 229 (12), (dd, $J = 2.0$ Hz, 228 (6), 227 (5), 197 8.0 Hz, 1H, (33), 195 (100), 180 arom-H), 7.15 – (22), 139 (16), 136 7.25 (m, 2H, (35), 125 (23), 89 arom-H) (23), 71 (42), 63 (13), 44 (42)					91 (7), 78 (4), 77 (6),	$\mathrm{C}_6\mathrm{H}_4)$	138.0, 146.8,	
$3\text{-Cl}, 4\text{-CH}_3 31 142\text{-}144 278 (26), 276 (60, \text{M}), 2.35 (8, 3\text{H}, \text{CH}_3), \\ 274 (29), 273 (11), 3.38 (8, \text{GH}, \\ 272 (10), 233 (11), N(\text{CH}_3)_2), 7.06 \\ 231 (25), 229 (12), (dd, J = 2.0 \text{Hz}, \\ 228 (6), 227 (5), 197 8.0 \text{Hz}, 1\text{H}, \\ (33), 195 (100), 180 \text{arom-H}), 7.15 - \\ (22), 139 (16), 136 7.25 (\text{m}, 2\text{H}, \\ (35), 125 (23), 89 \text{arom-H}) \\ (23), 71 (42), 63 (13), \\ 44 (42)$					71 (17), 44 (7)		182.0 (C=Se)	
$ 274 (29), 273 (11), \\ 272 (10), 233 (11), \\ 231 (25), 229 (12), \\ 228 (6), 227 (5), 197 \\ (33), 195 (100), 180 \\ (22), 139 (16), 136 \\ (35), 125 (23), 89 \\ (23), 71 (42), 63 (13), \\ 44 (42) $ $ 3.38 (s, 6H, 7.06) \\ (46, 7.25 (m, 2H, 7.15 - 1.25) \\ (47, 11, 12, 12, 12, 13), \\ (48, 11, 12, 12, 12, 13), \\ (48, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14$	e c		31	142-144	278 (26), 276 (60, M),	2.35 (s, $3H$, CH_3),	19.7 (CH ₃), 43.3	3172, 1542,
N(CH ₃) ₂), 7.06 (dd, J = 2.0 Hz, 8.0 Hz, 1H, arom-H), 7.15 – 7.25 (m, 2H, arom-H)					274 (29), 273 (11),	3.38 (s, 6H,	$(N(CH_3)_2),$	1325, 1127,
(dd, J = 2.0 Hz, 8.0 Hz, 1H, arom-H), 7.15 – 7.25 (m, 2H, arom-H)					272 (10), 233 (11),	$N(CH_3)_2), 7.06$	124.7, 126.4,	1048
8.0 Hz, 1H, arom-H), 7.15 – 7.25 (m, 2H, arom-H)					231 (25), 229 (12),	(dd, J = 2.0 Hz,	130.8, 134.0,	
arom-H), 7.15 – 7.25 (m, 2H, arom-H)					228 (6), 227 (5), 197	$8.0~\mathrm{Hz}, 1\mathrm{H},$	134.0, 139.1,	
					(33), 195 (100), 180	arom-H), 7.15 –	181.8 (C=Se)	
					(22), 139 (16), 136	7.25 (m, 2H,		
(23), 71 (42), 63 (13), 44 (42)					(35), 125 (23), 89	arom-H)		
44 (42)					(23), 71 (42), 63 (13),			
					44 (42)			

3440, 1541, 1505, 1324, 1239, 1128, 1065, 1027, 801	(Continued on next page)
3440, 1506 1236 1236 1066 801	3450, 154 140 131 818
43.1 (N(CH ₃) ₂), 56.3 (OCH ₃), 111.7, 122.2, 126.5, 128.7, 133.7, 153.6, 182.4 (C=Se)	43.2 (N(CH ₃) ₂), 127.3, 128.9, 131.6, 138.9, 181.8 (C=Se)
3.40 (s, 6H, N(CH ₃) ₂), 3.91 (s, 3H, OCH ₃), 6.91 (d, J = 8.7 Hz, 1H, arom-H), 7.17 (dd, J = 2.4 Hz, 8.7 Hz, 1H, arom-H), 7.26 (d, J = 2.4 Hz, 1H, arom-H)	3.34 (s, 6H, N(CH ₃) ₂), 7.24 (m, 4H, arom-H), 7.45 (s, 1H, NH)
294 (7), 292 (15, M), 290 (9), 249 (21), 247 (48), 245 (22), 234 (23), 232 (48), 230 (22), 213 (18), 211 (48), 206 (11), 204 (27), 202 (12), 167 (25), 152 (20), 126 (21), 124 (44), 116 (32), 72 (27), 71 (17), 63 (44), 62 (22), 44 (70), 42 (100)	264 (21), 262 (46, M), 260 (23), 259 (8), 258 (9), 219 (12), 217 (26), 215 (13), 183 (32), 181 (100), 166 (30), 137 (25), 136 (25), 125 (17), 113 (15), 111 (28), 75 (35), 71 (32), 44 (33)
198-199	136-139
43	99
3-Cl, 4-CH ₃ O 43 198-199	4-CI
P9	99

(pən	${ m IR}(u$, ${ m cm}^{-1}$, ${ m KBr})$	1544, 1471, 1394, 1319
c Data <i>(Contin</i> ı	$^{13}\mathrm{C}$ NMR (50 MHz) $^{a)}$	(DMSO-d6): 42.5 (N(CH ₃) ₂), 126.5, 126.6, 127.9, 129.5, 129.8, 142.0, 180.2 (C=Se)
and Spectroscopi	$^{1}\mathrm{H}\mathrm{NMR}(200)$ MHz) $^{a)}$	in (DMSO-d6): 3.35 (s, 6H, N(CH ₃) ₂), 7.32 (dd, J = 2.4 Hz, 87 Hz, 1H, arom-H), 7.56 (d, J = 87 Hz, 1H, arom-H), 7.61 (d, J = 2.4 Hz, 1H, arom-H), 9.40 (s, 1H, NH)
TABLE V Aryl Selenoureas 6: Yields, Physicochemical and Spectroscopic Data (Continued)	MS (EI, 70 eV, m/z, int [%])	298 (19), 296 (31, M), 294 (15.5), 253 (65), 251 (99.5), 249 (42), 217 (41), 215 (63), 202 (12), 200 (17), 173 (67), 171 (100), 161 (10), 159 (13), 147 (37.5), 145 (57.5), 136 (39), 111 (19), 109 (54.5), 100 (21), 75 (40), 74 (43), 71 (34), 50 (20), 45 (41.5), 44 (92.5), 42 (26.5)
oureas 6: Y	Yield [%] m.p. [°C]	170-171 (dec)
Aryl Selen	Yield [%]	2.5
TABLE V	$ m R_n$	6f 3,4-Cl ₂

 $^{^{}a)} \mathrm{CDCl_3}$ unless otherwise stated. $^{b)} \mathrm{According}$ to ref. $^{[25]}$ the intensities of m/z 228 and 71 are inverted: 228 (20, M), 71 (100). $^{c)} \mathrm{IR}$ spectroscopic data are consistent with those reported in ref. $^{[23]}$.

Compounds **3a–f** and **6a–f** were purified by means of crystallization (benzene) and were obtained in 74–92% (**3a–f**, Table II) and 31–82% (**6a–f**, Table V) yields, respectively.

The structure of all synthesized compounds was confirmed by comparison of the physicochemical data with those reported in the literature (if available) and by the set of spectroscopic data (MS, 1 H and 13 C NMR, IR) (Tables I–V): **2a**, $^{38-40}$ **2b**, 41 **2c**, 42,43 **2d**, 41,43 **2e**, $^{39,40,43-45}$ **2f**, 46,47 **3a**, 1,20,21,48 **3c**, 6 **3e**, 20,21,49 **3f**, 2 **4a**, $^{50-52}$ **4e**, 52 **4f**, 53 **5a**, 54 **5e**, 54,55 **6a** $^{23-25}$

It should be noted that in the ¹³C NMR spectra, no signals were reasonably attributed to an isoselenocyanate group in **5a–f**, despite using a relaxation delay up to 5 sec. The only chemical shifts that might be attributed to an isothiocyanate group are those for **2d** (135.8 ppm) and **2e** [136.9 ppm (136.70,⁴⁰ 136.87⁴⁵)]; however the intensity of the broadened signals was very weak.

The observed problems with the detection of both isothio- and isoselenocyanate signals are consistent with the literature data. For a series of arvl isoselenocyanates, no signal for the isoselenocyanate group was detected.⁵⁴ For 4-methylphenyl isoselenocyanate, no resonance was observed for the isoselenocyanate carbon atom under a variety of experimental conditions, included extended relaxation delays of 5 sec. 56 Measurements of the ¹³C NMR signals of an isoselenocyanate group in the series of glycosyl isoselenocyanates indicate that the ¹³C chemical shift of the isoselenocyanate carbon atom is of low intensity and appears in the range of 144.8–146.8 ppm.⁵⁷ The ¹³C NMR spectra of a series of 16 4-substituted phenyl isothiocyanates were recorded using a rather high concentration of 10 mol% and appropriate decoupling conditions to increase the intensity of the isothiocyanate signals. Despite using the above conditions, the signals of the isothiocyanate carbon atoms (132.13–139.99 ppm) exhibited very characteristic quadrupolar broadening and low intensity.⁴⁵ Analogously, for phenyl isothiocyanate (2a) enriched with ¹³C isotope at the isothiocyanate carbon atom, only a very broad resonance at 135.95 ppm was detected and was attributed to the isothiocyanate carbon atom. 58 However, there are data in the literature where ¹³C NMR signals of an isothiocyanate group are detected without any comments concerning the potential broadening and intensity. Such a situation is described for aliphatic isothiocyanates, 130.4-134.3 ppm,⁵⁹ and for aryl isothiocyanates with both electron-donating and electron-withdrawing substituents, 133.8 (4-methoxyphenyl isothiocyanate) and 140.3 (4-nitrophenyl isothiocyanate), respectively. 40

The ^{13}C NMR signal observed for the –HN–(C=X)–N (X = S, Se) moiety ($\delta=\sim$ 180 ppm) is in accordance with those reported in the literature. 56,60

All synthesized compounds have been investigated for herbicidal and fungicidal activities involving in vitro and in vivo tests. All urea derivatives exibit herbicidal activity when applied to leaves or soil, but the activity of the thio (3a-f) and seleno (6a-f) analogs is slightly lower than the activity of the parent urea herbicides. The parent compounds as well as their thio and seleno analogs show good fungicidal activity against most fungi at a concentration of 200 ppm. In some cases, the seleno derivatives (6a, 6b, 6d) are more active than the thioureas and the parent compouds (fenuron, isoproturon, metoxuron). The herbicidal and fungicidal activity of the synthesized derivatives 3a-f and 6a-f is presented in Tables VI and VII.

EXPERIMENTAL

The general protocols are analogous to those described earlier: isothiocyanates 2,27 thio- and selenoureas 3 and 6,16,37 respectively, isocyanides 4, 32-34 and isoselenocyanates 5. 15,16 All reagents were commercially available and were used as received without further purification. All experiments were performed in a multinecked round-bottomed flask equipped with a magnetic bar, a thermometer, a reflux condenser protected against humidity, and a dropping funnel. The formation of the products was monitored by means of TLC. TLC control and column chromatography were carried out on silica gel Merck Alurolle 5562, Alufolien 5554, and Merck 1.09385.1000 (0.040-0.063 mm, 230-400 mesh), respectively. The abbreviations for the mobile phases used throughout the text are as follows: HA9 = hexane: ethyl acetate 9:1 and BA9 = benzene:ethyl acetate 9:1. MS (EI, 70 eV, m/e, int. [%]) data were recorded using an AMD 604 mass spectrometer; IR (ν [cm⁻¹]) data were recorded using a FT/IR Jasco 420 spectrophotometer. ¹H NMR (200 MHz, δ [ppm], J [Hz], TMS) and ¹³C NMR (50 MHz, δ [ppm], TMS) data were recorded using a Varian UNITYplus 200 spectrometer.

Isothiocyanates 2: General Procedure

A solution of thiophosgene (4.83 g, 0.042 mol, 3.2 mL) in anhydrous benzene (17 mL) was added dropwise at 10°C into an efficiently stirred solution of the amine 1 (0.04 mol) and anhydrous triethylamine (12 mL) in anhydrous benzene (85 mL). The reaction mixture was stirred for 10 min at r.t. The precipitate of triethylamine hydrochloride was

TABLE V Ten Weed	1 Herbicida I Species, U	TABLE VI Herbicidal Activity of 3a-f, 6a-f and the Parent Urea Herbicides (V Ten Weed Species, Upper/Lower Values = Pre-/Post-Emergence Application)	3a-f, $6a-f$ an a	nd the Parer e-/Post-Eme	nt Urea Herb rgence Appl		Weed Control %, Mean of	Mean of
$ArHNC(S)$ $N(CH_3)_2$		1 kg a.i./ ha 0.5 kg a.i./ ha	$\begin{array}{c} ArHNC(Se) \\ N(CH_3)_2 \end{array}$	1 kg a.i./ ha	1 kg a.i./ha 0.5 kg a.i./ha	$\begin{array}{c} \text{ArHNCO} \\ \text{N(CH}_3)_2 \end{array}$	1 kg a.i./ ha	1 kg a.i./ ha 0.5 kg a.i./ ha
3a	43	22	6a	52	26	Fenuron	92	75
	43	36		49	36		84	92
3b	70	40	q9	75	49	Isoproturon	100	75
	100	84		100	80		100	92
3c	14	7	96	30	12	Chlorotoluron	52	30
	63	36		75	46		88	09
3d	28	7	9	26	2	Metoxuron	96	92
	10	2		92	58		96	88
3e	43	18	9	99	36	Monuron	94	69
	92	43		92	20		96	80
3f	30	24	9	36	26	Diuron	46	38
	86	88		86	70		100	96

TARLE VII Fungicidal Activity of 3a-f. 6a-f and the Parent Urea Herbicides (Score Index: 0.3)

Score index: () = (1-3/1% growth reduction—no effect	Blumeria graminis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rhizoctonia . solani . solani . 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Phytophthora cactorum 0 3 3 2 2 3 3 3	Fusarium I culmorum 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sotritis Sotritis 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		STDICE STDICE STDICE STDICE	Rhizoctonia solani solani 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Phytophthora cactorum 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fusarium culmorum 3 2 2 2 2 2 2 0 0	1-1 2110 3	ArHNC(Se N(CH ₃₎₂ 6a 6b 6c 6d 6d 6d 6d 6d 6d	y VILY OI 3 Blumeria graminis 0 3 1 0 0	Rhizoctonii solani 1 1 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	과 (호 형 1호	VIL Fusarium Culmorum 0 2 2 2 0 1 1 1 0 0 0 0 0 0	S) Borritis Fusa S) Borritis Fusa 0 0 0 1 2 2 2 2 2 2 3 3 3 3 4 0 0 0 Scorre in dev	ArHNC. NCH ₃) 3a 3b 3c 3d 3d 3f
ò					l													
ò	I	က	က	2	7	Diuron	I	1	2	0	2	9	2	2	0	0	-1	3£
0 2 2 6f 2 0 2 1 — I	I	က	က	2	2	Monuron	I	က	2	2	က	9 9	I	2	2	П	2	3e
2 2 6 8 3 2 2 3 N N N N N N N N N N N N N N N N	I	2	2	0	2	Metoxuron	I	က	2	2	က	p9	0	П	1	0	1	3d
1 1 0 6d 3 2 2 3 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	က	က	2	2	Chlorotoluron	1	2	က	2	က	9	П	က	2	2	2	36
2 3 1 6c 3 2 2 3 2 1 C 2 2 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I	2	က	1	2	Isoproturon	2	က	က	က	က	e p	က	က	က	2	က	3b
3 3 6b 3 3 3 2 1 1 2 2 2 3 3 2 2 1 0 1 2 2 2 3 3 2 2 1 0 0 1 2 2 2 3 3 2 2 1 0 0 1 2 2 2 3 3 2 2 2 3 3 2 3 3 3 3 3 3 3 3	0	0	0	0	0	Fenuron	1	8	2	1	8	6a	0	1	0	0	0	3a
0 1 0 6a 3 1 2 3 1 E 2 3 1 E 2 3 1 E 2 3 1 E 2 3 1 E 2 1 E 2 3 1 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E	graminis	solani	cactorum	culmorum	inerea		graminis	solani	cactorum	culmorum	cinerea	$N(CH_3)_2$	graminis	solani	cactorum	culmorum	2 cinerea	N(CH ₃);
cactorum solani graminis N(CH ₃) ₂ cinerea culmorum cactorum solani graminis 0 1 0 6a 3 1 2 3 1 1 2 3 3 3 6 3 2 3 2 3 1 1 2 4 4 4 3 2 3 2 1 0 0 2 1 0 0 0 2 1 0<	Blumeria	Rhizoctonia 1	hytophthora.	Fusarium I	30tritis	ArHNC(O) I	ı Blumeria	Rhizoctonia	Phytophthora	Fusarium) Botritis	ArHNC(Se	2 Blumeria	Rhizoctonia	yto	Fusarium	S) Botritis	ArHNC()
hytophthora Rhizoctonia Blumeria ArHNC(Se) Botritis Fusarium Phytophthora Rhizoctonia Blumeria ArHNC(Se) Botritis Fusarium Phytophthora Rhizoctonia ArHNC(Se) Botritis Fusarium Phytophthora Incommon cactorum ArHNC(Se) Botritis Fusarium Phytophthora Incommon Cactorum Arthora Incommon Cactorum)	lex: 0-0	i	aes (Score	FUICIO	rea ne	arent c	a rue r	a-1 am	oa-1, o	VILY OI	al ACU	ungicia	VII F	ADLE	-

$$\begin{split} 1 &= 20, 1\text{--}50\% \text{ growth reduction--weak activity.} \\ 2 &= 50, 1\text{--}90\% \text{ growth reduction--moderate activity.} \\ 3 &= 90, 1\text{--}100\% \text{ growth reduction--good activity.} \end{split}$$

filtered off and washed thoroughly with benzene (2 \times 50 mL). Benzene was evaporated under reduced pressure. The residue was purified by means of vacuum distillation (2a–c), column chromatography [2c (hexane), 2f (HA9)], or crystallization [2d (benzene or hexane)] to give isothiocyanates 2a–f (Table I). If the starting amine was detected (TLC) in the filtrate (1e \rightarrow 2e), it was washed with 1N hydrochloric acid (100 mL) and then with a saturated sodium bicarbonate solution (50 mL). The aqueous layer was extracted with benzene (2 \times 50 mL). The combined benzene layers were dried over magnesium sulphate. The drying agent was filtered off, and the solvent was evaporated under reduced pressure. The residue was purified by means of crystallization (hexane) to give 2e (Table I).

Isocyanides 4: General Procedure

A 50% sodium hydroxide solution (15 mL) was added to the vigorously stirred solution of the amine 1 (0.05 mol), chloroform (0.05 mol, 6.0 g, 4 mL), TEBA chloride (0.125 g), and methylene chloride (15 mL). The reaction mixture was efficiently stirred and heated at 40°C (gently refluxing) for 1–3 h (4h, 16 h). The progress of the reaction was thoroughly monitored by means of TLC. The reaction mixture was allowed to cool to r.t., and cold water (50–100 mL) was added. The aqueous phase was extracted with methylene chloride. The organic layer was washed with concentrated sodium bicarbonate solution and dried over magnesium sulphate. The drying agent was filtered off, and the solvent was evaporated under reduced pressure. The residue was subjected to vacuum distillation (4a–c), column chromatography [4a,c (hexane), 4d,e (HA9)] or crystallization [4e,f, (hexane)] to give isocyanides 4a–f (Table III).

Isoselenocyanates 5: General Procedure

A suspension of the isocyanide 4 (12 mmol) in anhydrous chloroform (16 mL) and at least a twofold molar excess of powdered gray selenium were stirred at reflux (60°C) for about 3 h (5a-d), 40 h (5f), or 60 h (5e). The time of the reaction was determined by thorough monitoring of the isoselenocyanate (5) formation and the decay of the amount of isocyanide by means of TLC (silica gel, HA9, BA9, visualization with UV 254 and irradiation with UV lamp for 5–10 min). The suspension was allowed to cool to r.t. and filtered through a Cellite bed. Chloroform was evaporated under reduced pressure. The residue was subjected to column chromatography: HA9 (5a-d), hexane (5a,e,f). In the case of

5b, the compound was also isolated and purified by means of vacuum distillation (Table IV).

Thio- and Selenoureas (3, 6): General Procedure

A solution of an excess of liquid dimethylamine (about 8 mL) in an approximately equal volume of anhydrous benzene was slowly added dropwise at about 0–5°C to the solution of the appropriate isothioor isoselenocyanate (2 and 5, respectively) (6–7 mmol) in anhydrous benzene (15 mL). The stirred reaction mixture was left overnight at r.t. in the open flask (except 3e, 6c, 6e, 6f: left at r.t. for 1 h). The precipitate formed or the crystalline residue obtained after evaporation of the volatiles (6b: oil solidifying in a refrigerator) was thoroughly pressed on a filter, washed with benzene (2–3 mL), and crystallized from benzene (Tables II and V).

Herbicidal Bioassay, Pre- and Post-Emergence Experiments

Herbicidal activity of the thio and seleno compounds was evaluated using different weed species in pot experiments under controlled conditions. Polyethylene pots, 3.5 L capacity, were filled with 0.75 kg of soil (physicochemical characteristic: sandy clay, pH/KCl/ 6.7; organic matter 2.8%) and were wetted with water. Seeds of the 10 weed species were planted into earth (0.5 cm depth): common chickweed (Stellaria media), curly dock (Rumex crispus), ribwort (Plantago lanceolata), fathen (Chenopodium album), common poppy (Papaver rhoeas), black mustard (Brassica nigra), cleavers (Galium aparine), gallant soldier (Galinsoga parviflora), barnyard grass (Echinochloa crus-gali), and corn chamomile (Anthemis arvensis). Plants were grown to the two-leaf stage under normal glasshouse propagation conditions (temperature, $20 \pm 5^{\circ}$ C; lighting, 14 h photoperiod of daylight supplemented by lamps, 400 W). The pots were watered overhead. The test compounds were dissolved in an appropriate volume of acetone:water solution (1:3) with the addition of Tween 20 (0.05% v/v) to give the dose of 1 and 0.5 kg/ha. All treatments were applied as a pre-emergence or post-emergence spray at a volume rate of 300 L/ha using track laboratory sprayer (nozzle TeeJet60, pressure 0.2 MPa). There were three replicate pots per treatment arranged in a randomized block design. Pots after spraying were transferred to the growth chamber (temperature, day/night 20/15°C; lighting, 16 h photoperiod, white fluorescent tubes giving 200 μ mol m⁻²s⁻² PAR). A visual assessment of phytotoxicity separately for each species was made (18 days or 25 days after treatment for pre- and post-emergence experiments) as a percentage compared to the untreated plants. The results expressed as mean percent of phytotoxicity for 10 weed species were calculated and presented in Table VI.

In Vitro Fungicidal Bioassay

The methods for assesing fungicidal activity involving in vitro and in vivo tests were identical to those previously published.³⁷

REFERENCES

- P. K. Mohanta, S. Dhar, S. K. Samal, H. Ila, and H. Junjappa, *Tetrahedron*, 56, 629 (2000), and references cited therein.
- [2] A. Kaluszyner, R. Mechoulam, and M. Breuer, Bull. Res. Council Israel, 7A, 135 (1958).
- [3] D. Duerr and M. von Orelli, Ciba, Patent US 3927087 (1975).
- [4] R. Spaun, P. Brenneisen, A. Rochat, and J. Gallay, Agripat S. A.; Patent CH 542828 (1973); Patent DE 2143838, US3781290 (1972); Chem. Abstr., 77, 48078 (1972).
- [5] H. Martin, D. Duerr; A. Hubele, J. Rufener, G. Pissiotas, and O. Rohr, Ciba-Geigy AG, Patent DE 2157288, US 3799759 (1972); Chem. Abstr., 77, 97750 (1972).
- [6] D. Duerr and V. Dittrich, Ciba; Patent US 3395233, NL 6604132 (1966); Chem. Abstr., 66, 55249 (1967).
- [7] E. Rodríguez-Fernández, J. L. Manzano, J. J. Benito, R. Hermosa, E. Monte, and J. J. Criado, J. Inorg. Biochem., 99, 1558 (2005).
- [8] H. Takahashi, A. Nishina, R. Fukumoto, H. Kimura, M. Koketsu, and H. Ishihara, Life Sci., 76, 2185 (2005).
- [9] H. Tsukagoshi, M. Koketsu, M. Kato, M. Kurabayashi, A. Nishina, and H. Kimura, FEBS J., 274, 6046 (2007).
- [10] S. K. Ha, M. Koketsu, K. Lee, S. Y. Choi, J. H. Park, H. Ishihara, and S. Y. Kim, Biol. Pharm. Bull., 28, 838 (2005).
- [11] P. N. Jayram, G. Roy, and G. Mugesh, J. Chem. Sci., 120, 143 (2008).
- [12] S. Braverman, M. Cherkinsky, and M. L. Birsa, In: Science of Synthesis (Thieme, Stuttgart, 2005), Vol. 18, pp. 65–320.
- [13] H. Heimgartner, Y. Zhou, P. K. Atanassow, and G. L. Sommen, *Phosphorus, Sulfur, and Silicon*, 183, 840 (2008).
- [14] D. R. Garud, M. Koketsu, and H. Ishihara, *Molecules*, 12, 504 (2007).
- [15] J. Zakrzewski, J. Jezierska, and J. Hupko, Org. Lett., 6, 695 (2004).
- [16] J. Zakrzewski and M. Krawczyk, Heteroatom Chem., 19, 549 (2008).
- [17] C. R. Worthing, Ed., The Pesticide Manual, 8th ed., The British Crop Protection Council, 1987; C. D. S. Tomlin, Ed., The e-Pesticide Manual, 13th ed., The British Crop Protection Council, 2003.
- [18] G. C. Klingman, F. M. Ashton, and L. J. Noordhoff, Weed Sciences: Principles and Practices (Wiley, New York, 1975), pp. 238–248.
- [19] B. E. Watt, A. T. Proudfoot, S. M. Bradberry, and J. A. Vale, *Toxicol. Rev.*, 24, 161 (2005).
- [20] R. F. Hunter and E. R. Styles, J. Chem. Soc., 1209 (1927).
- [21] G. V. Nair, J. Indian Chem. Soc., 42, 359 (1965).
- [22] K. Ramadas and N. Janarthanan, Synth. Commun., 27, 2357 (1997).

- [23] D. L. Klayman and R. J. Shine, J. Org. Chem., 34, 3549 (1969).
- [24] D. L. Klayman, C. Chase, and R. J. Shine, Secret. Army; Patent US 3597444 (1971); Chem. Abstr., 75, 88352 (1971).
- [25] A. M. Kirkien and R. J. Shine, Org. Mass Spectrom., 7, 233 (1973).
- [26] S. Braverman, M. Cherkinsky, and M. L. Birsa, In Science of Synthesis (Thieme, Stuttgart, 2005), Vol. 18, pp. 65–320 (especially pp. 189–191) .
- [27] J. Zakrzewski, J. Hupko, and K. Kryczka, Monatsh. Chem., 134, 843 (2003).
- [28] I. Ugi, Ed., Isonitrile Chemistry (Academic Press, New York, 1971).
- [29] M. P. Periasamy and H. M. Walborsky, Org. Prep. Proc. Int., 11, 293 (1979).
- [30] H. M. Walborsky and M. P. Periasamy, In S. Patai and Z. Rappaport, Eds., The Chemistry of Triple Bonded Functional Groups (Wiley, New York, 1983), pp. 835– 887.
- [31] M. Suginome and Y. Ito, In Science of Synthesis (Thieme, Stuttgart, 2004), Vol. 19, pp. 445–530 (especially pp. 478–480).
- [32] W. P. Weber and G. W. Gokel, Angew. Chem., Int. Ed., 11, 530 (1972).
- [33] W. P. Weber and G. W. Gokel, Tetrahedron Lett., 1637 (1972).
- [34] L. M. Rajchman, B. Annaev, V. S. Belova, and E. G. Rozantsev, *Nature (London)*, 237, 31 (1972).
- [35] S. Braverman, M. Cherkinsky, and M. L. Birsa, In, Science of Synthesis (Thieme, Stuttgart, 2005), Vol. 18, pp. 65–320 (especially pp. 252–254).
- [36] P. Kristian and G. Suchar, Coll. Czech. Chem. Commun., 37, 3066 (1972).
- [37] J. Zakrzewski and M. Krawczyk, Heteroatom Chem., 17, 393 (2006).
- [38] G. I. Kokorev, F. D. Yambushev, and L. A. Al'metkina, Zh. Obshch. Khim., 58, 829 (1988); J. Gen. Chem. USSR, 58, 733 (1988).
- [39] R. Wong and S. J. Dolman, J. Org. Chem., 72, 3969 (2007).
- [40] R. N. Butler and L. M. Wallace, J. Chem. Soc., Perkin Trans. 1, 4335 (2000).
- [41] D. W. Browne and G. M. Dyson, J. Chem. Soc., 3285 (1931).
- [42] M. M. Kamel, *Pharmazie*, **37**, 147 (1982).
- [43] X. Zhang, Y. K. Lee, J. A. Kelley, and T. R. Burke, J. Org. Chem., 65, 6237 (2000).
 [44] Aldrich Handbook of Fine Chemicals, Sigma-Aldrich Co., 2007–2008.
- [45] R. G. Jones and G. Allen, Org. Magn. Reson., 19, 196 (1982).
- [46] Japan Soda Co., Patent JP 569563, 1963; Chem. Abstr., 60, 7387 (1964).
- [47] B. R. de Costa, K. C. Rice, W. D. Bowen, A. Thurkauf, R. B. Rothman, L. Band, A. E. Jacobson, L. Radesca, P. C. Contreras, N. M. Gray, I. Daly, S. Iyengar, D. T. Finn, S. Vazirani, and J. M. Walker; J. Med. Chem., 33, 3100 (1990).
- [48] M. Dai, C. Wang, G. Dong, J. Xiang, T. Luo, B. Liang, J. Chen, and Z. Yang, Eur. J. Org. Chem., 4346 (2003).
- [49] K. Yonemoto and I. Shibuya, Bull. Chem. Soc. Jpn., 61, 4043 (1988).
- [50] A. P. Krapcho, J. Org. Chem., 27, 1089 (1962).
- [51] T. Mukaiyama, K. Tonooka, and K. Inoue, J. Org. Chem., 26, 2202 (1961).
- [52] A. Guirado, A. Zapata, J. L. Gomez, L. Trabalon, and J. Galvez, Tetrahedron, 55, 9631 (1999).
- [53] I. Ugi, U. Fetzer, G. Unterstenhoefer, W. Behrenz, P.-E. Frohberger, and H. Scheinpflug, Bayer, Patent FR 1384209, 1965; Chem. Abstr., 63, 6924 (1965).
- [54] D. H. R. Barton, S. I. Parekh, M. Tajbakhsh, E. A. Theodorakis, and C. L. Tse, Tetrahedron, 50, 639 (1994).
- [55] L. Henriksen and U. Ehrbar, Synthesis, 519 (1976).
- [56] A. M. Boccanfuso, D. W. Griffin, R. B. Dunlap, and J. D. Odom, Bioorg. Chem., 17, 231 (1989).
- [57] Z. J. Witczak, Tetrahedron, 41, 4781 (1985).

- [58] J. J. Ares, J. W.Fowble, T. G. Urchek, and D. D. Miler, Biochem. Biophys. Res. Commun., 142, 1064 (1987).
- [59] A. V. Peretokin, A. D. Shutalev, V. V. Chupin, A. M. Mergenova, L. A. Ignatova, Yu. F. Malina, and B. V. Unkovskii, Zh. Org. Chem., 21, 1004 (1985); Chem. Abstr., 104, 108981 (1986).
- [60] J. Imrich, T. Busova, P. Kristian, and J. Dzara, Chem. Pap., 48, 42 (1994).