Subscriber access provided by UNIV OF NEBRASKA - LINCOLN

NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Arylboronate Esters with Perfluorobenzenes

Jing Zhou, Johannes H. J. Berthel, Maximilian W. Kuntze-Fechner, Alexandra Friedrich, Todd B Marder, and Udo Radius

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b01041 • Publication Date (Web): 02 Jun 2016

Downloaded from http://pubs.acs.org on June 5, 2016

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Arylboronate Esters with Perfluorobenzenes

Jing Zhou,^{a1} Johannes H. J. Berthel,^a Maximilian W. Kuntze-Fechner,^a Alexandra Friedrich,^a Todd B. Marder,^{*a} and Udo Radius^{*a}

^a Institut f
ür Anorganische Chemie, Julius-Maximilians-Universit
ät W
ürzburg, Am Hubland,
97074 W
ürzburg, Germany.

ABSTRACT

An efficient Suzuki-Miyaura cross-coupling reaction of perfluorinated arenes with aryl boronate esters using NHC nickel complexes as catalysts is described. The efficiencies of different boronate esters (p-tolyl-Beg, p-tolyl-Bneop, p-tolyl-Bpin, p-tolyl-Bcat) and the corresponding boronic acid (p-tolyl-B(OH)₂) in this type of cross-coupling reaction was evaluated (eg = ethyleneglycolato; neop = neopentylglycolato; pin = pinacolato, cat = catecholato). Aryl-Beg was shown to be the most reactive boronate ester among those studied. The use of CsF as an additive is essential for efficient reaction of hexafluorobenzene with an aryl neopentylglycolboronates.

The wide applications of pharmaceuticals, agrochemicals and materials that contain fluoroaromatics attract scientists' interest in the development of methods to introduce fluorine or fluorinated building blocks into organic molecules.¹ Transition

¹ Present Address: College of Science, Northwest A&F University, Yangling, 712100, P. R. China;

 metal-catalyzed C-F bond activation has been well-developed in recent years.² C-C bond-forming processes in which polyfluorinated arenes are involved include Kumada,³ Negishi,⁴ Suzuki-Miyaura,⁵ Songashira,⁶ Stille,^{5b, 5e, 7} and Hiyama cross-coupling reactions.⁸ However, cross-coupling reactions of electron-deficient arvl fluorides are usually limited in turnover numbers (if they are catalytic at all) and yields and are often restricted to fluorinated substrates with directing groups (such as imine, oxazoline, pyridine, nitro, keto and hydroxo groups). Among them, Suzuki-Miyaura cross-coupling of poly- and perfluorinated arenes represents an attractive reaction due to the mild conditions employed and the compatibility with many potential functional groups. In previously reported^{5g,i,1} cross-coupling reactions of poly- and perfluorinated benzenes with boronate esters, an excess of the boronate esters is required in many cases in order to obtain reasonable yields, and fluoride additives were often employed to activate the boronate ester. Over the last few years, we have investigated the use of nickel complexes stabilized by N-alkyl substituted NHCs. such as 1,3-bis(isopropyl)imidazolin-2-ylidene (ⁱPr₂Im), in stoichiometric and catalytic C-F bond activation reactions.⁹ Complexes such as $[Ni_2(^iPr_2Im)_4(\mu$ -COD)] readily undergo oxidative addition of polyfluorinated arenes at ambient temperatures and are readily available catalysts for C-F bond transformations such as hydrodefluorination reactions.9g We have recently reported the NHC nickel-catalyzed borylation of polyfluorinated arenes via C-F bond activation.¹⁰ Furthermore, we reported efficient Suzuki-Miyaura cross-coupling reaction of polyfluorinated arenes with boronic acids using $[Ni_2(^iPr_2Im)_4(\mu$ -COD)] as a catalyst precursor.^{9b} In light of the widespread use of

organoboronic esters instead of organoboronic acids themselves, we decided to expand our work and we report herein preliminary results on the Suzuki-Miyaura cross-coupling of polyfluorinated arenes with aryl ethyleneglycolato (eg), neopentylglycolato (neop), pinacolato (pin), and catecholato (cat) boronic acid esters. Ohashi and Ogoshi *et al.* described briefly base-free Suzuki-Miyaura cross-coupling reactions of octafluorotoluene (C_7F_8), hexafluorobenzene (C_6F_6) and fluorobenzene (C_6H_3F) with 4-methoxyphenyl neopentylglycolboronate ester using our catalyst and demonstrated that the reactions of C_6F_6 and C_6H_5F provided low yields.⁵¹ In the present study, we optimized the conditions for the Suzuki-Miyaura cross-coupling of C_6F_6 with phenyl neopentylglycolboronate (C_6H_5 -Bneop) and compared the reactivity of different boronate esters with perfluorinated arenes. The scope of the nickel-catalyzed Suzuki-Miyaura coupling reactions of other fluorobenzenes was also explored.

Initially, a variety of nickel catalysts and additives were tested for the reaction of C_6F_6 **1a** and the boronate ester C_6H_5 -Bneop **2a** to give C_6H_5 - C_6F_5 **3aa** (Table 1). For an equimolar reaction (**1a**:**2a** = 1:1), the best results were obtained when 5 mol% of dimeric [Ni₂(^{*i*}Pr₂Im)₄(μ -COD)] (i.e. 10 mol% Ni) was used as a catalyst precursor, CsF (1 eq.) as an additive and the reaction was performed in toluene at 100 °C (Table 1, entry 1). Using these conditions, the product, C_6H_5 - C_6F_5 **3aa**, was obtained in 71 % yield. Each component given in Table 1, entry 1 is necessary to obtain a high yield. Without CsF, the yield drops significantly to 17 % (Table 1, entry 2 and 3), whereas without catalyst, no conversion was detected (Table 1, entries 4 and 5). The NHC ligand ^{*i*}Pr₂Im alone is also not a catalyst for this reaction (Table 1, entry 5). Ni(II)

 precursors were not effective catalysts, while other Ni(0) complexes are much less effective than $[Ni_2({}^{i}Pr_2Im)_4(\mu$ -COD)]. The closely related Ni(0) complex $[Ni(IMes)_2]$,¹¹ for example, afforded the product in only 17 % yield using the same conditions (Table 1, entry 6). Using the Ni(II) complexes $[({}^{i}Pr_2Im)_2NiBr_2]^{12}$ and $[(Me_2Im)_2NiI_2]$,¹³ no product formation was observed (Table 1, entries 7 and 8). NHC-stabilized nickel carbonyls¹⁴ are also ineffective for this reaction (Table 1, entries 9 and 10) as well as *in situ*-generated Ni(0) bis(phosphine) complexes¹⁵ (Table 1, entries 11-13).

The choice of base and solvent for Suzuki–Miyaura reactions is, by and large, empirical but, in general, ethereal and aromatic hydrocarbon solvents and carbonate, phosphate, hydroxide, and fluoride bases tend to be optimal. The influence of the additives/bases were studied using the standard conditions introduced above (1 eq. C_6F_6 , 1 eq. C_6H_3 -Bneop, 5 mol % [Ni₂('Pr₂Im)₄(μ -COD)], toluene as a solvent at 100 °C; Table 1, entries 14-20). All other additives, different fluorides, carbonates, alkoxides and amines gave lower yields; the second best was provided when K_3PO_4 was used as the base (61 % Table 1, entry 17). The use of CsF is crucial for efficient cross-coupling. The obvious advantage of F- as an additive in our reactions is to avoid the consequences of direct nucleophilic attack of the base on the perfluoroarene substrate or polyfluoroarene containing reaction product.¹⁶ F- attack is redundant whereas many of the "non-fluoride" bases may react competitively with the perfluoroarenes. Furthermore, we found that toluene is advantageous for the reaction in comparison to THF, the use of the latter solvent gave lower yields using the standard

conditions (Table 1, entries 1 and 21) as well as in the additive free case (Table 1, entries 2 and 3). The reaction can be further pushed towards the product if the fluorobenzene is used in an excess compared to the boronate ester. An increase of the amount of C_6F_6 to 2 equivalents led to formation of C_6H_5 - C_6F_5 **3aa** in 80 % yield based on C_6H_5 -Bneop (Table 1, entry 22).

Table 1. Optimization of conditions for the NHC nickel-catalyzed

Suzuki-Miyaura cross-coupling reaction.^a

	F + F + F + F + F + F + F + F + F + F +	Bneop cataly solve addit	yst ► F ent, ► ive F	F F 3aa
		1.1		· 11 (0() 8
entry	catalyst	additive	solvent	yield (%)"
1	$Ni_2(^iPr_2Im)_4(\mu$ -COD)	CsF	Toluene	71 ^b
2	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	-	Toluene	17 ^b
3	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	-	THF	6
4	-	CsF	Toluene	0
5	^{<i>i</i>} Pr ₂ Im	-	Toluene	0
6	Ni(IMes) ₂	CsF	Toluene	17
7	(ⁱ Pr ₂ Im) ₂ NiBr ₂	CsF	Toluene	0
8	(Me ₂ Im) ₂ NiI ₂	CsF	Toluene	0
9	$(^{i}\mathrm{Pr}_{2}\mathrm{Im})_{2}\mathrm{Ni}(\mathrm{CO})_{2}$	CsF	Toluene	< 1

2
2
3
4
5
6
7
,
8
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
2 I
22
23
24
25
20
26
27
28
29
20
30
31
32
33
3/
25
35
36
37
38
30
10
40
41
42
43
11
44
45
46
47
48
10
49
50
51
52
52
55
34
55
56
57
59
50
59
60

10	(Me ₂ Im) ₂ Ni(CO) ₂	CsF	Toluene	< 1
11	(dppe)NiCl ₂	<i>n</i> -BuLi	Toluene	0
12	(dppp)NiCl ₂	<i>n</i> -BuLi	Toluene	0
13	(dpppf)NiCl ₂	<i>n</i> -BuLi	Toluene	0
14	$Ni_2(^iPr_2Im)_4(\mu$ -COD)	KF	Toluene	43 ^b
15	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	NMe ₄ F	Toluene	8 ^b
16	Ni ₂ (^{<i>i</i>} Pr ₂ Im) ₄ (µ-COD)	KO ^t Bu	Toluene	34 ^b
17	$Ni_2(^iPr_2Im)_4(\mu$ -COD)	K ₃ PO ₄	Toluene	61 ^b
18	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	K ₂ CO ₃	Toluene	40 ^b
19	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	Cs ₂ CO ₃	Toluene	8 ^b
20	Ni ₂ (^{<i>i</i>} Pr ₂ Im) ₄ (µ-COD)	NEt ₃	Toluene	28 ^b
21	Ni ₂ (^{<i>i</i>} Pr ₂ Im) ₄ (µ-COD)	CsF	THF	38 ^b
22	Ni ₂ (ⁱ Pr ₂ Im) ₄ (µ-COD)	CsF	Toluene	80 ^c

^a Reaction conditions, unless otherwise stated: Ni source (10 mol % Ni), C₆H₅-Bneop (0.2 mmol), C₆F₆ (0.2 mmol), additive (0.2 mmol), 5 mL solvent, 100 °C, 18 h. Yields are based on C₆H₅-Bneop; C₆H₅-C₆F₅ was determined by GC-MS using C₁₂H₂₆ as internal standard; ^b [Ni₂(^{*i*}Pr₂Im)₄(μ -COD)] (5 mol %); ^c C₆F₆ (0.4 mmol).

To compare the reactivity of different boronate esters and the analogous boronic acid the catalytic reaction of hexafluorobenzene and perfluorotoluene was conducted using p-tolyl boronic acid and different p-tolyl boronate esters. The results are presented in Table 2 and demonstrate that the neopentylglycol (p-tolyl-Bneop) and

ethyleneglycol (*p*-tolyl-Beg) esters display a significantly higher reactivity than *p*-tolylboronic acid, the pinacol (*p*-tolyl-Bpin) and catechol (*p*-tolyl-Bcat) ester.¹⁷ *P*-tolyl-Beg is the most efficient boronate ester being even more active than *p*-tolyl-Bneop (Table 2, entries 2, 3, 7, 8). The pinacol boronate ester displays significantly lower reactivity (Table 2, entries 4, 9). For C₆F₆, the reactivity trend is *p*-tolyl-Beg, *p*-tolyl-Bneop \gg *p*-tolylboronic acid, *p*-tolyl-Bpin > *p*-tolyl-Bcat, whereas for CF₃-C₆F₅ a slightly modified reactivity order was observed, i.e. *p*-tolyl-Beg, *p*-tolyl-Bneop and *p*-tolylboronic acid reacted excellently, *p*-tolyl-Bpin performed less well and *p*-tolyl-Bcat revealed the lowest reactivity¹⁸ (Table 2, entries 6-10).

 Table 2. NHC nickel-catalyzed Suzuki-Miyaura cross-coupling reaction: the role

 of the boron component

5	p-tolyl-Bcat	C_6F_6	6
6	<i>p</i> -tolyl boronic acid	CF ₃ -C ₆ F ₅	97 ^b
7	p-tolyl-Beg	CF ₃ -C ₆ F ₅	100
8	p-tolyl-Bneop	CF_3 - C_6F_5	96
9	<i>p</i> -tolyl-Bpin	CF_3 - C_6F_5	47
10	p-tolyl-Bcat	CF_3 - C_6F_5	6

 ^a Reaction conditions: $[Ni_2({}^{i}Pr_2Im)_4(\mu$ -COD)] (5 mol %), *p*-tolyl-B(OR)₂ (0.2 mmol), polyfluorinated arene (C₆F₆, 0.4 mmol; CF₃-C₆F₅, 0.2 mmol), CsF (0.2 mmol), 2 mL toluene, 100 °C, 18 h. GC yields based on boronic acid or boronate ester using C₁₂H₂₆ as internal standard. ^bK₂CO₃ (0.6 mmol) was employed as base.

Despite the fact that Ar-Beg is more reactive than Ar-Bneop, we chose the neopentylglycol boronate Ar-Bneop for all subsequent experiments, as it is usually more readily, also commercially, available for many different aryl groups.^{19,20} We thus examined the use of different aryl neopentylglycol boronates for the reaction with hexafluorobenzene. Treatment of C_6F_6 (2 eq.) with 4-CH₃-C₆H₄-Bneop in toluene at 100 °C for 18 hours led to 4-CH₃-C₆H₄-C₆F₅ **3ab** in 76 % isolated yield; C₆H₅-Bneop afforded 72 % of the cross-coupling product **3aa**. (Table 3, entries 1 and 2). For 4-(MeO)-C₆H₄-Bneop, with electron-donating methoxide substituent, the yield is

slightly higher (82 %, Table 3, entry 2). Furthermore, 4-Ph-C₆H₄-Bneop reacts with C₆F₆ to give **3ad** in 65 % isolated yield. (Table 3, entry 4). However, for 4-F₃C-C₆H₄-Bneop, containing the strong electron-withdrawing CF₃ substituent, only trace amounts of product were detected (Table 3, entry 5). Thus, Ar-Bneop compounds substituted with *para* electron donors perform better, and those with an electron-withdrawing substituent perform worse compared to those containing electron-neutral substituents.

Table 3. NHC nickel-catalyzed Suzuki-Miyaura cross-coupling reaction using different aryl neopentylglycol boronates

^a Isolated yields based on Ar-Bneop, unless otherwise stated. Reaction conditions:
[Ni₂(ⁱPr₂Im)₄(μ-COD)] (5 mol %), Ar-Bneop (2 mmol), C₆F₆ (4 mmol), CsF (2 mmol),
10 mL toluene, 100 °C, 18 h.

The last step of our investigations was a test of the scope of the NHC nickel-catalyzed Suzuki-Miyaura cross-coupling reaction using different perfluoroarenes and C₆H₅-Bneop (Table 4). The results reveal that octafluorotoluene, hexafluorobenzene, perfluorobiphenyl and perfluoronaphthalene give the corresponding products in moderate to excellent yields under our optimized conditions (Table 4). For the reaction of C_6H_5 -Bneop with perfluorobiphenyl and perfluoronaphthalene, small amounts of bisborylated side products 4ca (3 %) and 4da (4 %) were detected. For several partially fluorinated substrates such as pentafluorobenzene, 1,2,4,5-tetrafluorobenzene and 1,3,5-trifluorobenzene, and

 p-fluortoluene only trace amounts of the cross-coupling products were detected using the standard conditions (not shown in Table 4). However, this behavior changed when the fluoroarene was used as the solvent. For the neat reaction of *p*-fluorotoluene with C_6H_5 -Bneop, for example, the cross-coupled product **3ea** was isolated in 50 % yield (Table 4, entry 3).

 Table 4. NHC nickel-catalyzed Suzuki-Miyaura cross-coupling reaction with

 different fluoroarenes

^a Reported are isolated yields based on C₆H₅-Bneop. ^b Reaction conditions: Ni₂(^{*i*}Pr₂Im)₄(μ -COD) (5 mol %), C₆H₅-Bneop (2 mmol), Ar^F-F (2 mmol), CsF (2 mmol), 10 mL toluene, 100 °C, 18 h. ^c Reaction conditions: [Ni₂(^{*i*}Pr₂Im)₄(μ -COD)] (5 mol %), C₆H₅-Bneop (2 mmol), Ar^F-F (4 mmol), CsF (2 mmol), 10 mL toluene, 100 °C, 18 h. ^d **1e** (2 mL), neat reaction.

In conclusion, we report that $[Ni_2({}^{i}Pr_2Im)_4(\mu-COD)]$ is an effective catalyst precursor for the Suzuki-Miyaura cross-coupling reaction of perfluorinated arenes with different aryl boronate esters. Among the aryl boronates used (Ar-Beg, Ar-Bneop, Ar-Bpin and Ar-Bcat), the ethyleneglycol (aryl-Beg) and neopentylglycol (aryl-Bneop) esters are the most efficient ones. Furthermore, the use of the additive CsF is vital to this reaction.

EXPERIMENTAL SECTION

General Considerations. NMR spectra were recorded at ambient temperature (¹H NMR, 500 MHz; ¹³C{¹H}NMR, 125 MHz; ¹⁹F NMR, 470 MHz; ¹⁹F{¹H}NMR, 188 MHz). ¹H NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.26 ppm) whereas ¹³C{¹H}NMR spectra are reported relative to TMS using the carbon signals of the deuterated solvent (CDCl₃: 77.16 ppm). ¹⁹F{¹H}NMR and ¹⁹F NMR spectra are reported relative to CF₃Cl. GC-MS analyses were performed using a gas chromatograph (column: 5% phenyl methyl siloxane, 30 m, \emptyset 0.25 mm, film 0.25 µm; injector: 250 °C; oven: 40 °C (2 min), 40 °C to 280 °C (20 °C min⁻¹); carrier gas: He

 $(1.2 \text{ mL min}^{-1}))$ equipped with a triple-axis MSD detector operating in EI mode and an auto sampler/injector. High resolution mass spec were obtained with either an atmospheric sample analysis probe (ASAP) or heated-electrospray ionization (HESI) probe. ESI measurements were conducted using a HESI source (spray voltage 3 kV for positive mode, capillary temperature 275 °C). ASAP measurements were conducted using an APCI source (discharge current 3.5 kV, vaporizer temperature 300°C). Mass spectrometric data acquired resolving of 70,000 was at a power (full-width-at-half-maximum, at m/z 200, RFWHM), resulting in a scan rate of >1.5 scans/sec when using an automatic gain control target of 1.0×10^6 and a C-trap inject time of 100 ms.

All manipulations, unless otherwise stated, were carried out under an atmosphere of argon using conventional Schlenk, vacuum-line and glove-box techniques. All reactions were carried out in oven-dried glassware. Toluene and THF were purified by distillation from an appropriate drying agent (sodium with benzophenone as indicator). Nickel catalysts, i.e., $([Ni_2(^iPr_2Im)_4(\mu-COD)])^{9a}$, $[(^iPr_2Im)_2Ni_2Br_2]^{12}$, $[(Me_2Im)_2Ni_2I_2]^{13}$, $[(^iPr_2Im)_2Ni_2(CO)_2]^{14}$, $[(Me_2Im)_2Ni_2(CO)_2]^{14}$, $[(dppe)NiCI_2]^{15}$, $[(dppp)NiCI_2]^{15}$, and $[NiIMes_2]^{11}$ used were prepared according to literature procedures. Boronate esters were prepared according to literature procedures. 17 All other reagents were purchased from commercial suppliers, and were checked for purity by GC-MS and/or ^{1}H NMR spectroscopy and used as received.

Experimental Procedures and Characterization of Products

General Procedure for the Preparation of Products

 $[Ni_2(^iPr_2Im)_4(\mu$ -COD)] (0.1 mmol, 83 mg), CsF (2 mmol, 304 mg), Ar-Bneop (2 mmol), fluoroarene and toluene (10 mL) were added to a Schlenk tube equipped with a magnetic stirring bar. The reaction mixture was heated at 100 °C for 18 h and after that H₂O (5 mL) was added. The product was extracted with EtOAc (3 x 50 mL) and then the combined organic layers were dried over Na₂SO₄, filtered and the volatiles were removed *in vacuo*. The product was purified by column chromatography on silica-gel using hexane as the eluent. The solvent of the product containing fraction of the eluent was evaporated *in vacuo*. The yields provided are based on Ar-Bneop.

Spectroscopic Data of the Products

2,3,4,5,6-Pentafluoro-1,1'-biphenyl (3aa). Following general procedure, a white solid in 72 % yield (351 mg) was obtained from C₆F₆ (4 mmol, 462 µL) and C₆H₅-Bneop (2 mmol, 380 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.52-7.45 (m, 3 H), 7.44-7.41 (m, 2 H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 144.2 (d of m, ¹*J*_{CF} = 247.3 Hz), 140.4 (d of m, ¹*J*_{CF} = 253.7 Hz), 137.8 (d of m, ¹*J*_{CF} = 250.9 Hz), 130.1 (t, ³*J*_{CF} = 1.5 Hz), 129.3, 128.7, 126.4, 115.9 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ = -143.26 (m, 2 F), -155.65 (t, *J* = 21.0 Hz, 1 F), -162.27 (m, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -143.28 (dd, *J* = 8.1, 22.0 Hz, 2 F), -155.68 (t, *J* = 21.0 Hz, 1 F), -162.31 (td, *J* = 8.1, 22.0 Hz, 2 F). HRMS (ASAP)[C₁₂H₅F₅] calcd. 244.0306, found 244.0305.

Spectroscopic data for **3aa** match with those previously reported in the literature.^{3k}

2,3,4,5,6-Pentafluoro-4'-methyl-1,1'-biphenyl (3ab). Following general procedure, a white solid in 76 % yield (390 mg) was obtained from C₆F₆ (4 mmol, 462 μ L) and 4-CH₃-C₆H₄-Bneop (2 mmol, 408 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.31 (m, 4 H), 2.42 (s, 3 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 144.2 (d of m, ¹*J*_{CF} = 247.7 Hz), 140.2 (d of m, ¹*J*_{CF} = 253.3 Hz), 139.4, 137.8 (d of m, ¹*J*_{CF} = 250.7 Hz), 130.0, 129.5, 14

 123.4, 115.9 (m), 21.4; ¹⁹F NMR (470 MHz, CDCl₃) δ = -143.37 (m, 2 F), -156.15 (t, *J* = 18.8 Hz, 1 F), -162.46 (m, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -143.39 (dd, *J* = 8.1, 22.8 Hz, 2 F), -156.17 (t, *J* = 21.0 Hz, 1 F), -162.50 (td, *J* = 8.1, 22.8 Hz, 2 F); HRMS (ASAP)[C₁₃H₇F₅] calcd. 258.0468, found 258.0462.

Spectroscopic data for **3ab** match with those previously reported in the literature.^{3k}

2,3,5,6-Tetrafluoro-4'-methyl-4-(trifluoromethyl)-1,1'-biphenyl (3bb). Following general procedure, a white solid in 90 % yield (554 mg) was obtained from octafluorotoluene (2 mmol, 284 µL) and 4-CH₃-C₆H₄-Bneop (2 mmol, 408 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.38-7.32 (m, 4 H), 2.44 (s, 3 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 144.4 (d of m, ¹*J*_{CF} = 259.5 Hz), 144.1 (d of m, ¹*J*_{CF} = 248.3 Hz), 140.3, 129.8 (t, ³*J*_{CF} = 2.1 Hz), 129.6, 125.0 (t, ²*J*_{CF} = 16.4 Hz), 123.1, 120.9 (d of m, ¹*J*_{CF} = 274.0 Hz), 108.2 (m), 21.4; ¹⁹F NMR (470 MHz, CDCl₃) δ = -56.20 (t, ³*J*_{FF} = 18.8 Hz, 3 F), -140.98 (m, 2 F), -141.70 (m, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -56.24 (t, ³*J*_{FF} = 21.4 Hz, 3 F), -141.03 (m, 2 F), -141.75 (m, 2 F). HRMS (ASAP)[C₁₄H₇F₇] calcd. 308.0430, found 308.0422.

Spectroscopic data for **3bb** match with those previously reported in the literature.^{3k}

2,3,4,5,6-Pentafluoro-4'-methoxy-1,1'-biphenyl (3ac). Following general procedure, a white solid in 82 % yield (449 mg) was obtained from C₆F₆ (4 mmol, 462 µL) and *p*-OMe-C₆H₄-Bneop (2 mmol, 440 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.37-7.35 (m, 2 H), 7.03-7.01 (m, 2 H), 3.87 (s, 3 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 160.3, 144.2 (d of m, ¹*J*_{CF} = 247.0 Hz), 140.0 (d of m, ¹*J*_{CF} = 253.3 Hz), 137.8 (d of m, ¹*J*_{CF} = 250.5 Hz), 131.4 (t, ³*J*_{CF} = 1.8 Hz), 118.4, 115.7 (m), 114.2, 55.4; ¹⁹F NMR (470 MHz, CDCl₃) δ = -143.62 (dd, *J* = 8.1, 22.0 Hz, 2 F), -156.51 (t, *J* = 21.1 Hz, 1 F), -162.54 (td, *J* = 8.1, 21.8 Hz, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = = -143.66 (dd, *J* = 8.0, 22.8 Hz, 2 F), -156.56 (t, *J* = 22.0 Hz, 1 F), -162.59 (td, *J* = 8.0, 22.0 Hz, 2 F). HRMS (ASAP)[C₁₃H₇F₅O] calcd. 274.0412, found 274.0409.

Spectroscopic data for **3ac** match with those previously reported in the literature.⁵¹

2,3,4,5,6-Pentafluoro-1,1':4',1''-terphenyl (3ad). Following general procedure, a white solid in 65 % yield (416 mg) was obtained from C₆F₆ (4 mmol, 462 µL) and PhBneop (2 mmol, 532 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.73-7.66 (m, 2 H), 7.65-7.63 (m, 2 H), 7.52-7.46 (m, 4 H), 7.41-7.38 (tt, *J* = 1.3, 7.4 Hz, 1 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 142.2, 140.2, 130.6, 128.9, 127.8 127.4, 127.2; due to the low solubility of the compound in CDCl₃ the <u>C</u>-F resonances have not been detected. ¹⁹F NMR (470 MHz, CDCl₃) δ = -143.13 (m, 2 F), -155.50 (t, *J* = 20.9 Hz, 1 F), -162.12 (m, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -143.15 (dd, *J* = 8.1, 22.8 Hz, 2 F). HRMS (ASAP) [C₁₈H₁₀F₅]⁺ (M+H)⁺ calcd. 321.0697, found 321.0691.

Spectroscopic data for **3ad** match with those previously reported in the literature.²¹

2,2',3,3',4,5,5',6,6'-Nonafluoro-1,1':4',1''-terphenyl (3ca). Following general procedure, a white solid in 61 % yield (478 mg) was obtained from perfluorodiphenyl (2 mmol, 668 mg) and C₆H₅-Bneop (2 mmol, 380 mg). ¹H NMR (500 MHz, CDCl₃) δ = 7.56-7.49 (m, 5 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 144.1 (d of m, ¹*J*_{CF} = 253.1 Hz), 144.4 (d of m, ¹*J*_{CF} = 252.6 Hz), 144.0 (d of m, ¹*J*_{CF} = 248.3 Hz), 141.0 (m), 137.9 (d of m, ¹*J*_{CF} = 253.7 Hz), 130.1 (t, ³*J*_{CF} = 2.0 Hz), 129.6, 128.8, 126.8 (t, ³*J*_{CF} = 2.1

 Hz), 123.0 (t, ${}^{2}J_{CF}$ = 16.5 Hz), 103.7 (d of m, ${}^{1}J_{CF}$ = 301.0 Hz), 100.0; 19 F NMR (470 MHz, CDCl₃) δ = -137.28 (m, 2 F), -138.68 (m, 2 F), -142.54 (m, 2 F), -150.37 (m, 1 F), -160.58(m, 2 F); 19 F{¹H} NMR (188 MHz, CDCl₃) δ = -137.28 (m, 2 F), -138.68 (m, 2 F), -142.54 (m, 2 F), -150.37 (tt, J_{FF} = 2.7, 21.0 Hz, 1 F), -160.58 (m, 2 F). HRMS (ASAP)[C₁₈H₅F₉] calcd. 392.0247, found 392.0235. Spectroscopic data for **3ca** match with those previously reported in the literature.^{9b}

2',2'',3',3'',5',5'',6',6''-Octafluoro-1,1':4',1'':4'',1'''-quaterphenyl (**4ca**). **4ca** (25 mg, 3 %) was obtained as a side product from the reaction mixture of **3ca**. ¹H NMR (500 MHz, CDCl₃) δ = 7.55-7.49 (m, 10 H, aryl-*H*); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 130.1 (t, ³*J*_{*CF*} = 1.8 Hz), 129.6, 128.7; due to the low solubility of the compound in CDCl₃ the <u>*C*</u>-F resonances have not been detected. ¹⁹F NMR (470 MHz, CDCl₃) δ = -138.58 (m, 4 F), -142.85 (m, 4 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -138.60 (m, 4 F), -142.88 (m, 4 F). HRMS (ASAP)[C₂₄H₁₀F₈H]⁺(M+H)⁺ calcd. 451.0728, found 451.0711.

Spectroscopic data for 4ca match with those previously reported in the literature.²²

1,2,3,4,5,6,8-Heptafluoro-7-phenylnaphthalene (3da). Following general procedure, a white solid in 48 % yield (316 mg) was obtained from perfluoronaphthalene (4 mmol, 1088 mg) and C₆H₅-Bneop (2 mmol, 380 mg). ¹H NMR (500 MHz, CDCl₃) $\delta =$ 7.55-7.49 (m, 5 H); ¹³C{¹H}NMR (125 MHz, CDCl₃) $\delta =$ 130.3 (t, ³*J*_{CF} = 1.9 Hz), 129.4, 128.7, 127.1 (d, *J*_{CF} = 1.9 Hz) due to the low solubility of the compound in CDCl₃ the <u>*C*</u>-F resonances have not been detected; ¹⁹F NMR (470 MHz, CDCl₃) $\delta =$ -121.49 (ddd, *J* = 4.0, 19.8, 74.6 Hz, 1 F), -136.90 (m, 1 F), -143.73 (m, 1 F), -146.18 (m, 1 F), -148.72 (m, 1 F), -153.52 (td, J = 2.7, 18.5 Hz, 1 F), -155.64 (m, 1 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) $\delta = -121.50$ (ddd, J = 3.8, 18.6, 70.4 Hz, 1 F), -136.92 (m, 1 F), -143.76 (dtt, J = 3.4, 16.9, 70.4 Hz, 1 F), -146.19 (m, 1 F), -148.76 (dtt, J = 4.1, 18.2, 57.3 Hz, 1 F), -153.56 (tt, J = 3.4, 18.6 Hz, 1 F), -155.67 (m, 1 F). HRMS (ASAP)[C₁₆H₅F₇] calcd. 330.0274, found 330.0269.

Spectroscopic data for **3da** match with those previously reported in the literature.²³

1,2,4,5,6,8-hexafluoro-3,7-diphenylnaphthalene (**4da**). **4da** (30 mg, 4 %) was obtained as a side product from the reaction mixture of **3da**. ¹H NMR (500 MHz, CDCl₃) δ = 7.57-7.48 (m, 10 H, aryl-*H*); ¹³C{¹H}NMR (125 MHz, CDCl₃) δ = 130.4, 129.3, 128.6, 127.5 (d, ³*J*_{CF} = 2.0 Hz); due to the low solubility of the compound in CDCl₃ the <u>*C*</u>-F resonances have not been detected. ¹⁹F NMR (470 MHz, CDCl₃) δ = -122.65 (m, 2 F), -138.94 (m, 2 F), -147.50 (m, 2 F); ¹⁹F{¹H} NMR (188 MHz, CDCl₃) δ = -122.65 (m, 2 F), -138.95 (m, 2 F), -147.51 (m, 2 F). HRMS (ASAP)[C₂₂H₁₀F₆H]⁺ (M+H)⁺ calcd. 389.0759, found 389.0752. Elemental analysis for C₂₂H₁₀F₆ (388.30 [g/mol]): C, 67.78 (68.05); H, 2.58 (2.60). Melting point (uncorrected): 203-205 °C.

4-methyl-1,1'-biphenyl (3ea). Following the general procedure, a white solid in 50 % yield (168 mg) was obtained from the reaction of *p*-fluorotoluene (2 mL) and C₆H₅-Bneop (2 mmol, 380 mg) without toluene as the solvent. ¹H NMR (500 MHz, CDCl₃) δ = 7.60-7.58 (m, 2 H), 7.52-7.50 (m, 2 H), 7.45-7.42 (m, 2 H), 7.35-7.32 (m, 1 H), 7.27-7.26 (m, 2 H), 2.41 (s, 3 H); ¹³ C {¹H} NMR (125 MHz, CDCl₃;) δ = 141.2, 138.4, 137.0, 129.5, 128.7, 127.02, 127.0, 126.99, 21.1. HRMS (ASAP) [C₁₃H₁₃]⁺ (M+H)⁺ calcd. 169.1012, found 169.1006.

 Spectroscopic data for **3ea** match with those previously reported in the literature.²⁴

AUTHOR INFORMATION

Corresponding Authors

*E-mail: u.radius@uni-wuerzburg.de

*E-mail: todd.marder@uni-wuerzburg.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENT

This work was supported by the University of Würzburg and the Deutsche Forschungsgemeinschaft DFG (Ra720/12-1). J.Z. thanks the China Scholarship Council for supporting her stay in Würzburg.

Supporting information

The Supporting Information is available free of charge on the ACS Publications website. Copies of ¹H, ¹³C{¹H}, ¹⁹F NMR and ¹⁹F{¹H}NMR spectra, and GC-MS data (PDF). Crystal data for **4da**. (CIF)

REFERENCES

(1) (a) LaBerge, N. A.; Love, J. A.; Activation and Formation of Aromatic C-F Bonds;
in: Braun, T.; Hughes, R. P. (eds.), Organometallic Fluorine Chemistry, Springer,
Heidelberg 2015, 55. (b) Keyes, L.; Love, J. A.; Aromatic C–F Activation: Converting

Fluoroarenes to Useful Building Blocks; in: Ribas X. (ed.), C-H and C-X Bond
Functionalization, RSC, Cambridge, U.K. 2013, 159. (c) Han, F.-S. Chem. Soc. Rev.
2013, 42, 5270. (d) Johnson, S. A.; Hatnean, J. A.; Doster, M. E. Prog. Inorg. Chem.
2012, 57, 255. (e) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119. (f) Sun, A. D.;
Love, J. A. Dalton Trans. 2010, 39, 10362. (g) Uneyama, K., Organofluorine
Chemistry; Wiley-Blackwell, Oxford, U.K., 2006.

(2) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931.

(3) (a) Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, C12. (b)

Böhm, V. P.; Gstöttmayr, C. W.; Weskamp, T.; Herrmann, W. A. Angew. Chem. Int.

Ed. 2001, 40, 3387. (c) Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005, 1771. (d)

Guo, H.; Kong, F.; Kanno, K.-i.; He, J.; Nakajima, K.; Takahashi, T. Organometallics

2006, 25, 2045. (e) Ishikawa, S.; Manabe, K. Synthesis 2008, 3180. (f) Manabe, K.;

Ishikawa, S. Synthesis 2008, 2645. (g) Wang, J.-R.; Manabe, K. Org. Lett. 2009, 11,

741. (h) Ackermann, L.; Wechsler, C.; Kapdi, A. R.; Althammer, A. Synlett 2010, 294.

(i) Jin, Z.; Li, Y.-J.; Ma, Y.-Q.; Qiu, L.-L.; Fang, J.-X. Chem.-Eur. J. 2012, 18, 446. (j)

Nakamura, Y.; Yoshikai, N.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 3316. (k) Sun,

Y.; Sun, H.; Jia, J.; Du, A.; Li, X. Organometallics 2014, 33, 1079.

(4) (a) Wang, T.; Alfonso, B. J.; Love, J. A. Org. Lett. 2007, 9, 5629. (b) Buckley, H.
L.; Sun, A. D.; Love, J. A., Organometallics 2009, 28, 6622. (c) Yang, X.; Sun, H.;
Zhang, S.; Li, X., J. Organomet. Chem. 2013, 723, 36. (d) Sun, A. D.; Leung, K.;
Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A. Chem.-Eur. J. 2014, 20,
3162. (e) Xiao, S.-H.; Xiong, Y.; Zhang, X.-X.; Cao, S. Tetrahedron 2014, 70, 4405. (f)

Zhu, F.; Wang, Z.-X. J. Org. Chem. 2014, 79, 4285. (g) Ohashi, M.; Doi, R., Ogoshi, S. Chem. Eur. J. 2014, 20, 2040.

(5) (a) A. Widdowson, D.; Wilhelm, R. Chem. Commun. 1999, 2211. (b) Kim, Y. M.;

Yu, S., J. Am. Chem. Soc. 2003, 125, 1696. (c) Widdowson, D. A.; Wilhelm, R. Chem.

Commun. 2003, 578. (d) Mikami, K.; Miyamoto, T.; Hatano, M. Chem. Commun. 2004,

2082. (e) Bahmanyar, S.; Borer, B. C.; Kim, Y. M.; Kurtz, D. M.; Yu, S. Org. Lett.

, 7, 1011. (f) Steffen, A.; Sladek, M. I.; Braun, T.; Neumann, B.; Stammler, H.-G.

Organometallics 2005, 24, 4057. (g) Cargill, M. R.; Sandford, G.; Tadeusiak, A. J.;

Yufit, D. S.; Howard, J. A. K.; Kilickiran, P.; Nelles, G. J. Org. Chem. 2010, 75, 5860.

(h) Sun, A. D.; Love, J. A. Org. Lett. 2011, 13, 2750. (i) Tobisu, M.; Xu, T.; Shimasaki,

T.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 19505. (j) Breyer, D.; Braun, T.; Kläring,

P. Organometallics 2012, 31, 1417. (k) Yu, D.; Shen, Q.; Lu, L. J. Org. Chem. 2012,

77, 1798. (l) Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 443.

(6) (a) Cargill, M. R.; Sandford, G.; Kilickiran, P.; Nelles, G. *Tetrahedron* 2013, *69*, 512. (b) Jin, G.; Zhang, X.; Cao, S. *Org. Lett.* 2013, *15*, 3114. (c) Liu, C.; Zhao, H.; Zhao, H.; Wang, Z.; Zhang, B. *RSC Advances* 2015, *5*, 31993.

(7) (a) Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 2254. (b) Braun,

T.; Izundu, J.; Steffen, A.; Neumann, B.; Stammler, H.-G. Dalton Trans. 2006, 5118.

- (8) Saijo, H.; Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Organometallics 2014, 33, 3669.
- (9) (a) Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024. (b) Schaub, T.; Backes,
- M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964. (c) Schaub, T.; Backes, M.;

Radius, U., *Eur. J. Inorg. Chem.* 2008, 2680. (d) Schaub, T.; Fischer, P.; Steffen, A.;
Braun, T.; Radius, U.; Mix, A. *J. Am. Chem. Soc.* 2008, *130*, 9304. (e) Schaub, T.;
Fischer, P.; Meins, T.; Radius, U., *Eur. J. Inorg. Chem.* 2011, 3122. (f) Zell, T.;
Feierabend, M.; Halfter, B.; Radius, U. *J. Organomet. Chem.* 2011, *696*, 1380. (g)
Fischer, P.; Götz, K.; Eichhorn, A.; Radius, U. *Organometallics* 2012, *31*, 1374.
(10) (a) J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel,

A. Friedrich, Z. Du, T. B. Marder, Udo Radius, J. Am. Chem. Soc. 2016, 136, DOI: 10.1021/jacs.6b02337. For related borylations of monofluoroarenes using nickel phosphine catalyst systems, see: (b) Liu, X.-W.; Echavarren, J.; Zarate, C.; Martin, R., J. Am. Chem. Soc. 2015, 137, 12470. (c) Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T., J. Am. Chem. Soc. 2015, 137, 14313.

(11) (a) Arduengo III, A. J.; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am. Chem.
Soc. 1994, 116, 4391. (b) Bantreil, X.; Nolan, S. P. Nat. Protoc. 2011, 6, 69.

(12) Fischer, P.; Linder, T.; Radius, U. Z. Anorg. Allg. Chem. 2012, 638, 1491.

(13) Berding, J.; van Paridon, J. A.; van Rixel, V. H.; Bouwman, E. *Eur. J. Inorg. Chem.* **2011**, 2450.

(14) Schaub, T.; Backes, M.; Radius, U. Organometallics 2006, 25, 4196.

(15) (a) Booth, G.; Chatt, J. J. Chem. Soc. 1965, 3238. (b) Van Hecke, G. R.; HorrocksJr., W. D. Inorg. Chem. 1966, 5, 1968.

(16) We previousely investigated the reactivity of a series of anionic sp²–sp³ diboron adducts as a source of nucleophilic boryl anion in the metal-free borylation of electrophilic aryl iodides and diazonium salts: Pietsch, S.; Neeve, E. C.; Apperley, D.

C.; Bertermann, R.; Mo, F.; Qiu, D.; Cheung, M. S.; Dang, L.; Wang, J.; Radius, U., Lin, Z.; Kleeberg, C.; Marder, T. B. *Chem. Eur. J.* 2015, *21*, 7082.
(17) Preparation of ArB(OR)₂: (a) Wong, K.-T.; Chien, Y.-Y.; Liao, Y.-L.; Lin, C.-C.; Chou, M.-Y.; Leung, M.-k. *J. Org. Chem.* 2002, *67*, 1041. (b) Kaupp, G.; Naimi-Jamal, M. R.; Stepanenko, V. *Chem.-Eur. J.* 2003, *9*, 4156.
(18) Zhang, N.; Hoffman, D. J.; Gutsche, N.; Gupta, J.; Percec, V. *J. Org. Chem.* 2012, *77*, 5956.
(19) Zhang, J.; Wu, H. H.; Zhang, J. *Eur. J. Org. Chem.* 2013, 6263.
(20) We note that B₂neop₂ is readily (commercially) available in bulk quantities and a useful reagent for the synthesis of aryl boronate esters Ar-Bneop: (a) Lawlor, F. J.; Norman, N. C.; Pickett, N. L.; Robins, E. G.; Nguyen, P.; Lesley, G.; Marder, T. B.; Ashmore, J. A.; Green, J. C *Inorg. Chem.* 1998, *37*, 5282. (b) Clegg, W.; Elsegood, M. R. J.; Lawlor, F. J.; Norman, N. C.; Pickett, N. L.; Pickett, N. L.; Robins, E. G.; Scott, A. J.; Nguyen, P. S. Stepen, Stepe

P.; Taylor, N. J.; Marder, T. B. Inorg. Chem. 1998, 37, 5289. (c) Nguyen, P.; Lesley,

G.; Taylor, N. J.; Marder, T. B.; Pickett, N. L.; Clegg, W.; Elsegood, M. R. J.; Norman,

N. C. Inorg. Chem. 1994, 33, 4623.

(21) Sardzinski, L. W.; Wertjes, W. C.; Schnaith, A. M.; Kalyani, D. Org. Lett. 2015, 17, 1256.

(22) Respess, W. L.; Tamborski, C. J. Organomet. Chem. 1970, 22, 251.

(23) Vlasova, L. V.; Kobrina, L. S.; Yakobson, G. G. Izvest. Sibirsk. Otdel. Akad. Nauk S.S.S.R., Ser. Khim. Nauk 1974, 1, 68.

(24) Yu, J.; Liu, J.; Shi, G.; Shao, C.; Zhang, Y. Angew. Chem. Int. Ed. 2015, 127,

4151.

Graphics for TOC

