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A B S T R A C T

CB[n] (n = 6–8) is a family of synthetic macrocyclic host molecules composed of n glycoluril units, which
can be employed as molecular reactor. N-Phenyloxypropyl-N0-ethyl-4,40-bipyridium (1) was designed to
form a host–guest inclusion complex with CB[n] (n = 6–8), subsequently, the bromination reaction of 1
and its corresponding inclusion complexes was investigated in this work. In the case of 1/CB[8], the
folded including mode is quite helpful to acquire 1-bormination product completely through
intramolecular charge transfer (ICT), and CB[8] can provide a safe bromination environment for 1.
ã 2016 Feng-Yu Liu and Shi-Guo Sun. Chinese Chemical Society and Institute of Materia Medica, Chinese

Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the host–guest chemistry of the cucurbit[n]uril
(CB[n], where n = 5–8, 10, and 14) family has been making big
progress due to their tubular molecular structures [1–3]. In which
the two polar “portals” together with a hydrophobic cavity and a
modest or low water solubility provide an environmentally
friendly water soluble confined medium for chemical reactions
taken place. Among them, CB[6], CB[7] and CB[8] are more
attractive due to their proper cavity size. Since CB[6] was pioneered
as a reactor for 1,3-dipolar cycloaddition reactions in 1983 [4],
several other examples of photocycloadditions using CB[7] and CB
[8] were reported [5]. Meanwhile, CB[7] was further employed as a
barrel together with transition-metal ions as lids, to control phase-
selective photolysis of bicyclic azoalkanes [6]. While CB[8] can
mediate intermolecular photodimerization either in the solid state
or in aqueous solution [7]. Furthermore, several other applications
using CB[n] (n = 6–8) were reported in succession [8–11]. To gain
further understanding on the CB[n] based molecular reactor, it
would be interesting to employ the same reactant/reagent and
perform the same reaction under the circumstance of different CB
[n] cavity. To fulfill this, a fundamental question is whether the
reactant can form a host–guest interaction with different CB[n], to
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provide a possibility to fine modulate the reaction through
different binding mode aroused by the different CB[n] cavity. To
touch this unexplored issue, N-phenyloxypropyl-N0-ethyl-4,40-
bipyridium (1, Fig. 1) was designed based on our previous work
[12]. In this molecule, the donor segment, phenoxy moiety, is
covalently linked to the ethyl viologen dication (EV2+) fragment to
facilitate the ICT interaction (as seen from its folded conformation
in Fig. 1), permitting the phenol moiety inserted together with the
viologen moiety into the cavity of CB[8]. Meanwhile, the viologen
moiety can be included in CB[7], and the phenoxy moiety can be
included in CB[6] due to the relative small cavity size (Fig. 1). All
these provide a possibility to perform the same reaction in the
presence of different CB[n] cavity.

Considering that electrophilic aromatic substitution reactions
such as bromination, nitration, sulfonation etc. are important ways
to introduce functional groups onto benzene rings, especially,
these reactions are quite fundamental either in basic organic
chemistry books or for typical organic synthesis, herein, bromina-
tion of 1 and its corresponding inclusion complexes of CB[n] (n = 6–
8) was investigated. The results demonstrated that CB[8]
performed pretty well as a molecular reactor to control bromina-
tion results of 1, more importantly, CB[8] can provide a safe
bromination environment for 1, which is quite helpful to acquire 1-
bormination product completely and enhance the stability of the
corresponding reaction products. While the host–guest assembly
of 1/CB[n] (n = 6, 7) would definitely decrease the ICT interaction of
1, leading to the molecule to be broken down easily during
bromination (Scheme 1). Such an assay would be helpful for
of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V.
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Fig. 1. Structure of 1 and schematic representation of the assembly of 1/CB[n] (n =
6–8).

Table 1
Bromination result (HPLC isolated yield (%)) of 1 and 1/CB[n] (n = 6–8).

Sample Time T1 (%)
(1-bromination)

T2 (%)
(2-bromination)

By-product (%)

1 10 min 84.0 10.9 3.7
30 min 69.8 19.1 6.5
2 h 51.2 34.1 14.1
5 h 19.2 10.0 40.9

1/CB[8] 10 min 100.0 0 0
30 min 100.0 0 0
2 h 98.2 1.0 0
5 h 82.6 11.6 0

1/CB[6] 10 min 83.6 15.4 0
30 min 69.2 30.8 0
2 h 57.2 34.7 0
5 h 0 16.0 83.0

1/CB[7] 10 min 81.3 7.0 11.0
30 min 13.5 30.7 46.2
2 h 5.8 34.6 49.2
5 h – – –
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vestigating functional systems centered on the CB[n] molecular
actor.

 Results and discussion

The inclusion of the viologen derivatives in CB[n] (n = 6–8) has
en studied extensively in the literature [13]. Accordingly,
rmation of the including complex CB[n] (n = 6–8) and 1/CB[n]

 = 6–8) can be clearly observed on 1H NMR (Figs. S1–S3 in
pporting information). 1H NMR titration experiment supported
e formation of a 1:1 host–guest complex 1/CB[n] [14–17].
ectrospray ionization mass spectrometry (ESI-MS, Fig. S4 in
pporting information) gave a positively charged peak at m/z
1.20 (calcd. for [1 + CB[6]-2Cl�]2+, 651.23) in the case of CB[6], m/
734.17 (calcd. for [1 + CB[7]-2Cl�]2+, 734.25) for CB[7], and m/z
7.25 (calcd. for [1 + CB[8]-2Cl�]2+, 817.28) for CB[8], respectively,
oviding direct evidence for the formation of the 1:1 including
mplex. The formation of 1:1 including complex was further
nfirmed by UV/vis absorption titration experiments (Fig. S5 in
pporting information). It is noted that 1 revealed an absorption
nd at around 260 nm, whose absorption intensity decreased
adually with the addition of CB[n] (n = 6–8). In the case of 1/CB
], a broad new absorption band appeared at about 310 nm, which
n be attributed to the ICT resulting from the host–guest complex
rmation [12], providing an additional evidence for the host–
est complexes formation.
To make a reference for high performance liquid chromato-
aph (HPLC), standard substances T1 (1-bromination) and T2 (2-
omination) were synthesized (synthetic procedures were shown

 Supporting information). The bromination experimental results
uld be analyzed through HPLC and chromatography mass
ectrometry (HPLC-MS). The retention time for 1, T1, T2 was
98 min, 9.32 min, 13.10 min, respectively (Fig. S6 in Supporting
formation). As shown in Table 1, the reaction products T1 and T2
Scheme 1. Schematic synthetic procedures of the br

Please cite this article in press as: T.-T. Li, et al., Bromination of N-ph
reactor, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.
can be well modulated by the confined environment of CB[8]
(Figs. S7–S8 in Supporting information). When the reaction lasted
for 10 min, for 1 alone, there would be 84.0% T1 and 10.9% T2
products in aqueous solution. In the case of 1/CB[8], the folded ICT
including mode is quite helpful to acquire T1 completely in
confined hydrophobic environment of CB[8] (Figs. S7–S8 in
Supporting information).

A molecular modeling research (HyperChem with Molecular
Mechanics) also showed that the molecule 1 inside the cavity of CB
[8] adopted a folded conformation to place the phenoxy moiety in a
close interaction distance with EV2+ moiety (Fig. 2), which was in
good accordance with the argument in the literature [12].

According to the results of HPLC-MS (Fig. S11 in Supporting
information), bromination products of 1 could be decomposed into
other by-products easily, such as 4,40-bipyridinum radical cation
(V+�) (MS (ESI, m/z): (V+�) C10H11N2

+�, calculated for 159.1, found,
159.1) and 4-ethyl-40-hydroxyethyl-bipyridinum radical cation
(MS (ESI, m/z): C14H17N2O+�, calculated for 230.1, found, 230.1)
(Fig. S11a in Supporting information). Along with the extension of
reaction time, other by-products could be ignored due to the little
yield. For 1 alone, most of the bromination products were
decomposed after the reaction lasted for 5 h. While, the folded
conformation of 1 in CB[8] provides a close interaction distance
between the phenoxy moiety and the EV2+ moiety, which quite
facilitate the ICT [8]. So the bromination products of 1/CB[8] were
quite stable under the strongly acidic conditions, even for 5 h.
omination of 1 in the presence of CB[n] (n = 6–8).

enyloxypropyl-N0-ethyl-4,40-bipyridium in cucurbit[8]uril molecular
10.004
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Fig. 2. Optimized molecularQ4 modeling of 1/CB[8] (left) and T1/CB[8] (right) with Br-
, N-, C-, O- and H-atom in yellow, blue, cyan, red and white color, respectively. To
make clarity, CB[8] is presented in sticks, and 1, T1 are in balls and cylinders for a
clear view of the inclusion. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Control experiments were also carried out for the bromination
reaction of 1/CB[n] (n = 6, 7). The bromination result of 1/CB[n]
(n = 6, 7) were presented in Table 1. Compared with the
bromination of 1 alone, the bromination of 1/CB[6] would produce
nearly 5% more T2 after the reaction lasted for 10 min. However,
along with the extension of reaction time, the bromination
products of 1/CB[6] are more likely to be decomposed (Fig. S9 in
Supporting information). And after the reaction lasted for 5 h, there
would be 83.0% by-products. This can be explained as follows.
Including of CB[6] keeps the phenoxy moiety a little far away from
the viologen cation moiety (Fig. S12 in Supporting information),
which somehow increases the electron density of phenoxy moiety.
Unfortunately, the host–guest assembly of 1/CB[6] would definite-
ly decrease the ICT interaction of 1, leading to the molecule to be
broken down easily.

In the case of 1/CB[7], the phenoxy moiety locates just outside
the cavity of CB[7], and the viologen cation moiety is completely
seated inside the cavity (Fig. S13 in Supporting information). The
ICT interaction between the viologen cation moiety and the
phenoxy moiety was decreased, when 1 was encapsulated in CB[7].
Although the yield of T2 can be improved, the decomposed
products also increase from 11.0% to 49.2%, when the reaction time
was prolonged from 10 min to 2 h. No further reaction was done
considering of the significant decomposition of 1/CB[7].

3. Conclusion

In conclusion, 1 can form a host–guest inclusion compound
with different CB[n] (n = 6–8) cavity through different binding
modes, and CB[8] works pretty well as a molecular reactor to
adjust the bromination results. Especially, CB[8] can provide a
quite safe bromination environment for 1. All these shed some new
light on CB[n] host–guest chemistry.

4. Experimental

4.1. Materials and apparatus

Doubly purified water used in all experiments was from Milli-Q
systems. Other solvents and reagents were of analytical grade and
used without further purification. 1H NMR spectra were recorded
on a VARIAN INOVA-400 spectrometer with chemical shifts
reported as ppm. Mass spectrometric data were obtained on a
Q-Tof MS spectrometer (Micromass, Manchester, England).
Please cite this article in press as: T.-T. Li, et al., Bromination of N-phe
reactor, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.1
Absorption spectra were measured on a PerkinElmer Lambda
35 UV–vis spectrophotometer.

4.2. Synthetic procedures

CB[n] (n = 6–8) was synthesized according to the literature [16].
The yield of CB[6], CB[7] and CB[8] was ca. 38%, 30% and 10%,
respectively. 1H NMR (400 MHz, D2O), CB[6]: d 5.82 (d, 12H,
J = 15.6 Hz), 5.55 (s, 12H), 4.23 (d, 12H, J = 15.6 Hz); CB[7]: d 5.78 (d,
14H, J = 15.4 Hz), 5.54 (s, 14H), 4.24 (d, 14H, J = 15.4 Hz); CB[8]: d
5.72 (d, 16H, J = 15.4 Hz), 5.58 (s, 16H), 4.31 (d, 16H, J = 15.4 Hz).

N-Phenyloxyethyl-N0-ethyl-4,40-bipyridium (1): This com-
pound was synthesised according to the previous work [12].
The total yield of 1 was 30%. 1H NMR (400 MHz, D2O), 1: d 9.20–
9.18 (d, 2H, J = 8.0 Hz), 9.10–9.08 (d, 2H, J = 8.0 Hz), 8.52–8.48 (m,
4H), 7.32–7.28 (t, 2H, J = 8.0 Hz), 7.02–6.98 (t, 1H, J = 4.0 Hz), 6.96–
6.94 (d, 2H, J = 4.0 Hz), 5.13–5.10 (t, 2H, J = 4.0 Hz), 4.75–4.70 (q, 2H,
J = 4.0 Hz), 4.62–4.60 (t, 2H, J = 4.0 Hz), 1.67–1.64 (t, 3H, J = 4.0 Hz).
HRMS: (m/z (%)): 153.0861 (100) [M � 2Cl�]2+ (Calculated mass:
153.0868) (Synthetic procedures were shown in Supporting
information).

Bromination of 1 and 1/CB[n] (n = 6–8): Compound 1 (20 mg)
was dissolved in 250 mL water. In the case of the including
complexes, 20% excess of CB[n] was added to allow 1 to be
completely included. To ensure the bromination reaction
completely, 6 equiv. of bromine was added into the system. The
reaction was last for 10 min, 30 min, 2 h, 5 h, respectively. Then
saturated NaHCO3 solution was added to adjust the solution to
neutral. The solution was concentrated to ca. 10 mL and drop wised
into a saturated NH4PF6 aqueous solution. The precipitate was
collected and dried to give some crude product, which was
redissolved in anhydrous acetonitrile, an aliquot of the supernate
was injected into the HPLC systems to get final separation.

On HPLC system, a satisfactory separation was obtained using a
4.6 mm � 250 mm ultimate XB-C18 column with a diameter of
5 mm. Detection at 260 nm with a linear gradient containing
methanol/H2O (added 0.3% triethylamine and 0.3% acetic acid)
were found to be the most efficient eluents for this separation. In
the first 20 min, the water ratio was changed from 70% to 30%, and
then decreased from 30% to 0 in the later 10 min. The collection
time was 40 min. Under the circumstance, the retention time for 1,
T1, T2 was 4.98 min, 9.32 min, 13.10 min, respectively (Fig. S6).
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