Tetrahedron 72 (2016) 472-478

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

N-heterocyclic carbene-catalysed Peterson olefination reaction

Ying Wang^a, Guang-Fen Du^{a,b,*}, Cheng-Zhi Gu^{a,c}, Fen Xing^a, Bin Dai^{a,c}, Lin He^{a,c,*}

^a School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, PR China
 ^b Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi, Xinjiang Uygur Autonomous Region, PR China
 ^c Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang Uygur Autonomous Region, PR China

ARTICLE INFO

Article history: Received 30 September 2015 Received in revised form 16 November 2015 Accepted 19 November 2015 Available online 22 November 2015

Keywords: N-heterocyclic carbene Peterson olefination Functionalized olefine Silyl ketene acetal

ABSTRACT

N-heterocyclic carbenes (NHCs) have been utilised as highly efficient organocatalysts to catalyse Peterson olefination reaction of aldehydes with trimethylsilylketene ethyl trimethylsilyl acetal or fluoro(-trimethylsilyl)ketene ethyl trimethylsilyl acetal to produce the corresponding functionalized olefines in 34–93% yields with excellent stereoselectivities.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionalized olefines and their fluorinated analogues are considered to be versatile building blocks in organic synthesis. Fluoroolefines are of particular importance owing to their unique properties and significant applications,¹ i.e., these moieties can serve as amide isostere² and utilised widely in the synthesis of peptidomimetics.³ The olefination reaction of α -silvl carbanion with carbonyl compounds, also known as Peterson olefination,⁴ provide facile access to functionalized olefines stereoselectively. More interestingly, compared with phosphorus reagents, the higher reactivity of α -silyl carbanion and simple purification procedure make Peterson olefination to be an attractive alternative to Wittig reaction.⁵ However, stoichiometric amount of strong bases, such as *n*-BuLi, LDA and silyl Grignard reagents are generally necessary for the in situ generation of the active α -silyl carbanion species, which makes base sensitive substrates can not be well tolerated. Therefore, the development of more convenient and mild methods for Peterson olefination reaction is highly valuable. Recently, Mukaiyama reported that silyl ketene acetals can be utilised as stable precursors of silvl carbanions to undergo Peterson olefination reaction with aldehydes under mild conditions, which provide a novel protocol for the construction of functionalized olefines.⁶

The past decade has witnessed tremendous progress of *N*-heterocyclic carbene (NHC) catalysis.⁷ This important type of

nucleophilic organocatalysts can promote a wide range of *Umpolung* reactions⁸ and other transformations.⁹ In particular, NHCs exhibit high reactivity toward the activation of silicon-based reagents,¹⁰ i.e., only 0.01 mol% NHC can efficiently promote the cyanation reaction of TMSCN and aldehydes.¹¹ Based on this nucleophilic activation strategy, NHC-catalysed trifluoromethylation reaction,^{12a} Mukaiyama aldol reaction,^{12b-d} ring-opening reaction,^{12e} silyl-Reformatsky reaction,^{12f-g} pentafluorophenylation reaction^{12h} and polymerisation reaction¹³ have been developed in recent years. In line with our continue interest of NHC catalysis, we envisioned that NHCs could be utilised as nucleophilic catalysts to mediate Peterson olefination reaction between silyl ketene acetals and aldehydes.

2. Results and discussion

With this idea in mind, we began our study with the commercially available silyl ketene acetal **1a** and *p*-chlorobenzaldehyde **2a**. To our delight, in the presence of 5 mol % stable NHC **4** (1,3-bis-(2,6diisopropylphenyl)imidazol-2-ylidene, IPr),¹⁴ the reaction proceeded very smoothly in THF at room temperature to afford the corresponding α,β -unsaturated ester **3a** in 71% yield with excellent *E/Z* selectivity (Table 1, entry 1). Encouraged by this result, several other NHCs were subsequently tested for the reaction. NHCs derived from imidazolium can promote the reaction efficiently, whereas NHC generated from the saturated imidazolinium showed very low reactivity (Table 1, entries 2–5). Unfortunately, NHCs derived from both thiazolium and triazolium can not catalyse this reaction (Table 1, entries 6–8). A brief screening of reaction media

^{*} Corresponding authors. E-mail addresses: duguangfen@shzu.edu.cn (G.-F. Du), helin@shzu.edu.cn (L. He).

Table 1

Screening of reaction conditions^a

Entry	NHC (mol %)	Solvent	Time (h)	E/Z ^b	Yield ^c
1	4 , (5)	THF	4	>25:1	71%
2	5a , ^t BuOK, (5)	THF	4	>25:1	89%
3	5b , ^{<i>t</i>} BuOK, (5)	THF	8	18:1	80%
4	5c , ^{<i>t</i>} BuOK, (5)	THF	8	24:1	89%
5	6 , ^t BuOK, (5)	THF	12	/	8%
6	7a , ^t BuOK, (5)	THF	12	/	Trace
7	7b , ^t BuOK, (5)	THF	12	/	Trace
8	8 , ^t BuOK, (5)	THF	12	/	Trace
9	4 , (5)	CH ₃ CN	12	>25:1	70%
10	4 , (5)	CH_2Cl_2	12	>25:1	59%
11	4 , (5)	toluene	12	12:1	69%
12	4 , (5)	CH₃CN	8	>25:1	85%
13	4 , (1)	CH ₃ CN	12	1	Trace

 $[^]a\,$ Reaction conditions: NHC precursors (6 mol %), base (5 mol %), 1a (1.5 equiv), 2a (1.0 equiv), room temperature.

^b Determined by ¹H NMR analysis of the crude products.

^c Isolated total yields of Z and E-isomers.

revealed that CH₃CN was the best choice in terms of yields and selectivities (Table 1, entries 9-12). Reduction NHC loading to 1 mol % resulted in dramatic decrease of catalytic efficiency (Table 1, entry 13).

With the optimal reaction conditions in hand, the scope of this olefination reaction was next examined. Both aromatic and aliphatic aldehydes are suitable for the olefination reaction (Table 2). For aromatic aldehydes, the electronic properties and varied positions on the aromatic ring had no obvious effects on the reaction yields and selectivities (Table 2, entries 1–10). Interestingly, heteroaromatic aldehydes such as furfural and 2-thenaldehyde

Table 2

Evaluation of aldehydes^a

	TMS OTMS +	° − 5 R − H − 5	mol% NHC 4 CH ₃ CN, rt	R C	O ₂ Et
Entry	R	Time (h)	Product	E/Z ^b	Yield (%) ^c
1	CI	12	3a	>25:1	85
2	F	12	3b	>25:1	71
3	Br	12	3c	>25:1	88
4	NC-	12	3d	>25:1	68

Table 2 (continued)						
Entry	R	Time (h)	Product	E/Z ^b	Yield (%) ^c	
5	02N	12	3e	>25:1	54	
6	<u>ج</u>	12	3f	>25:1	91	
7		12	3g	>25:1	82	
8	C C C C C C C C C C C C C C C C C C C	12	3h	>25:1	93	
9	H3C	12	3i	>25:1	85	
10	H ₃ CO	12	3j	>25:1	82	
11	OCH3	12	3k	>25:1	87	
12	H ₃ CO	12	31	>25:1	91	
13	CI S	12	3m	>25:1	91	
14	CI	12	3n	>25:1	88	
15	Br	12	30	>25:1	76	
16	CI	12	3р	>25:1	88	
17	O ₂ N	12	3q	>25:1	56	
18	NO ₂	12	3r	>25:1	83	
19	C SE	12	3s	>25:1	78	
20	S S	12	3t	>25:1	57	
21		15	3u	14:1	70	
22	C Star	15	3v	>25:1	53	
23		15	3w	>25:1	70	
24	CF3	15	3x	>25:1	34	

^a 1a (1.5 equiv), 2 (1.0 equiv).

^b Determined by ¹H NMR analysis of the crude products.

^c Isolated total yields of *Z* and *E*-isomers.

performed very well, producing the desired products in good yields with excellent *E*-selectivity (Table 2, entries 19 and 20). However, when *trans*-cinnamaldehyde was employed for the reaction, the corresponding olefin can be isolated in good yield, but the *E*/*Z* selectivities reduced to 14:1 (Table 2, entry 21). Gratifyingly, when

Table 3

NHC-catalysed Peterson fluoroolefination reaction^a

$\begin{array}{c} H_{\text{CH}_{3}\text{CN}, \text{rt}} \\ \text{OEt} \\ \text{Th} \\ \text{CH}_{3}\text{CN}, \text{rt} \\ \text{F} \\ \text{CH}_{3}\text{CN}, \text{rt} \\ \text{F} \\ \text{CH}_{3}\text{CN}, \text{rt} \\ \text{cH}_{3}C$					
Entry	R	- Time (h)	Product	Z/E ^b	Yield ^c
1	CI	6	4 a	>25:1	88
2	F	6	4b	>25:1	84
3		12	4c	>25:1	77
4		12	4d	>25:1	79
5	K	12	4e	>25:1	82
6	H ₃ C	12	4f	>25:1	79
7	H ₃ CO	15	4g	>25:1	75
8	OCH3	12	4h	>25:1	79
9	H ₃ CO	12	4 i	>25:1	85
10	CI	10	4j	>25:1	82
11	CI	8	4k	>25:1	83
12	ci Ci	6	41	>25:1	52
13		15	4m	>25:1	61
14	C St	12	4n	>25:1	55
15	S S	12	40	>25:1	63
16	- Sty	12	4p	15:1	43

^a **1a** (1.5 equiv), 2 (1.0 equiv).

^c Isolated total yields of *Z* and *E*-isomers.

aliphatic aldehydes were introduced to reaction, the final products can be isolated in good yields with excellent selectivities (Table 2, entries 22 and 23). Notably, 2,2,2-trifluoroacetophenone can transform into the desired product stereoselectively, albeit in low yield (Table 2, entry 24).

To extend the utility of this protocol, we further studied the similar Peterson fluoroolefination reaction. Under the optimal reaction conditions, fluoro(trimethylsilyl)ketene ethyl trimethylsilyl acetal **1b** underwent these type of fluoroolefination smoothly. As shown in Table 3, a great variety of aromatic aldehydes and heteroaromatic aldehydes reacted with α -fluoro ketene acetal **1b** very well, affording the corresponding α -fluoroolefination of aliphatic aldehyde was also attempted and the final product was isolated in moderate yield with high *Z*-selectivity (Table 3, entry 16).

Based on previous studies on NHC-catalysed Mukaiyama aldol reaction, a possible mechanism was proposed and depicted in Scheme 1. NHC attack silyl ketene acetal to generate the reactive hexavalent silicon intermediate I, which might trigger the following Mukaiyama aldol reaction with aldehyde to produce intermediate II, and after *syn*-elimination, could produce the desired product.

Scheme 1. NHC-catalysed Peterson olefination reaction.

The mechanism was further investigated through NMR experiments. A 1:1 mixture of silyl ketene acetal 1a and NHC 4 was detected by ¹H NMR and ¹³C NMR, respectively. ¹H NMR indicated that the characteristic peaks of TMS groups moved from 1.91, 0.38, 0.03, -1.43 ppm to 1.93, 0.40, 0.05, -1.42 ppm, while the characteristic peaks of ¹³C NMR moved from 0.22, 0.14, 0.08, 0.06 ppm to 0.21, 0.12, 0.07 and 0.05 ppm, respectively. These results indicate that NHC might react with silyl ketene acetal to generate intermediate I and initiate the reaction.

3. Conclusions

In summary, the first NHC-catalysed Peterson olefination reaction of silyl ketene acetals and carbonyl compounds was developed. The extremely mild conditions, simple procedure and excellent stereoselectivities provide a novel protocol for the synthesis of these important building blocks.

4. Experimental section

4.1. General methods

Unless otherwise indicated, all reactions were conducted under nitrogen atmosphere in oven-dried glassware with magnetic stirring bar. Column chromatography was performed with silica gel (200–300 mesh) and analytical TLC on silica gel 60-F₂₅₄. ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and spectra were recorded on a Bruker-DMX 400 spectrometer in CDCl₃, with tetramethylsilane as an internal standard and reported in ppm (δ). *N*heterocyclic carbene salts **5b** and **5c** were purchased from Sigma-–Aldrich and TCI. Other NHCs were prepared according to

^b Determined by ¹H NMR analysis of the crude products.

literature procedure.^{14,15a} Silyl ketene acetals **1a** and **1b** were purchased from TCI. All other chemicals were obtained from commercial supplies and used as received. Anhydrous THF and toluene were distilled from sodium and benzophenone. CH₂Cl₂ and CH₃CN were distilled from calcium hydride.

4.2. General procedure for *N*-heterocyclic carbene-catalysed Peterson olefination reaction

NHC **4** (6.0 mg, 0.015 mmol) was added to a solution of aldehyde **2** (0.3 mmol) and silyl ketene acetal (**1a** or **1b**, 0.45 mmol) in anhydrous CH₃CN (1.0 mL) at 0° C. The reaction mixture was then stirred at room temperature until full consume of the starting aldehyde indicated by TLC. The ratio of *E/Z* was determined by ¹H NMR analysis of the crude products and the configurations were assigned by ¹H NMR comparison with literature.^{15b,15c} The crude product was purified by flash column chromatography on silica gel (PE—EtOAc, 50:1) to give the desired product **3** or **4** as a mixture of inseparable *Z* and *E*-isomers.

4.2.1. Ethyl (E)-3-(4-chlorophenyl)acrylate (**3a**).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.7, 143.1, 136.1, 132.9, 129.1, 129.1, 118.8, 60.6, 14.3 ppm.

4.2.2. Ethyl (E)-3-(4-fluorophenyl)acrylate (**3b**).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.8, 163.8 (d, *J*=251.1 Hz), 143.2, 130.7 (d, *J*=3.0 Hz), 129.8 (d, *J*=8.5 Hz), 118.0 (d, *J*=2.3 Hz), 116.0 (d, *J*=22.1 Hz), 60.5, 14.3 ppm.

4.2.3. *Ethyl* (*E*)-3-(4-*bromophenyl*)*acrylate* (**3c**).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.6, 143.1, 133.3, 132.1, 129.4, 124.4, 118.9, 60.6, 14.3 ppm.

4.2.4. Ethyl (E)-3-(4-cyanophenyl)acrylate (**3d**).^{15e} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.1, 142.1, 138.7, 132.6, 128.3, 121.8, 118.3, 113.3, 60.9, 14.2 ppm.

4.2.5. *Ethyl* (*E*)-3-(4-*nitrophenyl*)*acrylate* (**3e**).^{15e} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.0, 148.4, 141.6, 140.5, 128.6, 124.1, 122.6, 61.0, 14.2 ppm.

4.2.6. (*E*)-*Ethyl cinnamate* (**3f**).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =7.71 (d, *J*=16.0 Hz, 1H), 7.59–7.51 (m, 2H), 7.46–7.37 (m, 3H), 6.46 (d, *J*=16.0 Hz, 1H), 4.29 (q, *J*=7.2 Hz, 2H), 1.37 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.0, 144.5, 134.4, 130.2, 128.8, 128.0, 118.2, 60.5, 14.3 ppm.

4.2.7. *Ethyl* (*E*)-3-(*naphthalen-1-yl*)*acrylate* (**3g**).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =8.54 (d, *J*=15.8 Hz, 1H), 8.26–8.16 (m, 1H), 7.95–7.83 (m, 2H), 7.80–7.71 (m, 1H), 7.64–7.44 (m, 3H), 6.54 (d, *J*=15.8 Hz, 1H), 4.33 (q, *J*=7.1 Hz, 2H), 1.39 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.9, 141.6, 133.6, 131.8, 131.4, 130.4, 128.7, 126.8, 126.2, 125.4, 125.0, 123.4, 120.9, 60.6, 14.4 ppm.

4.2.8. *Ethyl* (*E*)-3-(*naphthalen-2-yl*)*acrylate* (**3h**).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =7.97–7.91 (m, 1H), 7.90–7.79 (m, 4H), 7.71–7.62 (m,

1H), 7.57–7.48 (m, 2H), 6.56 (d, *J*=16.0 Hz, 1H), 4.30 (q, *J*=7.2 Hz, 2H), 1.37 ppm (t, *J*=7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ =167.0, 144.6, 134.2, 133.3, 131.9, 129.8, 128.6, 128.5, 127.7, 127.2, 126.7, 123.5, 118.4, 60.5, 14.3 ppm.

4.2.9. *Ethyl* (*E*)-3-(*p*-tolyl)*acrylate* (**3i**).^{15*d*} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 2.37 (s, 3H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.1, 144.5, 140.6, 131.7, 129.6, 128.0, 117.1, 60.4, 21.4, 14.3 ppm.

4.2.10. Ethyl (E)-3-(4-methoxyphenyl)acrylate (**3***j*).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 3.84 (s, 3H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.3, 161.3, 144.2, 129.6, 127.2, 115.7, 114.3, 60.3, 55.3, 14.3 ppm.

4.2.11. Ethyl (E)-3-(2-methoxyphenyl)acrylate (**3k**).^{15f} ¹H NMR (400 MHz, CDCl₃) δ =8.01 (d, *J*=16.2 Hz, 1H), 7.55–7.50 (m, 1H), 7.40–7.33 (m, 1H), 7.02–6.92 (m, 2H), 6.55 (d, *J*=16.2 Hz, 1H), 4.29 (q, *J*=7.1 Hz, 2H), 3.91 (s, 3H), 1.36 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.5, 158.3, 140.0, 131.3, 128.9, 123.4, 120.6, 118.8, 111.1, 60.3, 55.4, 14.3 ppm.

4.2.12. Ethyl (E)-3-(3-methoxyphenyl)acrylate (**31**).^{15f} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.2 Hz, 2H), 1.32 ppm (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.9, 159.8, 144.4, 135.8, 129.8, 120.7, 118.5, 116.1, 112.8, 60.5, 55.2, 14.3 ppm.

4.2.13. *Ethyl* (*E*)-3-(2-*chlorophenyl*)*acrylate* (**3m**).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.4, 140.3, 134.9, 132.7, 130.9, 130.1, 127.6, 127.0, 120.9, 60.7, 14.3 ppm.

4.2.14. Ethyl (E)-3-(3-chlorophenyl)acrylate (**3n**).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.5, 142.9, 136.2, 134.9, 130.1, 130.0, 127.7, 126.2, 119.7, 60.6, 14.3 ppm.

4.2.15. Ethyl (E)-3-(3-bromophenyl)acrylate (**30**).^{15g} ¹H NMR (400 MHz, CDCl₃) δ =7.61 (d, *J*=16.0 Hz, 1H), 7.49–7.30 (m, 4H), 6.39 (d, *J*=16.0 Hz, 1H), 4.25 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.5, 142.8, 136.5, 132.9, 130.7, 130.3, 126.6, 123.0, 119.7, 60.6, 14.3 ppm.

4.2.16. Ethyl (E)-3-(2,5-dichlorophenyl)acrylate (**3p**).^{15h} ¹H NMR (400 MHz, CDCl₃) δ =8.00 (d, *J*=16.0 Hz, 1H), 7.59–7.51 (m, 1H), 7.46–7.41 (m, 1H), 7.30–7.22 (m, 1H), 6.41 (d, *J*=7.1 Hz, 1H), 4.28 (q, *J*=7.1 Hz, 2H), 1.34 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.2, 139.1, 136.2, 135.4, 131.3, 130.0, 128.3, 127.5, 121.3, 60.8, 14.2 ppm.

4.2.17. *Ethyl* (*E*)-3-(3-*nitrophenyl*)*acrylate* (**3***q*).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =8.40–8.35 (m, 1H), 8.25–8.19 (m, 1H), 7.84–7.79 (m, 1H), 7.71 (d, *J*=16.0 Hz, 1H), 7.62–7.54 (m, 1H), 6.56 (d, *J*=16.0 Hz, 1H), 4.29 (q, *J*=7.1 Hz, 2H), 1.35 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.1, 148.7, 141.6, 136.2, 133.6, 129.9, 124.4, 122.4, 121.4, 60.9, 14.2 ppm.

4.2.18. Ethyl (E)-3-(2-nitrophenyl)acrylate (**3r**).^{15d} ¹H NMR (400 MHz, CDCl₃) δ =8.09 (d, J=15.8 Hz, 1H), 8.05–7.99 (m, 1H), 7.67–7.60 (m, 2H), 7.57–7.49 (m, 1H), 6.35 (d, J=15.8 Hz, 1H), 4.27 (q, J=7.1 Hz, 2H), 1.33 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ =165.7, 148.3, 139.8, 133.5, 130.6, 130.2, 129.1, 124.8, 123.3, 60.9, 14.2 ppm.

4.2.19. *Ethyl* (*E*)-3-(*furan*-2-*yl*)*acrylate* (**3s**).^{15h} ¹H NMR (400 MHz, CDCl₃) δ =7.49–7.46 (m, 1H), 7.42 (d, *J*=16.0 Hz, 1H), 6.61–6.58 (m, 1H), 6.48–6.45 (m, 1H), 6.31 (d, *J*=15.7 Hz, 1H), 4.24 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.0, 150.9, 144.6, 130.9, 115.9, 114.5, 112.2, 60.4, 14.3 ppm.

4.2.20. Ethyl (E)-3-(thiophen-2-yl)acrylate (**3t**).¹⁵ⁱ ¹H NMR (400 MHz, CDCl₃) δ =7.80 (d, J=15.7 Hz, 1H), 7.43–7.35 (m, 1H), 7.30–7.24 (m, 1H), 7.11–7.02 (m, 1H), 6.26 (d, J=15.7 Hz, 1H), 4.27 (q, J=7.1 Hz, 2H), 1.35 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.8, 139.6, 137.0, 130.8, 128.3, 128.0, 117.0, 60.4, 14.3 ppm.

4.2.21. Ethyl (2E,4E)-5-phenylpenta-2,4-dienoate (**3u**).^{15e} ¹H NMR (400 MHz, CDCl₃) δ =7.51–7.40 (m, 3H), 7.39–7.27 (m, 3H), 6.94–6.82 (m, 2H), 5.99 (d, *J*=15.3 Hz, 1H), 4.23 (q, *J*=7.1 Hz, 2H), 1.32 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =167.0, 144.5, 140.3, 136.0, 129.0, 128.8, 127.2, 126.2, 121.3, 60.3, 14.3 ppm.

4.2.22. Ethyl (E)-5-phenylpent-2-enoate (3v).^{15j} ¹H NMR (400 MHz, CDCl₃) δ =7.33–7.27 (m, 2H), 7.24–7.16 (m, 3H), 7.06–6.93 (m, 1H), 5.85 (dt, *J*=15.7, 1.6 Hz, 1H), 4.18 (q, *J*=7.1 Hz, 2H), 2.83–2.73 (m, 2H), 2.59–2.46 (m, 2H), 1.28 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =166.6, 148.0, 140.8, 128.4, 128.3, 126.1, 121.8, 60.2, 34.3, 33.9, 14.2 ppm.

4.2.23. Ethyl (E)-3-cyclohexylacrylate (**3w**).^{6b} ¹H NMR (400 MHz, CDCl₃) δ =6.91 (dd, J=15.8, 6.8 Hz, 1H), 5.75 (dd, J=15.8, 1.5 Hz, 1H), 4.18 (q, J=7.1 Hz, 2H), 2.19–2.06 (m, 1H), 1.82–1.71 (m, 4H), 1.71–1.63 (m, 1H), 1.38–1.06 ppm (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ =167.1, 154.3, 118.8, 60.1, 40.4, 31.6, 25.9, 25.7, 14.2 ppm.

4.2.24. Ethyl (E)-4,4,4-trifluoro-3-phenylbut-2-enoate (**3** κ).^{15h} ¹H NMR (400 MHz, CDCl₃) δ =7.46–7.37 (m, 3H), 7.33–7.27 (m, 2H), 6.61 (q, J=1.4 Hz, 1H), 4.04 (q, J=7.1 Hz, 2H), 1.06 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =164.1, 142.3 (q, J=30.9 Hz), 131.0, 129.3, 128.6, 128.1, 124.5 (q, J=5.4 Hz), 122.5 (q, J=274.8 Hz), 61.0, 13.7 ppm.

4.2.25. Ethyl (Z)-3-(4-chlorophenyl)-2-fluoroacrylate (**4a**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.63–7.56 (m, 2H), 7.43–7.36 (m, 2H), 6.90 (d, J=34.7 Hz, 1H), 4.38 (q, J=7.1 Hz, 2H), 1.41 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.1 (d, J=34.3 Hz), 147.2 (d, J=268.7 Hz), 135.6 (d, J=3.9 Hz), 131.4 (d, J=8.3 Hz), 129.6 (d, J=4.4 Hz), 129.1, 116.2 (d, J=4.8 Hz), 62.0, 14.2 ppm.

4.2.26. Ethyl (Z)-2-fluoro-3-(4-fluorophenyl)acrylate (**4b**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.69–7.59 (m, 2H), 7.15–7.03 (m, 2H), 6.88 (d, J=34.9 Hz, 2H), 4.35 (q, J=7.1 Hz, 2H), 1.38 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =163.2 (dd, J=251.5, 4.0 Hz), 161.3 (d, J=34.1 Hz), 146.7 (dd, J=267.2, 2.7 Hz), 132.2 (t, J=8.4 Hz), 127.3 (dd, J=4.4, 3.4 Hz), 116.3 (dd, J=4.9, 0.9 Hz), 115.9 (d, J=21.8 Hz), 61.9, 14.2 ppm.

4.2.27. Ethyl (Z)-2-fluoro-3-phenylacrylate (**4c**).^{6a} ¹H NMR (400 MHz, CDCl₃) δ =7.70–7.62 (m, 2H), 7.45–7.33 (m, 3H), 6.92 (d, J=35.2 Hz, 1H), 4.36 (q, J=7.1 Hz, 2H), 1.39 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.4 (d, J=34.2 Hz), 147.0 (d, J=267.7 Hz), 131.1 (d, J=4.4 Hz), 130.3 (d, J=8.1 Hz), 129.6 (d, J=2.8 Hz), 128.8, 117.4 (d, J=4.7 Hz), 61.9, 14.2 ppm.

4.2.28. Ethyl (Z)-2-fluoro-3-(naphthalen-1-yl)acrylate (**4d**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =8.14–8.05 (m, 1H), 8.03–7.95 (m, 1H),

7.94–7.82 (m, 2H), 7.70 (d, *J*=33.1 Hz, 1H), 7.63–7.48 (m, 3H), ppm 4.42 (q, *J*=7.1 Hz, 2H), 1.44 (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.4 (d, *J*=34.5 Hz), 147.8 (d, *J*=268.8 Hz), 133.6, 131.4, 130.0 (d, *J*=1.8 Hz), 128.8, 128.8, 128.7, 127.0 (d, *J*=4.0 Hz), 126.1, 125.4, 123.4, 113.8 (d, *J*=5.5 Hz), 62.0, 14.2 ppm.

4.2.29. Ethyl (Z)-2-fluoro-3-(naphthalen-2-yl)acrylate (**4e**).^{6a} ¹H NMR (400 MHz, CDCl₃) δ =8.15–8.07 (m, 1H), 7.92–7.75 (m, 4H), 7.58–7.46 (m, 2H), 7.09 (d, J=35.2 Hz, 1H), 4.38 (q, J=7.1 Hz, 2H), 1.41 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.4 (d, J=34.2 Hz), 147.1 (d, J=267.8 Hz), 133.6 (d, J=2.1 Hz), 133.1, 130.7 (d, J=8.1 Hz), 128.7 (d, J=4.7 Hz), 128.6, 128.5, 127.6, 127.2, 126.8 (d, J=8.4 Hz), 126.5, 117.6 (d, J=4.7 Hz), 61.9, 14.2 ppm.

4.2.30. Ethyl (Z)-2-fluoro-3-(p-tolyl)acrylate (**4***f*).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.64–7.54 (m, 2H), 7.28–7.17 (m, 2H), 6.92 (d, J=35.5 Hz, 1H), 4.37 (q, J=7.1 Hz, 2H), 2.40 (s, 3H), 1.40 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.5 (d, J=34.1 Hz), 146.5 (d, J=266.0 Hz), 140.0 (d, J=2.9 Hz), 130.2 (d, J=8.1 Hz), 129.5, 128.3 (d, J=4.4 Hz), 117.5 (d, J=4.8 Hz), 61.7, 21.4, 14.2 ppm.

4.2.31. Ethyl (*Z*)-2-fluoro-3-(4-methoxyphenyl)acrylate (**4g**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.78–7.48 (m, 2H), 7.01–6.80 (m, 3H), 4.36 (q, *J*=7.1 Hz, 2H), 3.85 (s, 3H), 1.39 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.6 (d, *J*=33.9 Hz), 160.6, 145.8 (d, *J*=263.8 Hz), 132.0 (d, *J*=8.4 Hz), 123.8, 117.3 (d, *J*=5.0 Hz), 114.2, 61.6, 55.3, 14.2 ppm.

4.2.32. Ethyl (*Z*)-2-fluoro-3-(2-methoxyphenyl)acrylate (**4h**).^{15k} ¹H NMR (400 MHz, CDCl₃) δ =7.95–7.84 (m, 1H), 7.49–7.30 (m, 2H), 7.05–6.86 (m, 2H), 4.42–4.29 (m, 2H), 3.92–3.82 (m, 3H), 1.45–1.31 ppm (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.6 (d, *J*=34.8 Hz), 157.3 (d, *J*=1.7 Hz), 146.9 (d, *J*=266.0 Hz), 130.9 (d, *J*=14.1 Hz), 120.7, 120.0 (d, *J*=4.8 Hz), 111.2 (d, *J*=3.2 Hz), 110.6, 61.7, 55.6, 14.2 ppm.

4.2.33. Ethyl (Z)-2-fluoro-3-(3-methoxyphenyl)acrylate (**4i**).¹⁵¹ ¹H NMR (400 MHz, CDCl₃) δ =7.35–7.28 (m, 1H), 7.25–7.19 (m, 2H), 6.96–6.83 (m, 2H), 4.35 (q, J=7.1 Hz, 2H), 3.83 (s, 3H), 1.38 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.38 (d, J=34.2 Hz), 159.6, 147.1 (d, J=268.1 Hz), 132.3 (d, J=4.4 Hz), 129.7, 122.9 (d, J=7.7 Hz), 117.4 (d, J=4.5 Hz), 115.7 (d, J=2.6 Hz), 115.1 (d, J=8.8 Hz), 61.9, 55.2, 14.2 ppm.

4.2.34. Ethyl (Z)-3-(2-chlorophenyl)-2-fluoroacrylate (**4***j*).^{6a} ¹H NMR (400 MHz, CDCl₃) δ =7.94–7.88 (m, 1H), 7.46–7.27 (m, 4H), 4.37 (q, J=7.1 Hz, 2H), 1.39 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.0 (d, J=34.9 Hz), 147.8 (d, J=270.4 Hz), 134.3 (d, J=2.0 Hz), 131.3, 131.1, 130.5 (d, J=2.1 Hz), 129.2 (d, J=4.9 Hz), 127.0, 112.9 (d, J=3.3 Hz), 62.1, 14.2 ppm.

4.2.35. *Ethyl* (*Z*)-3-(3-*chlorophenyl*)-2-*fluoroacrylate* (**4k**).^{6a} ¹H NMR (400 MHz, CDCl₃) δ =7.68–7.62 (m, 1H), 7.54–7.48 (m, 1H), 7.39–7.32 (m, 2H), 6.86 (d, *J*=34.3 Hz, 1H), 4.36 (q, *J*=7.1 Hz, 2H), 1.39 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.0 (d, *J*=34.3 Hz), 147.7 (d, *J*=270.3 Hz), 134.7, 132.8 (d, *J*=4.4 Hz), 130.0 (d, *J*=2.3 Hz), 129.9 (d, *J*=5.7 Hz), 129.6 (d, *J*=2.6 Hz), 128.2 (d, *J*=8.1 Hz), 116.0 (d, *J*=4.6 Hz), 62.1, 14.2 ppm.

4.2.36. Ethyl (*Z*)-3-(2,4-dichlorophenyl)-2-fluoroacrylate (**4I**).¹⁵ⁿ ¹H NMR (400 MHz, CDCl₃) δ =7.85 (t, *J*=6.5 Hz, 1H), 7.48–7.45 (m, 1H), 7.33–7.28 (m, 1H), 7.29 (d, *J*=34.3 Hz, 1H), 4.37 (q, *J*=7.1 Hz, 2H), 1.39 ppm (t, *J*=7.1, 3.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =160.8 (d, *J*=34.7 Hz), 148.1 (d, *J*=271.5 Hz), 135.8 (d, *J*=3.1 Hz), 135.0 (d,

J=2.0 Hz), 131.8 (d, *J*=14.2 Hz), 129.7, 127.8 (d, *J*=5.0 Hz), 127.5, 111.9 (d, *J*=3.3 Hz), 62.2, 14.1 ppm.

4.2.37. Ethyl (Z)-3-(benzo[d]^{1,3} dioxol-5-yl)-2-fluoroacrylate (**4m**).^{15m} ¹H NMR (400 MHz, CDCl₃) δ =7.25–7.21 (m, 1H), 7.10–7.03 (m, 1H), 6.89–6.77 (m, 2H), 6.00 (s, 2H), 4.33 (q, J=7.1 Hz, 2H), 1.37 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.5 (d, J=33.9 Hz), 148.8 (d, J=3.5 Hz), 148.1, 145.9 (d, J=265.1 Hz), 125.7 (d, J=6.8 Hz), 125.2 (d, J=4.5 Hz), 117.4 (d, J=4.6 Hz), 109.7 (d, J=10.7 Hz), 108.5, 101.5, 61.7, 14.2 ppm.

4.2.38. Ethyl (*Z*)-2-fluoro-3-(furan-2-yl)acrylate (**4n**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.56–7.49 (m, 1H), 6.94 (d, *J*=33.4 Hz, 1H), 6.88–6.84 (m, 1H), 6.55–6.49 (m, 1H), 4.33 (q, *J*=7.1 Hz, 1H), 1.36 ppm (t, *J*=7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ =161.0 (d, *J*=32.9 Hz), 146.8 (d, *J*=4.4 Hz), 145.1 (d, *J*=266.5 Hz), 144.2 (d, *J*=3.8 Hz), 115.3 (d, *J*=11.1 Hz), 112.5, 107.2 (d, *J*=8.1 Hz), 61.8, 14.2 ppm.

4.2.39. *Ethyl* (*Z*)-2-*fluoro*-3-(*thiophen*-2-*yl*)*acrylate* (**40**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.51 (d, *J*=5.1 Hz, 1H), 7.35 (d, *J*=4.1 Hz, 1H), 7.20 (d, *J*=33.9 Hz, 1H), 7.12–7.07 (m, 1H), 4.34 (q, *J*=7.1 Hz, 2H), 1.37 ppm (t, *J*=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =161.0 (d, *J*=32.9 Hz), 145.4 (d, *J*=265.4 Hz), 133.5 (d, *J*=5.7 Hz), 131.2 (d, *J*=4.9 Hz), 130.1 (d, *J*=9.8 Hz), 127.4, 111.9 (d, *J*=8.9 Hz), 99.9, 61.8, 14.2 ppm.

4.2.40. Ethyl (Z)-2-fluoro-5-phenylpent-2-enoate (**4p**).^{15c} ¹H NMR (400 MHz, CDCl₃) δ =7.34–7.28 (m, 2H), 7.25–7.18 (m, 3H), 6.14 (dt, J=33.1, 7.7 Hz, 1H), 4.27 (q, J=7.1 Hz, 2H), 2.83–2.73 (m, 2H), 2.57 (qd, J=7.7, 2.2 Hz, 2H), 1.32 ppm (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ =160.77 (d, J=35.5 Hz), 148.1 (d, J=256.6 Hz), 140.5, 128.5, 128.3, 126.2, 119.5 (d, J=11.6 Hz), 61.5, 34.4 (d, J=2.0 Hz), 25.9 (d, J=2.4 Hz), 14.1 ppm.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21262027, 21428302) and the Outstanding Young Scientist program of Shihezi University (No. 2012ZRKXJQ06).

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2015.11.043.

References and notes

- For selected reviews, see (a) Gao, B.; Zhao, Y.; Hu, J.-Y.; Hu, J.-B. Org. Chem. Front. 2015, 2, 163; (b) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, second ed..; Wiley-VCH: Weinheim, 2013; (c) Hu, J.-B.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465; (d) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006; (e) Chambers, R. D. Organofluorine Chemistry: Fluorinated Alkenes and Reactive Intermediates; Springer: New York, 1997.
- (a) Allmendinger, T.; Furet, P.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7297;
 (b) Allmendinger, T.; Felder, E.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7301;
 (c) Zhao, K.; Lim, D. S.; Funaki, T.; Welch, J. T. Bioorg. Med. Chem. 2003, 11, 207;
 (d) Bartlett, P. A.; Otake, A. J. Org. Chem. 1995, 60, 3107.
 (a) Welch, J. T.; Lin, J.; Boros, L. G.; DeCorte, B.; Bergmann, K.; Gimi, R. In Bio-
- (a) Welch, J. T.; Lin, J.; Boros, L. G.; DeCorte, B.; Bergmann, K.; Gimi, R. In *Biomedical Frontiers of Fluorine Chemistry*; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American Chemical Society: Washington DC, 1996; p 129; (b) Boros, L. G.; DeCorte, B.; Gimi, R. H.; Welch, J. T.; Wu, Y.; Handschumacher, R. *Tetrahedron Lett.* 1994, 33, 6033; (c) Welch, J. T.; Lin, J. *Tetrahedron* 1996, 52, 291.
 (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780 For reviews on Peterson elimitation.
- (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780 For reviews on Peterson eliminations, see; (b) Ager, D. J. Org. React. 1990, 38, 1; (c) Barrett, A. G. M.; Hill, J. M.; Wallace, E. M.; Flygare, J. A. Synlett 1991, 764; (d) Kawashima, T.; Okazaki, R. Synlett 1996, 600; (e) van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31, 195; (f) Ager, D. J. Sci. Synth. 2010, 47a, 85; (g) Kano, N.; Kawashima, T. Modern Carbonyl Olefination; Wiley-VCH: Weinheim, 2004; p 18; (h) Wang, Z. Comprehensive Organic Name Reactions and Reagents; Wiley, 2000, Vol. 2, p 2176.

- 5. For recent examples on Peterson reaction (a) Hamlin, T. A.; Kelly, C. B.; Cywar, R. M.; Leadbeater, N. E. J. Org. Chem. 2014, 79, 1145-1155; (b) Beveridge, R. E.; Batey, R. A. Org. Lett. 2013, 15, 3086; (c) Hamlin, T. A.; Lazarus, G. M. L.; Kelly, C. B.; Leadbeater, N. E. Org. Process Res. Dev. 2014, 18, 1253; (d) Igbal, M.; Duffy, P.; Evans, P.; Cloughley, G.; Allan, B.; Lledó, A.; Verdaguer, X.; Riera, A. Org. Biomol. Chem. 2008, 6, 4649; (e) Neubauer, T.; Kammerer-Pentierz, C.; Bach, T. Chem. Commun. 2012, 11629; (f) Motomatsu, D.; Ishida, S.; Ohno, K.; Iwamoto, T. Chem. -Eur. J. **2014**, 20, 9424, (g) Assadi, N.; Pogodin, S.; Agranat, I. Eur. J. Org. Chem. 2011, 6773: (h) Sautier, B.: Collins, K. D.: Procter, D. J. Beilstein J. Org. Chem. 2013. 9, 1443; (i) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 3346; (j) lood, X; McFarlane, W; Tyson, B. V. *Eur.* J. *Org. Chem.* **200**, 1043; (k) Fu1rstner, A.; Brehm, C.; Cancho-Grande, Y. *Org. Lett.* **2001**, 3, 3955; (l) Murai, T.; Fujishima, A.; Iwamoto, C.; Kato, S. J. Org. Chem. 2003, 68, 7979; (m) Iguchi, M.; Tomioka, K. Org. Lett. 2002, 4, 4329; (n) Perales, J. B.; Makino, N. F.; Van Vranken, D. L. J. Org. Chem. **2002**, 67, 6711; (o) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485; (p) Halton, B.; Boese, R.; Dixon, G. M. Eur. J. Org. Chem. 2003, 4507.
- (a) Michida, M.; Mukaiyama, T. Chem. Lett. 2008, 37, 890; (b) Michida, M.; Mukaiyama, T. Chem. Lett. 2008, 37, 704; (c) Welch, J. T.; Gregor, T.; Kornilov, A. Isr. J. Chem. 1999, 35, 171; (d) Dicker, I. B. J. Org. Chem. 1993, 58, 2324; (e) Matsuda, I.; Murata, S.; Izumi, Y. J. Org. Chem. 1980, 45, 237; (f) Matsuda, I. J. Organomet. Chem. 1987, 321, 307; (g) Pellon, P.; Ko, Y. L.; Cosquer, P.; Hamelin, J.; Carrié, R. Tetrahedron Lett. 1986, 27, 4299.
- For selected recent reviews of NHCs-catalysis, see (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5506; (b) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182; (c) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192; (d) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314; (e) Hopkinson, N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485; (f) Menon, R. S.; Biju, A. T.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040; (g) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307; (h) Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 44, 2295; (i) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Rev. 2013, 42, 4906; (j) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686.
- B. For selected examples, see (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205; (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370; (c) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736; (d) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 2860; (e) Mahatthananchai, J.; Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673; (f) Mo, J.; Chen, X.; Chi, Y. J. Am. Chem. Soc. 2012, 134, 8810; (g) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2012, 134, 8810; (g) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634; (h) Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766; (i) Wheeler, P.; Vora, H. U.; Rovis, T. Chem. Sci. 2013, 4, 1674; (j) Zhang, B.; Feng, P.; Cui, Y. X.; Jiao, N. Chem. Commun. 2012, 7280; (k) Chen, X.; Fang, X.; Chi, Y. R. Chem., Int. Ed. 2013, 52, 5803; (m) Wu, K.-J.; Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Chem. Commun. 2011, 493; (n) Li, G.-Q.; Dai, L.-X.; You, S.-L. Chem. Commun. 2007, 852.
- 9. For selected examples, see (a) He, L.; Guo, H.; Li, Y. Z.; Du, G. F.; Dai, B. Chem. Commun. 2014, 3719; (b) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835; (c) Chauhan, P.; Enders, D. Angew. Chem., Int. Ed. 2014, 53, 1485; (d) Bugaut, X.; Liu, F.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 8130; (e) Hovey, M. T.; Check, C. T.; Sipher, A. F.; Scheidt, K. A. Angew. Chem., Int. Ed. 2014, 9603; (f) Chen, X.; Gao, Z.; Song, C.; Zhang, C.; Wang, Z.; Ye, S. Angew. Chem., Int. Ed. 2014, 53, 11611; (g) Li, F.; Wu, Z.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 656; (h) Dong, X.; Yang, W.; Hu, W.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 660; (i) Wu, Z.; Li, F.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 1629; (j) Li, Y.-Z.; Wang, ; Du, G.-F.; Zhang, H.-Y.; Yang, H.-L.; He, L. Asian J. Org. Chem. 2015, 4, 327; (k) Chen, J.-A.; Meng, S.-X.; Wang, L.-M.; Tang, H.-M.; Huang, Y. Chem. Sci. 2015, 6, 4184; (1) Guo, H.; Wang, Y.; Du, G.-F.; Dai, B.; He, L. Tetrahedron 2015, 71, 3472; (m) Pan, X.-C.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669; (n) Pan, X.-C.; Boussonnière, A.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 14433; (o) Pan, X.-C.; Vallet, A. L.; Schweizer, S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib, S. J.; Curran, D. P.; Lalevée, J.; Lacôte, E. J. Am. Chem. Soc. 2013, 135, 10484.
- For reviews, see (a) He, L.; Guo, H.; Wang, Y.; Du, G.-F.; Dai, B. Tetrahedron Lett. 2015, 56, 972; (b) Fuchter, M. J. Chem.—Eur. J. 2010, 16, 12286.
- 11. For NHCs-catalysed cyanation reactions, see (a) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2006, 71, 1273; (b) Fukuda, Y.; Maeda, Y.; Ishii, S.; Kondo, K.; Aoyama, T. Synthesis 2006, 2006, 529; (c) Suzuki, Y.; Bakar, M.; Muramatsu, K.; Sato, M. Tetrahedron 2006, 62, 4227; (d) Tan, M.; Zhang, Y.; Ying, J. Y. Adv. Synth. Catal. 2009, 351, 1390.
- (a) Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193; (b) Song, J. J.; Tan, Z.; Reeves, J. T.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2007, 9, 1013; (c) Du, G.-F.; He, L.; Gu, C.-Z.; Dai, B. Synlett 2010, 2513; (d) Cai, Z.-H.; Du, G. F.; He, L.; Gu, C.-Z.; Dai, B. Synthesis 2011, 2011, 2073; (e) Wu, J.; Sun, X.; Ye, S.; Sun, W. Tetrahedron Lett. 2006, 47, 4813; (f) Zou, X.-L.; Du, G. F.; Sun, W.-F.; He, L.; Ma, X.-W.; Gu, C.-Z.; Dai, B. Tetrahedron 2013, 69, 607; (g) Fan, Y.-C.; Du, G. F.; Sun, W.-F.; Kang, W.; He, L. Tetrahedron 1201, 2012, 53, 2231; (h) Du, G.-F.; Xing, F.; Gu, C.-Z.; Dai, B.; He, L. RSC Adv. 2015, 5, 35513.
- (a) Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem., Int. Ed. 2008, 47, 5390; (b) Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecules 2010, 43, 8853; (c) Raynaud, J.; Liu, N.; Fèvre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706; (d) Lohmeijer, B. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C.; Hedrick, J. L. Org. Lett. 2006, 8, 4683; (e) Brown, H. A.; Chang, Y. A.; Waymouth, R. M. J. Am. Chem. Soc. 2013, 135, 18738.
- 14. Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R. Tetrahedron 1999, 55, 14523.

 (a) Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Org. Chem. 2005, 70, 5725; (b) Huang, W.; Zhao, S.-H.; Xu, N. Synthesis 2015, 47, 359; (c) Qian, J.; Yi, W.; Lv, M.; Cai, C. Synlett 2015, 127; (d) Su, Y.-H.; Wu, Z.; Tian, S.-K. Chem. Commun. 2013, 49, 6528; (e) Leung, P. S.-W.; Teng, Y.; Toy, P. H. Org. Lett. 2010, 12, 4996; (f) Wang, Y.; Luo, J.; Liu, Z. J. Organomet. Chem. 2013, 739, 1; (g) Bera, R.; Dhananjaya, G.; Singh, S. N.; Kumar, R.; Mukkanti, K.; Pal, M. Tetrahedron 2009, 65, 1300; (h) Wang, P.; Liu, C.-R.; Sun, X.-L.; Chen, S.-S.; Li, J.-F.; Xie, Z.; Tang, Y. Chem. Commun. 2012, 290; (i) Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 4368; (j) Webb, D.; Jamison, T. F. Org. Lett. 2012, 14, 2465; (k) Chintareddy, V. R.; Ellern, A.; Verkade, J. G. J. Org. Chem. 2010, 75, 7166; (l) Pfund, E.; Lebargy, C.; Rouden, J.; Lequeux, T. J. Org. Chem. 2007, 72, 7871; (m) Ren, A.; Yang, X.; Hong, J.; Yu, X. Synlett 2008, 2376; (n) Germany Pat, WO1998027049 A1.