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Highlight 

 

 Fabrication of ZnO/g-C3N4 photocatalysts with exceptional activity is reported. 

 A mild and green strategy for the synthesis of 1,3-thiazolidin-4-ones. 

 40 W domestic bulb is used because of nontoxicity and cost-effectiveness. 

 Operational simplicity, durability, and large-scale application. 

 

ABSTRACT: 

Designing a photocatalytic system with complementary properties including high surface area, 

high loading, extraordinary electronic properties, and easy separation for increases photocatalytic 

performance has remained a challenge in photocatalytic applications. Herein, an environmentally 

benign approach was developed to fabricate graphitic carbon nitride (g-C3N4) decorated with 

nanorods zinc oxide (ZnO). The photocatalytic activity of ZnO decorated on the g-C3N4 surface 

was developed in the synthesis of 1,3-thiazolidin-4-ones and bis-thiazolidinones under very mild 

and sustainable reaction conditions. The reaction can be carried out by utilizing visible light 

without the requirement of any additive and other external sources of energy. It was found that the 

proposed photocatalyst is a more facile, recyclable, large-scale application and provides some new 

insights into the stabilization of semiconductors for a variety of applications. 

 

Keywords: Biologically interest small molecules;1,3-Thiazolidin-4-ones; Bis-thiazolidinones; 

ZnO/g-C3N4; Visible light; Photocatalyst. 

1- Introduction 

Graphitic carbon nitride (g-C3N4) as a polymeric semiconductor has become a new research 

hotspot and increased interest in the arena of solar energy and environmental remediation [1, 2]. 
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Additionally, these polymeric nanostructures due to semi-conductivity, chemical robustness, 

excellent physicochemical stability, and earth-abundant nature can be excellent candidates for 

visible-light mediated photocatalytic processes [3]. Due to these properties, numerous applications 

of these polymeric semiconductors in different fields have been explored including 

nanoelectronics, [4] energy storage materials, [5] biosensors, [6] supercapacitors, [7] 

photovoltaics, [8] photocatalytic, [9-15] and catalytic [16]. Incorporation of metal oxides in g-

C3N4 nanosheets as semiconductor materials has been explored with TiO2 [17], Fe2O3, [18] SnO2, 

[19] CdS, [20] BiVO4, [21] Ag3PO4, [22] NiS, [23] ZrO2, [24] and ZnO [25] in photocatalytic 

arena. Among metal oxides, ZnO with bandgap energy 3.37 eV [26] has been widely immobilized 

on solid materials for catalytic/photocatalytic aims [27-29]. Due to its specific structure, 

supporting ZnO on g-C3N4 sheets could provide strong interaction between support and metal 

oxide for increase activity photocatalytic. 

Thiazolidinones have been sought after by pharmacologists as an important compound in 

medicinal chemistry. It is also employed as the inhibition of numerous targets such as HCV NS3 

protease [30], β-lactamase [31], PMT1 mannosyl transferase [32], PRL-3 and JSP-1 phosphatases 

[33]. Several methods have been reported for the synthesis of thiazolidinone-based heterocyclics [34-

38] as shown in Scheme 1 and previous methodologies comprised of the current study. However, 

they suffer from multistep processes, harsh conditions, low yields, and long reaction times. 

Siddiqui and co-workers reported an efficient and atom economic one-pot protocol for the 

synthesis of 1,3-thiazolidin-4-ones under visible-light illumination [39]. Our group's recent 

success is applying the catalytic application nanostructures such as HFIP/SBA-15, [40] β-

cyclodextrin, [41] γ-Fe2O3, [42] and κ-carrageenan/Fe3O4 [43] for the synthesis of thiazolidinones 

skeletons. Thus, the development of new synthetic methods remains an attractive goal. 
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Generally, there is an immediate need for developing efficient and sustainable protocols for all 

biological molecules under milder conditions. Based on the above considerations and previous 

studies, [44-46] we report a simple and efficient method for the synthesis of ZnO/g-C3N4 and its 

catalytic potential towards the preparation of thiazolidinones under visible light irradiation and 

milder reaction conditions. To the best of our knowledge, the synthesis of thiazolidinone 

compounds under visible light irradiation and milder reaction conditions by photocatalysts has not 

been reported thus far. 

 

2- Experimental 

2.1. Materials and Methods  

The materials and solvents used in the current work were obtained from commercial sources 

without further purification. The FT-IR spectra were performed using a Perkin Elmer-Spectrum 

Two with ATR probe. The morphologies of the samples were taken on FE-SEM, Zeiss-SIGMA 

VP. The TEM images were recorded on Zeiss-EM 900. The 1H and 13C NMR spectra were 

recorded on a Bruker AVANCE NMR spectrometers at 400 and 100 MHz, respectively. 

 

2.2. Synthesis of g-C3N4  

The nanosheets g-C3N4 was fabricated by thermal polymerization of melamine by terms of our 

previous report [47] with some modifications. In a typical synthesis, 5.0 gr of melamine was put 

in an alumina crucible with a cover and heated for 550 ℃ for 4 hours at a rate of 5 oC/min. The 

obtained yellow precipitate was cooled slowly at a rate of 1 oC/min to ambient condition. 
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2.3. Synthesis of ZnO/g-C3N4 

0.5 g of g-C3N4 was dispersed in 50 mL of DI-H2O under ultrasonic irradiation for 30 min to obtain 

g-C3N4 nanosheets. Then, 5.0 mL aqueous dispersion of g-C3N4 with 5.0 mL aqueous 0.1 M of 

ZnSO4.7H2O was stirred for 30 min at room temperature. For growth ZnO nanorods on the g-C3N4 

surface, the reaction mixture was kept at 373 K for six hours in the reflux condition. The obtained 

white solid was purified with MeOH for several times and at dried room temperature. The loading 

of 15 wt % of ZnO on the surface of g-C3N4 was confirmed by AAS. 

 

2.4. General Procedure for the synthesis of 1,3-thiazolidin-4-ones. 

The model reaction, the mixture of aniline (1 mmol), benzaldehyde (1 mmol), thioglycolic acid (1 

mmol), PhMe (5 mL) as a solvent in 100 mg of ZnO/g-C3N4 catalyst in a 20 mL Schlenk tube was 

added. The reaction mixture was exposed to visible light irradiation using 40 W domestic bulb for 

12 hours. After the reaction is complete, the organic phase was extracted with ethyl acetate/diethyl 

ether (9:1) and then dried over sodium sulfate (Na2SO4), and finally, the main product identifies 

with 1H and 13C-NMR spectroscopy. 

 

2.5. Data NMR.  

After compounds are known and are previously reported in the literature [48]. 

2,3-diphenylthiazolidin-4-one: (Table 3, 4a): White solid, Yield = 97%. 1H NMR (400 MHz, 

DMSO-d6), δH (ppm) = 3.87 (dd, J = 15.8 Hz & 1.6 Hz 1H), 6.13 (s, 1H), 7.11-7.38 (m, 10H), 13C 

NMR (100 MHz, DMSO-d6): δC (ppm) = 33.53, 65.37, 125.61, 126.93, 127.06, 128.89, 128.91, 

129.11, 137.29, 139.50, 170.94. 

 

3-(4-hydroxyphenyl)-2-phenylthiazolidin-4-one: (Table 3, 4b): White solid, Yield = 68%. 1H NMR 

(400 MHz, DMSO-d6), δH (ppm) = 3.91-4.07 (dd, J = 15.8 Hz & 1.6 Hz 1H), 5.94 (s, 1H), 6.36-

7.11 (m, 9H) 13C NMR (100 MHz, DMSO-d6): δC (ppm) = 34.08, 64.89, 116.13, 123.83, 127.00, 

127.23, 128.61, 136.75, 139.92, 155.57, 170.33. 
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2-phenyl-3-(p-tolyl)thiazolidin-4-one: (Table 3, 4c): White solid, Yield = 78%. 1H NMR (400 

MHz, DMSO-d6), δH (ppm) = 2.31 (s, 3H), 4.03-4.07 (dd, J = 14.8 & 4.2 Hz, 1H), 6.08 (s, 1H), 

7.04-7.56 (m, 9H), 13C NMR (100 MHz, DMSO-d6): δC (ppm) = 20.65, 34.18, 65.02, 121.36, 

127.02, 127.54, 128.83, 129.77, 130.85, 137.41, 140.11, 170.75. 

 

2-phenyl-3-(pyridin-4-yl) thiazolidin-4-one: (Table 3, 4d): White solid, Yield = 97%. 1H NMR 

(400 MHz, DMSO-d6), δH (ppm) = 3.91-4.11 (dd, J = 16.3 & 2.4 Hz, 1H), 6.72 (s, 1H), 7.25-7.49 

(m, 7H), 8.46-8.48 (m, 2H), 13C NMR (100 MHz, DMSO-d6): δC (ppm)= 33.16, 62.48, 117.82, 

125.59, 129.02, 129.39, 140.15, 145.17, 150.70, 171.76. 

 

3-(2-aminoethyl)-2-(p-tolyl)thiazolidin-4-one: (Table 3, 4e): White solid, Yield = 57%. 1H NMR 

(400 MHz, CDCl3), δH (ppm) = 2.39 (s, 3H), 2.55 (t, J = 4.8 Hz, 2H), 2.74-2.89 (m, 1H), 3.62-3.79 

(m, 1H), 3.49-3.57 (dd, J = 12.2 Hz & 1.6 Hz 1H), 5.57 (s, 1H), 7.17-7.31 (m, 4H). 13C NMR (100 

MHz, CDCl3): δC (ppm)= 21.27, 32.23, 41.03, 46.69, 63.67, 127.19, 129.84, 135.85, 139.47, 

171.39. 

 

3-(p-tolyl)-2-(p-tolylamino)thiazolidin-4-one: (Table 3, 4f): White solid, Yield = 85%. 1H NMR 

(400 MHz, DMSO-d6), δH (ppm) = 2.26 (s, 3H), 3.60-3.69 (dd, J = 16.6 Hz & 2.6 Hz, 1H), 7.13 

(d, J = 10.9 Hz, 2H), 7.48 (d, J = 11.2 Hz 2H). 13C NMR (100 MHz, DMSO-d6): δC (ppm)= 20.93, 

43.65, 119.75, 129.63, 132.99, 136.74, 166.91. 

 

3-(4-chlorophenyl)-2-phenylthiazolidin-4-one: (Table 3, 4g): White solid, Yield= 88%. 1H NMR 

(400 MHz, CDCL3), δH (ppm) = 3.70-3.74 (dd, J = 14.8 Hz & 1.4 Hz, 1H), 6.11 (s, 1H), 7.35-7.63 

(m, 9H). 13C NMR (100 MHz, DMSO): δC (ppm) = 43.65, 121.25, 127.58, 129.16, 138.17, 167.32. 

 

3-benzyl-2-phenylthiazolidin-4-one: (Table 3, 4h): White solid, Yield= 93%. 1H NMR (400 MHz, 

DMSO-d6), δH (ppm) = 3.35-3.38 (dd, J = 10.28 Hz & 1.2 Hz, 1H), 3.95-4.01 (m, 2H), 5.57 (s, 

1H), 7.09-7.38 (m, 10H). 13C NMR (100 MHz, DMSO-d6): δC (ppm)= 32.2, 46.11, 62.29, 127.43, 

127.94, 129.15, 129.09, 129.27, 129.39, 136.23, 140.36, 171.37. 

 

3-(4-chlorophenyl)-2-phenylthiazolidin-4-one: (Table 4, 4i): White solid, Yield = 95%. 1H NMR 

(400 MHz, DMSO-d6), δH (ppm) = 3.81-3.92 (dd, J = 16.4 Hz, 1H), 6.61 (s, 1H), 7.14-7.48 (m, 

14H). 13C NMR (100 MHz, DMSO-d6): δC (ppm) = 34.27, 65.11, 123.26, 126.42, 127.38, 129.11, 

139.04, 139.57, 170.70. 
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2,2' (1,4-phenylene)bis(3-(p-tolyl)thiazolidin-4-one): (Table 4, 4j): White solid, Yield = 94%. 1H 

NMR (400 MHz, DMSO-d6), δH (ppm) = 2.22 (s, 3H), 3.80-3.92 (dd, J = 16.4 Hz, 1H), 6.39 (s, 

1H), 7.04-7.21 (m, 8H), 7.29 (s, 4H). 13C NMR (100 MHz, DMSO-d6): δC (ppm)= 20.98, 33.01, 

63.54, 125.90, 127.73, 129.66, 135.40, 136.31, 140.96, 170.83. 

 

2,2'-(1,2-phenylene)bis(3-(p-tolyl)thiazolidin-4-one): (Table 4, 4k): White solid, Yield = 85%. 1H 

NMR (400 MHz, DMSO-d6), δH (ppm) = 2.26 (s, 3H) 4.01-4.08 (dd, J = 14.2 Hz & 4.7 Hz, 1H), 

7.11-7.49 (m, 12H), 10.10 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δC (ppm)= 20.93, 43.65, 

119.75, 129.63, 132.99, 136.73, 166.92. 

 

3- Results and Discussion  

In the current study, we synthesized ZnO/g-C3N4 as an excellent semiconductor under the thermal 

polymerization of melamine. Meanwhile, by embedding ZnO metal oxide in the g-C3N4 surface, 

the photocatalytic properties of these nanosheets are well increased. The salient advantages of the 

proposed photocatalyst are demonstrated in the stabilization of ZnO and synergistic effect with 

visible-light illumination for enhancing the photocatalytic activity in the synthesis of thiazolidinones 

under very mild and sustainable reaction conditions. 

 

The chemical groups of the ZnO/g-C3N4 were analyzed by FT-IR spectra. As depicted in Figure 

2a, several absorption bands in 1242, 1326, 1424, and 1580 cm−1 can be ascribed to aromatic C–

N stretching [49]. The absorption band assigned to the C=N stretching at 1644 cm-1 is observed [50]. 

Also, the peak at 812 cm-1 indicates the out-of-plane bending vibration of triazine units [51]. The 

signal appears in 491 and 2178 cm−1 are attributed to Zn ̶ O mode which suggesting the successful 

preparation of ZnO/g-C3N4 [52]. Furthermore, the phase structure of the ZnO/g-C3N4 was 

characterized by powder XRD, shown in Figure 2b. The XRD pattern of composite material 

indicates the diffraction peaks at 31.91, 34.59, 36.44, 47.67, 56.63, 62.90, 66.56, 68.19 and 69.26° 

which were attributed to the (100), (002), (101), (102), (110), (103), (200), (112) and (201) crystal 
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planes of hexagonal Wurtzite structure of ZnO (JCPDS Card No. 36–1451) [53]. The presence of 

g-C3N4 diffraction peak at 2θ of 27.60° confirms (002) lattice plane of g-C3N4, also appears which 

demonstrate the existence of ZnO on g-C3N4 surface. 

The surface morphology of the obtained nanocomposite was investigated by FE-SEM analysis, 

and corresponding images at different magnifications (2μm to 500 nm) are depicted in Figure 3. 

The irregular and randomly sheets with micron-sized comprised over the entire surface of the 

sample Figure 3a. The magnified images from the FE-SEM (scale of 1 μm and 500 nm) depict 

the formation of planar sheets having a few stacked layers of g-C3N4 (Figure 3b, c). The FE-SEM 

analysis demonstrates that the interaction of ZnSO4 with triazine units led to the formation of the 

ZnO/g-C3N4 with irregular nanorods. The SEM-mapping images in Figure 5d proved the 

existence of all constituent elements (i.e., C, N, O, Zn) in the ZnO/g-C3N4 structure. 

 

Further topography of the ZnO/g-C3N4 composite was investigated using TEM analysis as 

depicted in Figure 4a, b. TEM images of the ZnO/g-C3N4 indicating embed and distribution ZnO 

nanorods among the g-C3N4 surface, which results in forming a ZnO/g-C3N4 heterojunction. 

Furthermore, the STEM micrograph can provide more detailed information that morphology 

ZnO/g-C3N4 composite. As shown in the dark-field STEM image confirms the nanorods of ZnO 

well anchoring on wrinkled sheets of g-C3N4 (Figure 4). The collected data from energy-dispersive 

X-ray spectroscopy (EDS) analysis further reveals that all the elements (i.e., C, N, O, and Zn) in 

structures of ZnO/g-C3N4, which exhibit purity and the perfect combination of metal oxide on g-

C3N4 sheets Figure 4g. 

 

The importance of the multi-component reaction for forming structural chiral thiazolidinones in 

the medicinal arena and materials science has led to wide research by chemists [54-57]. For 
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exploring catalytic activity synthetic conditions were initially employed for the synthesis of 

thiazolidinone scaffolds using benzaldehyde, aniline, and thioglycolic acid (TGA). The reaction 

in the presence of the ZnO/g-C3N4 catalyst and 40 W domestic bulb lead to the formation of 1,3-

thiazolidin-4-ones with 97% yield (Scheme 2).  

 

Control experiments indicated in absence ZnO/g-C3N4 catalyst negligible conversion (Table 1, 

entry 1). When the amount of the catalyst increased from 50 mg to 100 mg, the yield reaction was 

also increased from 68 to 97% (Table 1, entries 2 and 3). For the exploration of the reaction 

progress, we screened different solvents in optimized conditions. Solvents polar such as EtOH, 

DMF, and H2O, the reaction underwent a sluggish conversion (Table 1, entries 4-6). Toluene as a 

nonpolar solvent improved the reaction yield up to 97% suggesting that PhMe can be an excellent 

solvent in such a reaction (Table 1, entry 3). The desired result with PhMe solvent encouraged to 

use nonpolar solvents such as cyclohexane and n-hexane. The results indicated that these solvents 

had a moderate effect on reaction progress (Table 1, entries 7 and 8). The activity of the ZnO/g-C3N4 

composite was enhanced under irradiation of visible light and the proposed catalyst produces a large amount 

of product in comparison with a high-speed stirrer (HSS), Microwave, and ultrasonic irradiation (Table 1, 

entries 10-12). Despite decrease time reaction over Microwave and ultrasonic irradiation, based on 

the importance irradiation of visible light in photochemical processes and energy issues, we 

continued our studies in under 40 W domestic bulb. On the other hand, the increase in bulb power 

from 40 W to 100 W had no significant effect on reaction progress (Table 1, entry 13). Moreover, 

pristine g-C3N4 sheets and ZnO results in a low product yield (<49%) under optimized conditions 

(Table 1, entries 13 and 14). When ZnO anchored on g-C3N4 sheets yield reaction increase to 97% 

which demonstrates that the synergetic effect of metal oxide in the ZnO/g-C3N4 structure (Table 

1, entry 3).  
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The catalytic activity of ZnO/g-C3N4 was also compared with that of homogeneous and 

heterogeneous catalysts and results present in Table 2. To highlight the advantages of using this 

proposed catalyst, it was compared with semiconductor-based photocatalysts. The reaction in the 

presence of 100 mg of ZnO/g-C3N4 gave a >97% conversion after 60 min under visible light 

irradiation. The other semiconductor-based photocatalysts such as P25, ZnO, CdS exhibited poorer 

catalytic activity in this transformation (Table 2, entries 1-3). The catalytic performance of ZnO/g-

C3N4 was also compared with that of homogeneous catalysts including ZnCl2, Zn(NO3)2, ZnSO4, 

and Zn(OAc)2 in optimize condition reaction. The results of the reaction demonstrated that ZnSO4 

used for preparing ZnO/g-C3N4, higher catalytic activity in comparison with other homogeneous 

catalysts (71% yield), but lower than that of ZnO/g-C3N4 (Table 2, entry 6). 

 

 

To further verify the generality of the ZnO/g-C3N4 catalyst in the synthesis of thiazolidinones, we 

explored different substituted substrates, using various types of aldehydes and amines (Table 3). 

Treatment of benzaldehyde with a series of amines substituents furnished the corresponding 

rhodanine in good conversion (4a, 4c, 4d, and 4h). However, ethylene diamine as aliphatic amine 

gave a lower yield (57%, 4e).  

 

 

Among the 1,3-thiazolidin-4-one derivatives, bis-thiazolidinones indicate a broad spectrum of 

biological activities and diverse pharmacological properties [58, 59]. In a continuation of these 

efforts, we expanded the synthesis of bis-thiazolidinones by selecting various dialdehydes. This 

reaction in the presence of the proposed catalyst and 40 W domestic bulb lead to the formation of 
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three series of symmetrical bis-thiazolidinone derivatives in superb yields (Table 4). The results 

demonstrated 1,4-aryl linked bis-thiazolidinone derivatives (4i and 4j) formed in better yields as 

compared to the 1,2-disubstituted derivatives (4k). The low yield of the 4k derivative as compared 

to 4j and 4i derivatives could be attributed to the steric repulsion formed at the adjacent position. 

 

 

Differential rates of the reaction for substrates with the varying electronic environment would offer 

a handle for the selective production of the 1,3-thiazolidin-4-ones. Deploying an equimolar 

mixture of benzaldehyde (1a), amine derivatives (2b-d), TGA (3) in optimized conditions are used 

for the chemoselectivity study (Scheme 3). These results demonstrate that the 1,3-thiazolidin-4-

ones production is dependent on the better nucleophilicity of the amine nitrogen and electrophilic 

nature of the carbonyl carbon. 

 

 

In addition to catalytic activity, a plausible mechanism for synthesis of 1,3-thiazolidin-4-ones is 

shown in Scheme 4. Firstly, the aldehyde has to protonated in the presence of ZnO/g-C3N4, and in 

the next step, condensation reaction of amine and aldehyde forming imine as intermediate (A). 

The TGA under visible light (40 W bulb) became thiol-substituted acyl radical via homolysis of 

CO ̶ OH bond. Then, nucleophilic attack of TGA on Intermediate (A) generated intermediate (B) 

via remove water. Finally, it intermediate (B) proceeded for cyclization followed by dehydration 

to giving the final product. The proposed catalyst with having ZnO as Lewis acid and tri-s-triazine 

framework connected by ZnO makes this nanostructure to excellent bifunctional photocatalyst for 

protonation aldehyde. The photonic effect on the catalyst promoted the formation of 1,3-

thiazolidin-4-ones with high conversion. Recently, Kaur and co-worker [60] explored photonic 
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effect Cu2ONPs/g-C3N4 in the synthesis of aminoindolizines, pyrrolo[1, 2-a]quinoline, and 

Ynones. Besides, the reaction was carried out under dark conditions but low conversion (38%>) 

of 1,3-thiazolidin-4-ones was obtained in 12 h.  

 

In addition to catalytic activity, and stability, reusability is a key factor for heterogeneous catalysts. 

To examine the reusability, the ZnO/g-C3N4 was isolated from the reaction mixture and reused in 

the next cycle. It can be observed in Table 5 that the proposed catalyst recycled reactions up to 

four successive runs. The ICP-AES analysis of the multi-component reaction demonstrates that 

negligible ZnO leaching occurred. Also, the FE-SEM and TEM images of the recovered proposed 

catalyst after the 4th run affirmed the overall structural integrity of the material which remains 

intact after the catalytic experiment, demonstrating that the ZnO/g-C3N4 is stable under visible 

light irradiation (Figure 5). Ultimately, a large-scale reaction was indicated with the 5 mmol scale 

reaction under optimizing condition with 91% yield. 

 

 

 

 

4. Conclusion  

In conclusion, we presented an ingenious strategy to the synthesis of thiazolidinones under visible-

light illumination. We have deployed a preparation of g-C3N4 by thermal polymerization as 

excellent support for anchoring and stabilization of ZnO nanorods. The proposed methodology is 

efficient, simple, high scale, and easily recyclable for the synthesis of thiazolidinone scaffolds at 

room temperature. Moreover, modifying these nanosheets with the various semiconductors can be 
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developed to prepare versatile heterogeneous photocatalysts for organic transformations under 

visible-light illumination and other photocatalytic applications. 
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Figure 1. Synthetic pathway of ZnO/g-C3N4 composite. 

 

 

  

 

 

 

 

 

 

 

 
Figure 2. FT-IR spectrum (a) and XRD pattern of ZnO/g-C3N4 composite (b). 

a) b) 

5001000150020002500300035004000

Wavenumber (cm-1)

 ZnO/g-C3N4
C-NC=N

N-H
Triazine

   units

8
9

0

Z
n
-O

2
1

7
8

6
9

8

4
9

1

8
1

2

2
3

7
4

1
3

2
6

1
6

4
4

1
2

4
2

1
5

8
0

1
4

2
4

3
1

6
8

In
te

n
s
it
y
 (

a
. 
u
.)

20 30 40 50 60 70 80

(2
0

1
)(1

1
2

)
(2

0
0

)

(1
0

3
)

(1
1

0
)

(1
0

2
)

(1
0

1
)

(0
0

2
)

(1
0

0
)

(0
0

2
)

In
te

n
s
it
y
 (

a
. 
u
.)

2 (deg)

JCPDS Card No. 36-1451

g-C3N4
 ZnO/g-C3N4

ZnO

Jo
ur

na
l P

re
-p

ro
of



20 
 

 

Figure 3. FE-SEM images of ZnO/g-C3N4 in different magnifications (a, b, c), SEM mapping of ZnO/g-

C3N4 composites. 
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Figure 4. TEM images of ZnO/g-C3N4 in different magnifications (a, b) STEM image (c) and EDS 

analysis (d) of ZnO/g-C3N4 composites. 

 

 

Figure 5. FE-SEM and TEM images after the 4th recycling of the ZnO/g-C3N4 catalyst. 
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Scheme 1. General strategy for the synthesis of thiazolidin-4-ones and comparison with 

previously reported methods.  

 

Scheme 2. Synthesis of 1,3-thiazolidin-4-ones catalyzed by the ZnO/g-C3N4 catalyst. 
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Scheme 3. The influence of the electronic and steric effect of the amine for selective 1,3-thiazolidin-4-

ones production during intermolecular competition. 

 

 

Scheme 4. Plausible mechanism for the formation of 1,3-thiazolidin-4-ones. 

 

Table 1: Optimization of the reaction condition in the formation of rhodanine. a 

Jo
ur

na
l P

re
-p

ro
of



24 
 

Entry Cat.  Solvent Time (min) Condition Reaction Yield (%)b 

1 - PhMe 360 40 W bulb 17> 

2 ZnO/g-C3N4 PhMe 90 40 W bulb 68c 

3 ZnO/g-C3N4 PhMe 60 40 W bulb 97 

4 ZnO/g-C3N4 EtOH 60 40 W bulb 51 

5 ZnO/g-C3N4 DMF 60 40 W bulb 39 

6 ZnO/g-C3N4 water 60 40 W bulb 74 

7 ZnO/g-C3N4 Cyclohexane 60 40 W bulb 69 

8 ZnO/g-C3N4 n-hexane 60 40 W bulb 57 

9 ZnO/g-C3N4 Solvent-free 150 40 W bulb 52 

10 ZnO/g-C3N4 PhMe 360 Stirrer d 65 

11 ZnO/g-C3N4 PhMe 30 Microwave 89 

12 ZnO/g-C3N4 PhMe 20 Ultrasonic 95 

13 ZnO/g-C3N4 PhMe 90 100 W bulb 98 

14 g-C3N4 PhMe 60 40 W bulb e 49 

15 ZnO PhMe 60 40 W bulb 46 

a Reaction conditions: benzaldehyde (1 mmol), aniline (1 mmol), TGA (1 mmol), PhMe (5 mL) in 100 mg of 

catalyst. 
b Isolated yield of rhodanine. 
c 50 mg of catalyst was applied. 
d Progress of reaction with a high-speed stirrer in PhMe solvent under reflux condition. 
e Progress of reaction with an ultrasonic generator (50-60 Hz/305 W) in PhMe solvent at the ambient condition. 
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Table 2. The comparison of the homogeneous and heterogeneous catalysts during the rhodanine 

formation. a 

Entry Cat Time (min) Condition Reaction Yield (%)b 

1 P25 60 40 W bulb 79 

2 ZnO 60 40 W bulb 46 

3 CdS 60 40 W bulb 52 

4 ZnCl2 60 40 W bulb 43 

5 Zn(NO3)2 60 40 W bulb 35 

6 ZnSO4 60 40 W bulb 71 

7 Zn(OAc)2 60 40 W bulb 59 

a Aldehyde (1 mmol) was treated with amine (1 mmol) and TGA (1 mmol) in presence 

of homogeneous and heterogeneous catalysts (100 mg) in PhMe (5 mL) under visible 

light irradiation. 

 

 

Table 3. Substrates scope for the synthesis of 1,3-thiazolidin-4-ones with the 

variation of the amine and aldehyde components. 
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a Reaction condition: 1a (1 mmol), 2a (1 mmol), 3a (1 mmol), and catalyst (100 mg) 

under 40 W bulb. The yields were isolated after column chromatography.  

 

Table 4. Substrates scope for the synthesis of bis-thiazolidinones with the 

variation of the dialdehyde and amine components. 

 

a Reaction condition: dialdehyde 1 (1 mmol), 2a (2 mmol), 3a (2 mmol), and catalyst 

(100 mg) under 40 W bulb. The yields were isolated after column chromatography.  

 

Table 5. The catalyst recovery and reuse during the formation of rhodanine. a 

Run Scale 

(mmol) 

        ZnO/g-C3N4 

used (g) recovery(%) 

Leaching 

(ppm) 

Yield 

(%) 

1st 5  0.50          96 1.2 96 

2nd 4.81 0.48          91 1.3 93 

3rd 4.56 0.45          84 1.9 92 

4th 4.21 0.42          53 2.4 89 

a Reaction conditions: benzaldehyde (1 eq.), aniline (1 eq.), thioglycolic acid 

(1 eq.), PhMe (5mL per 1 mmol), 40 W bulb in 1 h. 
b Isolated yield of rhodanine. 
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