# Template synthesis of tungsten complexes with saturated N-heterocyclic carbene ligands<sup>†</sup>

F. Ekkehardt Hahn,\* Volker Langenhahn and Tania Pape

Received (in Cambridge, UK) 3rd August 2005, Accepted 7th September 2005 First published as an Advance Article on the web 21st September 2005 DOI: 10.1039/b510996e

Tungsten complex 5 with a coordinated 2-azidoethyl isocyanide ligand reacts with PMe<sub>3</sub> at the azido function to give a complex with a coordinated iminophosphorane which upon hydrolysis of the P=N bond yields a complex with an NH,NH-stabilized N-heterocyclic carbene ligand, 7; alkylation of the carbene ring nitrogen atoms gives a complex with an N,N'-dialkylated imidazolidin-2-ylidene ligand, 8.

Nucleophilic attack at the carbon atom of a coordinated isocyanide is one of the oldest methods for the preparation of carbene complexes.<sup>1</sup> Particularly protic nucleophiles like alcohols and primary amines have been useful in this reaction.<sup>2</sup> The use of functionalized isocyanides containing both the isocyanide function and the nucleophile in the same molecule gives access to complexes with heterocyclic carbene ligands through an intramolecular 1,2-addition across the CN triple bond.

We have reported on the template controlled cyclization of 2-hydroxyphenyl isocyanide which was obtained from complexes containing 2-(trimethylsiloxy)phenyl isocyanide *via* O–Si bond cleavage.<sup>2</sup> The synthesis of complexes containing benzannulated NH,NH-stabilized N-heterocyclic carbene ligands was also achieved in a template synthesis.<sup>3</sup> This method constitutes an alternative approach for the preparation of carbene complexes compared to the direct reaction of stable benzannulated carbene ligands<sup>4</sup> or benzimidazolium salts<sup>5</sup> with transition metal complexes. Here we report on the cyclization reaction of coordinated 2-azidoethyl isocyanide **4** which allows the template synthesis of complexes with the widely used saturated imidazolidin-2-ylidenes.<sup>6</sup>

2-Azidoethyl isocyanide **4** was synthesized by reaction of 2-bromoethylamine hydrobromide with sodium azide in water followed by formylation of the primary amine and dehydration of the obtained formamide using the method of Ugi or Casanova<sup>7</sup> (Scheme 1). The isocyanide and the azido function in **4** were identified by their absorptions in the IR spectrum at  $v = 2152 \text{ cm}^{-1}$  and  $v = 2109 \text{ cm}^{-1}$ , respectively.‡ In the <sup>13</sup>C{<sup>1</sup>H} NMR spectrum the resonances for the isocyanide carbon atom ( $\delta$  160.3 ppm) and for the carbon atom of the adjacent methylene group ( $\delta$  41.2 ppm) are observed as triplets due to <sup>1</sup>J(<sup>13</sup>C-<sup>14</sup>N) coupling typical of uncoordinated isocyanides.<sup>8</sup>

E-mail: fehahn@uni-muenster.de; Fax: +49-251-833-3108

Ligand 4 coordinates to photochemically generated [W(CO)<sub>5</sub>-(THF)] to give the isocyanide complex **5**<sup>‡</sup> (Scheme 2). Complex **5** was identified by NMR and by IR spectroscopy which showed the absorption for the CN stretching mode at v = 2187 cm<sup>-1</sup>. The isocyanide ligand in **5** reacts at the azido function with trimethylphosphorane complex **6**, which was not isolated. Hydrolysis of the trimethylphosphorane under acidic conditions with traces of water in protic solvents (methanol) affords a complex with the 2-aminoethyl isocyanide ligand which is not stable and immediately undergoes an intramolecular cyclization to give a complex with the NH,NH-stabilized carbene ligand **7**<sup>‡</sup> (Scheme 2).

The formation of the carbene complex 7 was confirmed by the observation of the resonance for the carbene carbon atom in the <sup>13</sup>C NMR spectrum at  $\delta$  202.2 ppm and by the lack of absorptions for the N=C and N<sub>3</sub> groups in the IR spectrum. The IR spectrum



Scheme 1 Reagents and conditions: (i) NaN<sub>3</sub> (excess), H<sub>2</sub>O, 70 °C, 5 h; (ii) CH<sub>3</sub>C(O)OCHO, THF, 25 °C, 5 h; (iii) pTol-SO<sub>2</sub>Cl, solvent C<sub>9</sub>H<sub>7</sub>N, 25 °C.



Scheme 2 Reagents and conditions: (i)  $[W(CO)_5(THF)]$ , THF, 25 °C, 12 h; (ii) PMe<sub>3</sub>,  $-N_2$ ; (iii) H<sub>2</sub>O, HCl (catalytic amount), MeOH, 25 °C, 5 h; (iv) 1. KOtBu, DMF, 25 °C, 2 h, 2. CH<sub>2</sub>CHCH<sub>2</sub>–Br, DMF, 25 °C, 5 h (for mono *N*-alkylation, repeat (iv) for second *N*-alkylation).

Institut für Anorganische und Analytische Chemie, Universität Münster, Wilhelm Klemm Straße 8, D-48149 Münster, Germany.

<sup>†</sup> Electronic supplementary information (ESI) available: preparation of 2–4, 5, 7–8, and details of the crystal structure solution for compounds 7 and 8. See http://dx.doi.org/10.1039/b510996e

View Article Online

of 7 shows, however, a strong new absorption for the N–H stretching mode. Fehlhammer *et al.* showed that 2-hydroxyethyl isocyanide coordinated to the  $W(CO)_5$  complex fragment does not cyclize to the NH,O-stabilized carbene ligand which we attribute to the lower nucleophilicity of the hydroxyl group.<sup>10</sup> However, both 2-aminophenyl isocyanide<sup>2,3</sup> and 2-hydroxyphenyl isocyanide<sup>2,11</sup> readily cyclize to give ylidenes when coordinated to the  $W(CO)_5$  complex fragment.

The acidity of the NH protons in complex 7 allows the synthesis of a complex with an *N*-alkyl functionalized carbene ligand. Stepwise or simultaneous deprotonation of 7 and subsequent reaction with allyl bromide gives complex **8**<sup>‡</sup> with an *N*,*N'*-diallylimidazolidin-2-ylidene ligand (Scheme 2). The <sup>13</sup>C NMR spectrum of complex **8** exhibits a resonance for the carbene carbon atom at  $\delta$  207.7 ppm, slightly downfield compared to this resonance in the complex with the NH,NH-substituted carbene ligand **7**.

The molecular structures of **7** and **8** were determined by X-ray diffraction (Fig. 1).§ The structure analyses confirmed the formation of the carbene complexes. The W–C1 separation in **7** (2.221(5) Å) compares well to the equivalent distance in the complex with an NH,NH-stabilized benzimidazolin-2-ylidene ligand (2.203(4) Å).<sup>3a</sup> A significant lengthening of the W–C distance is observed upon N,N'-alkylation for both the N,N'-diallylimidazolidin-2-ylidene (2.266(3) Å in **8**) and the N,N'-diallylbenzimidazolin-2-ylidene (2.256(3) Å) ligand.<sup>3a</sup> These distances fall in the range observed for the W(CO)<sub>5</sub> complex with the unsaturated N,N'-diethylimidazolin-2-ylidene (2.275(8) Å).<sup>12</sup> A significantly shorter W–C(carbene) separation was observed for the W(CO)<sub>5</sub> complex with the benzoxazolin-2-ylidene ligand (2.198(5) Å).<sup>11</sup>

Here we have described an alternative route leading to complexes with N-heterocyclic carbene ligands of the imidazolidin-2ylidene type. Previously such complexes were obtained by cleavage of electron rich enetetramines or from imidazolidinium salts by reaction with suitable transition metal precursors. In contrast to this, we present a method to generate the N-heterocyclic carbene ligand at a suitable template metal center starting from a coordinated  $\beta$ -functionalized alkyl isocyanide. This method offers some advantages. For example, it gives access to complex 7 with an NH,NH-stabilized imidazolidinylidene, a ligand not stable or available in the free state. Alkylation of the NH-functions



Fig. 1 Thermal ellipsoid plots showing the molecular structures of complexes 7 (left) and 8 (right). Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and bond angles [°] for 7 [8]: W–C1 2.221(5) [2.266(3)], C1–N1 1.326(6) [1.362(4)], C1–N2 1.330(6) [1.349(4)]; N1–C1–N2 106.6(4) [106.8(2)].

of the carbene ligand in 7 generates an N-heterocyclic carbene ligand of the imidazolidin-2-ylidene type. The method described here could, for example, lead to new Grubbs-type catalysts by *generating* the carbene ligand from an isocyanide at Ru(II) instead of *substituting* a ligand at Ru(II) for an N-heterocyclic carbene ligand.

#### Notes and references

<sup>‡</sup> Spectroscopic data for compounds 4–8. 4: <sup>1</sup>H NMR (300 MHz, THF-d<sub>8</sub>):  $\delta$  3.60 (m, 4H, CH<sub>2</sub>); <sup>13</sup>C{<sup>f</sup>H} NMR (75.4 MHz, THF-*d*<sub>8</sub>):  $\delta$  160.3 (t,  ${}^{1}J_{CN} = 4.5$  Hz, CN), 50.0 (CH<sub>2</sub>–N<sub>3</sub>), 41.2 (t,  ${}^{1}J_{CN} = 7.0$  Hz, CH<sub>2</sub>–NC); IR (benzene): v 2152 (s, CN), 2109 (s, N<sub>3</sub>). 5: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 3.89 (t,  ${}^{3}J_{HH} = 6$  Hz, 2H, CH<sub>2</sub>-N<sub>3</sub>), 3.65 (t,  ${}^{3}J_{HH} = 6$  Hz, 2H, CH<sub>2</sub>-CN); <sup>13</sup>C{<sup>1</sup>H} NMR (75.4 MHz, CDCl<sub>3</sub>): δ 196.3 (CO<sub>trans</sub>), 194.4 (CO<sub>cis</sub>), 147.3 (CN-CH2), 50.0 (CH2-N3), 44.3 (CH2-NC); IR (KBr): v 2187 (s, CN), 2104 (s, N3), 2069 (s, CO), 1923 (s, br, CO); MS (EI): m/z 420 (22, [M]+), δ 202.2 (NCN), 200.4 (CO<sub>trans</sub>), 198.8 (CO<sub>cis</sub>), 45.0 (CH<sub>2</sub>); IR (KBr): v 3475 (s, NH), 2063 (s, CO), 1888 (s, CO); MS (EI): m/z 394 (70, [M]+), 366 (36, [M - CO]<sup>+</sup>), 338 (24, [M - 2CO]<sup>+</sup>), 310 (100, [M - 3CO]<sup>+</sup>), 282 (91, [M - $4CO]^+$ ), 254 (60, [M - 5CO]<sup>+</sup>). 8: <sup>1</sup>H NMR (400 MHz, THF-*d*<sub>6</sub>):  $\delta$  5.81 CH=CH<sub>2</sub>), 4.36 (m, 4H, CH<sub>2</sub>-CH=CH<sub>2</sub>), 3.51 (s, 4H, N-CH<sub>2</sub>-CH<sub>2</sub>-N); <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, THF-d<sub>8</sub>): δ 207.7 (NCN), 201.6 (CO<sub>trans</sub>), 198.9 (COcis), 134.5 (CH2-CH=CH2), 118.9 (CH2-CH=CH2), 56.5 (N-CH2-CH), 49.0 (N-CH2-CH2-N); MS (EI): m/z 474 (26, [M]<sup>+</sup>), 446 (18,  $[M - CO]^+$ ), 390 (23,  $[M - 3CO]^+$ ), 362 (100,  $[M - 4CO]^+$ ). § Crystal data for compounds 7 and 8. 7:  $C_8H_6N_2O_5W$ , M = 394.00, 153(2) K,  $\lambda = 0.71073$  Å, triclinic, P-1, Z = 2, a = 6.6670(10), T =b = 8.5579(12), c = 10.1724(15) Å,  $\alpha = 94.486(3), \beta = 106.524(3),$  $\gamma = 100.679(3)^\circ$ ,  $V = 541.48(14) \text{ Å}^3$ , 6155 measured reflections, 3109 unique

 $\gamma = 100.679(3)^\circ$ , V = 541.48(14) A<sup>2</sup>, 6155 measured reflections, 3109 unique reflections ( $R_{\rm int} = 0.0370$ ), R = 0.0304, wR = 0.0741 for 2977 contributing reflections [ $I \ge 2\sigma(I)$ ], refinement against | $F^2$ | with anisotropic thermal parameters for all non-hydrogen atoms and hydrogen atoms on calculated positions. **8**: C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>5</sub>W, M = 474.12, T = 153(2) K,  $\lambda = 0.71073$  Å, monoclinic,  $P_2_1/n$ , Z = 4, a = 11.181(5), b = 10.629(5), c = 13.731(6) Å,  $\beta = 105.519(8)^\circ$ , V = 1572.3(12) Å<sup>3</sup>, 17607 measured reflections, 4579 unique reflections ( $R_{\rm int} = 0.0473$ ), R = 0.0262, wR = 0.0606 for 4084 contributing reflections [ $I \ge 2\sigma(I)$ ], refinement against | $F^2$ | with anisotropic thermal parameters for all non-hydrogen atoms and hydrogen atoms on calculated positions. CCDC 280981 (7) and 280982 (8). See http:// dx.doi.org/10.1039/b510996e for crystallographic data in CIF or other electronic format.

- (a) L. Tschugajeff, M. Skanawy-Grigorjewa and A. Posnjak, Z. Anorg. Allg. Chem., 1925, 148, 37; (b) W. M. Butler, J. H. Enemark, J. Parks and A. L. Balch, Inorg. Chem., 1973, 12, 451.
- 2 M. Tamm and F. E. Hahn, Coord. Chem. Rev., 1999, 182, 175.
- 3 (a) F. E. Hahn, V. Langenhahn, N. Meier, T. Lügger and W. P. Fehlhammer, *Chem.-Eur. J.*, 2003, 9, 704; (b) F. E. Hahn, C. Garcia Plumed, M. Münder and T. Lügger, *Chem.-Eur. J.*, 2004, 10, 6285; (c) F. E. Hahn, V. Langenhahn, T. Lügger, T. Pape and D. Le Van, *Angew. Chem., Int. Ed.*, 2005, 44, 3759; (d) M. Basato, F. Benetollo, G. Faccin, R. A. Michelin, M. Mozzon, S. Pugliese, P. Sgarbossa, S. M. Sbovata and A. Tassan, *J. Organomet. Chem.*, 2004, 689, 454.
- 4 (a) F. E. Hahn, L. Wittenbecher, R. Boese and D. Bläser, *Chem.-Eur. J.*, 1999, **5**, 1931; (b) F. E. Hahn, L. Wittenbecher, D. Le Van and R. Fröhlich, *Angew. Chem., Int. Ed.*, 2000, **39**, 541; (c) F. E. Hahn, T. von Fehren and R. Fröhlich, *Z. Naturforsch., B: Chem. Sci.*, 2004, **59**, 1051.
- 5 (a) F. E. Hahn and M. Foth, J. Organomet. Chem., 1999, 585, 241; (b) F. E. Hahn, C. Holtgrewe and T. Pape, Z. Naturforsch., B: Chem. Sci., 2004, 59, 348.
- 6 (a) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18; (b)
  W. H. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290.
- 7 (a) I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer and K. Offermann, Angew. Chem., Int. Ed. Engl., 1965, 4, 492; (b) J. Casanova, R. E. Schuster and N. D. Werner, J. Chem. Soc., 1963, 4280.

- (a) I. Morishima, A. Mizuno and T. Yonezawa, J. Chem. Soc. D, 1970, 1321; (b) F. E. Hahn and M. Tamm, Angew. Chem., Int. Ed. Engl., 1991, 30, 203; (c) F. E. Hahn and M. Tamm, Angew. Chem., Int. Ed. Engl, 1992, 31, 1212.
- 9 H. Staudinger and J. Meyer, *Helv. Chim. Acta*, 1919, **2**, 635.
- (a) W. P. Fehlhammer, K. Bartel, B. Weinberger and U. Plaia, *Chem. Ber.*, 1985, **118**, 2220; (b) W. P. Fehlhammer, K. Bartel, U. Plaia, A. Völkl and A. T. Liu, *Chem. Ber.*, 1985, **118**, 2235.
- 11 F. E. Hahn and M. Tamm, J. Organomet. Chem., 1993, 456, C11.
- 12 N. Kuhn, T. Kratz, R. Boese and D. Bläser, J. Organomet. Chem., 1994, 470, C8.

## **ReSourCe** Lighting your way through the publication process

A website designed to provide user-friendly, rapid access to an extensive range of online services for authors and referees.

#### ReSourCe enables authors to:

- Submit manuscripts electronically
- Track their manuscript through the peer review and publication process
- Collect their free PDF reprints
- View the history of articles previously submitted

#### ReSourCe enables referees to:

- Download and report on articles
- Monitor outcome of articles previously reviewed
- Check and update their research profile

### **Register today!**

RSC Advancing the Chemical Sciences

#### www.rsc.org/resource