Accepted Manuscript

Synthetic study of cnicin: Synthesis of the side chain and its esterification

Manami Kurita, Miho Tanigawa, Shuhei Narita, Toyonobu Usuki

PII:	S0040-4039(16)31536-2	
DOI:	http://dx.doi.org/10.1016/j.tetlet.2016.11.067	
Reference:	TETL 48353	
To appear in:	Tetrahedron Letters	

Received Date:21 October 2016Revised Date:11 November 2016Accepted Date:16 November 2016

Please cite this article as: Kurita, M., Tanigawa, M., Narita, S., Usuki, T., Synthetic study of cnicin: Synthesis of the side chain and its esterification, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.11.067

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Tetrahedron Letters journal homepage: www.elsevier.com

Synthetic study of cnicin: Synthesis of the side chain and its esterification

Manami Kurita^a, Miho Tanigawa^a, Shuhei Narita^a, and Toyonobu Usuki^{a,*}

^aDepartment of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

ARTICLE INFO

ABSTRACT

Cnicin is a germacranolide sesquiterpene lactone that possesses potent inhibitory activity against Article history: Received the protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis Received in revised form (HAT). Although cnicin has an interesting structure and attractive biological activity, synthetic Accepted studies of cnicin have not yet been reported. This report describes the synthesis of the protected Available online side chain carboxylic acid moiety at C8 of cnicin via two routes starting from L-ascorbic acid. In addition, esterification between the synthetic side chain and salonitenolide derivative, which can Keywords: be achieved via hydrolysis of cnicin and protection of the primary alcohol, was conducted. Thus, Cnicin a semi-synthesis of cnicin was achieved. Sesquiterpene lactone 2009 Elsevier Ltd. All rights reserved. L-Ascorbic acid Isolation Esterification

1. Introduction

Cnicin (1, Figure 1) was first isolated from the leaves and stalks of *Cnicus benedictus* by Šorm and co-workers in 1959.¹ As a germacranolide sesquiterpene lactone, 1 has a 10-membered ring diene and a fused five-membered lactone with an ester side chain at the C8 position. Cnicin 1 possesses a variety of biological and pharmacological activities, such as allelopathy,² cytotoxicity, anti-bacterial properties,³ anti-myeloma activity,⁴ and cytostatic activity.⁵ Despite the useful properties of 1, synthetic studies have not yet been reported.

In 2014, cnicin 1 was reported to exhibit inhibitory activity against *Trypanosoma brucei* (IC₅₀ = 0.4 μ M),^{7,8} the parasite responsible for human African trypanosomiasis (HAT).⁹ HAT, also known as sleeping sickness, is transmitted by blood-feeding tsetse flies in sub-Saharan Africa, and is fatal if left untreated. The disease occurs in two stages: an initial hemolymphatic stage, followed by an encephalitic second stage characterized by invasion of the parasite into the central nervous system, which causes breakdown of neurological functions.¹⁰ The arsenic-based melarsoprol is the only drug available for the treatment of

second-stage East African HAT, and is associated with potentially lethal side effects.¹¹

Although the antitrypanosomal activity of cnicin **1** is less potent than that of melarsoprol ($IC_{50} = 0.01 \ \mu M$),⁶ the total synthesis and a structure-activity relationship (SAR) study of **1** are necessary to aid the development of a more effective drug for HAT. The present report describes the synthesis of the chiral side chain moiety, which may serve as an advanced intermediate in the subsequent total synthesis, and esterification of the 10-membered ring main core and the synthetic side chain for the semi-synthesis of **1**.

2. Results and discussion

As illustrated in Scheme 1, cnicin 1 could be retrosynthetically divided into two parts through esterification. The main core 2 could be obtained *via* hydrolysis of 1, isolated from *Cnicus benedictus*, followed by triisopropylsilyl (TIPS) protection of the primary alcohol. The side chain moiety 3 with a protecting group would be prepared *via* methyl ester 4, which can be led from the starting material L-ascorbic acid 5.¹²

Our synthesis commenced with the preparation of the methyl ester **4** (Scheme 2). Protection of the alkyl diol in **5** with acetonide was achieved by treatment with acetyl chloride (AcCl) in acetone *via* acetonide formation to give **6** in 91% yield.¹³ Compound **6** was then converted into the methyl ester **4** in 67% yield in one pot.¹⁴ In the first step, the lactone moiety of **6** was hydrolyzed using 30% NaOH solution, followed by oxidative cleavage using 30% hydrogen peroxide (H₂O₂) and sodium hydrogen carbonate (NaHCO₃) to afford carboxylate intermediate **6**'. Subsequent methylation of **6**' using dimethyl sulfate (Me₂SO₄), sodium sulfite (Na₂SO₃), and NaHCO₃ gave alcohol **4**.

*Corresponding author. Tel.: +81 3 3238 3446; fax: +81 3 3238 3361; e-mail: t-usuki@sophia.ac.jp (T. Usuki)

Scheme 1. Retrosynthesis of 1.

Scheme 2. Synthesis of methyl ester 4. Reagents and conditions: (a) acetone, AcCl, rt to 3.5 h, then 5 °C, 17 h, 91%; (b) 30% NaOH, 30% H₂O₂, NaHCO₃, H₂O, rt, 1 h; (c) Me₂SO₄, Na₂SO₃, NaHCO₃, 40 °C, 5 h, 67%.

Scheme 3 shows the synthesis of **3** starting from methyl ester **4**. Compound **4** was converted into diol **7** in 62% yield *via* reduction with lithium aluminum hydride (LAH) in tetrahydrofuran (THF). Subsequently, selective protection of the primary alcohol of **7** with *t*-butyldiphenylsilyl chloride (TBDPSCI) in *N*,*N*-dimethylformamide (DMF) gave alcohol **8** in 83% yield. Oxidation of **8** with 2-azaadamantane-*N*-oxyl (AZADO), sodium hypochlorite (NaOCI), potassium bromide (KBr), and tetrabutylammonium bromide (TBAB) then afforded ketone **9** in 96% yield.¹⁵ The resulting ketone **9** was then converted into exo-olefin **10** in 90% yield *via* Wittig reaction with methyltriphenylphosphonium bromide (Ph₃PCH₃Br) and *n*butyllithium (*n*BuLi). Removal of the TBDPS group of **10** was achieved using tetrabutylammonium fluoride (TBAF) in THF to

produce alcohol **11** in 84% yield. Compound **11** was then oxidized with manganese dioxide (MnO_2) to give aldehyde **12**. Kraus-Pinnick oxidation¹⁶ of **12** was conducted using 1-methyl-2-butene, sodium dihydrogenphosphate dihydrate $(NaH_2PO_4'2H_2O)$, and sodium perchlorate $(NaClO_4)$ in a 3:2 mixture of *t*-butanol (*t*BuOH) and H₂O to give the desired carboxylic acid **3** in 69% yield over two steps.¹⁷ Thus, a protected side chain was prepared from L-ascorbic acid **5** over nine steps in 12% overall yield using this synthesis.

Scheme 3. Synthesis of carboxylic acid 3. Reagents and conditions: (a) LiAlH₄, THF, 0 $^{\circ}$ C to rt, 1 h, 62%; (b) TBDPSCl, imidazole, DMF, rt, 17 h, 83%; (c) AZADO, NaOCl, KBr, TBAB, CH₂Cl₂, NaHCO₃ aq, 0 $^{\circ}$ C, 30 min, 96%; (d) Ph₃PCH₃Br, *n*BuLi, THF, -78 $^{\circ}$ C to 0 $^{\circ}$ C, 2 h, then rt, 2.5 h, 90%; (e) TBAF, THF, rt, 45 min, 84%; (f) MnO₂, CH₂Cl₂, rt, 6.5 h; (g) 2-methyl-2-butene, NaH₂PO₄·2H₂O, NaClO₂, *t*BuOH/H₂O (3:2), rt, 3 h, 69% (two steps).

While these results were satisfactory, obtaining the desired carboxylic acid **3** in greater yield and fewer steps, starting from methyl ester 4, was of interest. In this revised synthetic strategy, direct oxidation of 4 was conducted using Swern oxidation (entry 1), tetrapropylammonium perruthenate (TPAP, entry 2), Dess-Martin periodinane (DMP, entry 3), AZADO (entry 4), and pyridinium chlorochromate (PCC, entry 5), as shown in Table 1. However, a satisfactory yield of ketone 13 with satisfactory purity could not be obtained in any of these cases. Therefore, Wittig olefination of crude ketoester 13 was conducted to afford the desired ester 14. In addition, oxidation of methyl ester 4 by PCC, followed by Wittig reaction, gave 14 in 27% yield over two steps. Despite the effort of the oxidation, the use of PCC gave the best yield. The low yield of this oxidation was probably due to the steric effects caused by the $\alpha\beta$ diol with both the acetonide and methyl ester.

Table 1. Synthesis of 3 via 13 and 14 from methyl ester 4. Reagents and conditions: (a) Ph_3PCH_3Br , nBuLi, THF, -78 °C to rt, 1.5 h, then rt, 3 h; (b) LiOH, THF/H_2O (1:1), rt, 24 h, 95%.

Me	$\begin{array}{c} OH \\ O $	
	4 13 14	3
Entry	Conditions	Yield from 4 to 14 (two steps, %)
1	DMSO, (COCl) ₂ , Et ₃ N, -78 °C to 0 °C, 1.5 h	0
2	TPAP, NMO, MS 4Å, CH2Cl2, 0 °C to rt, 18 h	0
3	DMP, CH ₂ Cl ₂ , rt, 5.5 h	8
4	AZADO, NaOCl, KBr, TBAB, CH ₂ Cl ₂ , NaHCO ₃ aq., 0 °C, 20 min	11
5	PCC, MS 4Å, CH ₂ Cl ₂ , rt, 16 h	27

The obtained 14 was then hydrolyzed with lithium hydroxide (LiOH) to give the desired 3 in 95% yield. For this route, the protected side chain was prepared from L-ascorbic acid over five steps in 16% overall yield, which involved fewer steps and slightly better yield than the previous synthetic route.

Next, esterification between the synthetic side chain moiety and the salonitenolide derivative was investigated (Scheme 4). For the preparation of the salonitenolide derivative, isolation of cnicin 1 was carried out from *Cnicus benedictus* according to the literature procedure.^{8a,18} Hydrolysis of 1 using 0.1 N sodium carbonate (Na₂CO₃) was then conducted at room temperature for 16 h to afford salonitenolide¹⁹ 15 in 51% yield.²⁰ Then, treatment of 15 with TIPSCI, imidazole, and DMAP at 0 °C for 2 h afforded TIPS-protected salonitenolide derivative 2 in 63% yield.

Scheme 4. Synthesis of semi-synthetic cnicin (1'). Reagents and conditions: (a) 0.1 N Na₂CO₃ aq, dioxane/H₂O (2:1), rt, 16 h, 51%; (b) TIPSCl, imidazole, DMAP, CH_2Cl_2 , 0 °C, 2 h, 63%. (c) EDC, DMAP, CH_2Cl_2 , rt, 24 h, 10%; (d) 1N HCl, CH_2Cl_2 , rt, 28 h, 33%.

Segments for semi-synthesis of 1 were prepared successfully. Esterification of TIPS-protected salonitenolide derivative 2 and the synthetic side chain 3 using 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N,N-dimethyl-4-aminopyridine (DMAP) was conducted at room temperature for 24 h to afford 16 in 10% yield. The low yield was probably due to an unexpected side reaction and/or steric hindrance around C8. Removal of TIPS and acetonide protection by 1 N HCl at room temperature for 28 h afforded semi-synthetic cnicin 1' in 33% yield. The optical rotation of 1' $\{[\mathbf{q}_D^{20} + 159.9 (c$ 0.1, MeOH)} was good agreement with that of the isolated natural product $1 ([q_D^{20} + 169.6 (c \ 0.1, MeOH))).$

3. Conclusion

In summary, the protected side chain of antitrypanosomal cnicin 1 was prepared *via* two routes starting from L-ascorbic acid 5. In the initial route, synthesis of 3 was achieved in nine steps in 12% overall yield. Subsequently, a more effective synthesis eliminating placement of an unnecessary protecting group was developed. The synthesis involved PCC oxidation and Wittig reaction and yielded 3 in 16% overall yield in five steps. Finally, esterification of synthetic side chain 3 and TIPS-protected salonitenolide derivative 2 was conducted to achieve

the semi-synthesis of cnicin 1'. This is the first reported synthetic study of cnicin 1. The results are expected to aid further efforts toward developing the first total synthesis of cnicin 1 for SAR studies.

Acknowledgments

We thank Dr. Michael Adams (University of Basel, currently Bacoba AG, Switzerland) for valuable discussion.

References and notes

- Suchý, M.; Benešová, V.; Herout, V.; Šorm, F. Tetrahedron Lett. 1959, 10, 5-9.
- 2. Kelsey, R. G.; Locken, L. J. J. Chem. Ecol. 1987, 13, 19-33.
- Saroglou, V.; Karioti, A.; Demetzos, C.; Dimas, K.; Skaltsa, H. J. Nat. Prod. 2005, 68, 1404-1407.
- Johrer, K.; Obkircher, M.; Neurelter, D.; Partell, J.; Zelle-Rieser, C.; Maizner, E.; Kern, J.; Hermann, M.; Hamacher, F.; Markel, O.; Wacht, N.; Zidorn, C.; Scheideler, M.; Grell, R. *J. Mol. Med.* 2012, 90, 681-693.
- Gonzalez, A. G.; Darias, V.; Alonso, G.; Boada, J. N.; Feria, M. Planta Med. 1978, 33, 356-359.
- Marco, J. A.; Sanz-Cervera, J. F.; Yuste, A.; Sancenón, F.; Carda, M. Phytochemistry 2005, 66, 1644-1650.
- Zimmermann, S.; Fouché, G.; Mieri, M, D.; Yoshimoto, Y.; Usuki, T.; Nthambeleni, R.; Parkinson, C, J.; van der Westhuyzen, C.; Kaiser, M.; Hamburger, M.; Adams, M. *Molecules* 2014, 19, 3523-3538.
- Related sesquiterpene lactone cynaropicrin has also antitrypanosomal activity: (a) Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger, M.; Adams, M. *Planta Med.* 2012, 78, 553-556.
 (b) Usuki, T.; Sato, M.; Hara, S.; Yoshimoto, Y.; Kondo, R.; Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger, M.; Adams, M. *Bioorg. Med. Chem. Lett.* 2014, 24, 794-798.
- (a) WHO Trypanosomiasis, human African (sleeping sickness) <u>http://www.who.int/mediacentre/factsheets/fs259/en/</u>. (accessed on October 7, 2016). (b) Brun, R.; Blum, J.; Chappuis, F.; Burri, C. *Lancet* 2012, 375, 148-159.
- Checchi, F.; Filipe, J. A. N.; Haydon, D. T.; Chandramohan, D.; Chappuis, F. BMC Infect. Dis 2008, 8, 16.
- Blum, J.; Nkunku, S.; Burri, C. Trop. Med. Int. Health 2001, 6, 390-400.
- 12. Cren, S.; Wilson, C.; Thomas, N. R. Org. Lett. 2005, 7, 3521-3523.
- 13. Gautam, D.; Rao, B. V. Tetrahedron Lett. 2010, 51, 4199-4201.
- 14. Cho, B. H.; Kim, J. H.; Jeon, H. B.; Kim, K. S. Tetrahedron 2005,
- 61, 4341-4346.15. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem.
- Soc. 2006, 128, 8412-8413.
 (a) Kraus, G. A.; Roth, B. J. Org. Chem. 1980, 45, 4825-4830. (b) Bal, B. S.; Childers Jr., W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091-2096.
- 17. Tanaka, A.; Yamashita, K. Agric. Biol. Chem. 1980, 44, 199-202.
- 18. Adams, M.; Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger,
- M. Nat. Prod. Commun. 2009, 4, 1377-1381.
- Suchý, M.; Samek, Z.; Herout, V.; Šorm, F. Chem. Commun. 1967, 32, 2016-2019.
- Sergio, R.; Antonella, M.; Rosa, A. R.; Maurizio, B. Eur. J. Org. Chem. 2003, 14, 2690-2694.
- 21. Korte, F.; Beckmann, G. Die Naturwissenschaften 1958, 45, 390.

Supplementary Material

Experimental procedures, NMR spectra. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/

Click here to remove instruction text...

- Acception This is the first synthetic study of sesquiterpene lactone cnicin. •
 - The side chain of cnicin was synthesized via two routes. •