Reactions of Perfluorinated Alkenyl-, Alkynyl-, Alkyltrifluoroborates, and Selected Hydrocarbon Analogues with the Halogenating Agents Hal₂ (Hal = F, Cl, Br), "BrF" (BrF₃–Br₂ 1:1), and ICl

Vadim V. Bardin,^[a] Nicolay Yu. Adonin,^[a,b] and Hermann-Josef Frohn^{*[c]}

Dedicated to Professor Helge Willner on the Occasion of His 65th Birthday

Keywords: Alkenyltrifluoroborates; Alkynyltrifluoroborates; Alkyltrifluoroborates; 1,2-Halogen addition; Bromofluorination; Halodeboration; Stereospecifity; NMR spectroscopy

Abstract. Reactions of $[Bu_4N][RBF_3]$ [$R = C_nF_{2n+1}CF=CF$ (*cis, trans*), CF₂=CF, CF₂=C(CF₃), *trans*-C₄H₉CF=CF, *trans*-C₆H₅CF=CF, C₄H₉CH=CH (*cis, trans*), CF₃C=C, and C₄H₉C=C] with chlorine, bromine, BrF₃ + Br₂ (as equivalent of "BrF"), and ICl in solution (CH₂Cl₂, CHCl₃, CF₃CH₂CF₂CH₃) led to 1,2-addition of halogen and/ or replacement of boron by halogen (halodeboration). The reaction of [Bu₄N][CF₃C=CBF₃] with less than equimolar amounts of diluted fluorine (5%) in 1,1,1,3,3-pentafluorobutane (PFB) showed only [Bu₄N][CF₃CF₂CF₂BF₃] as fluorine addition product besides extensive

Introduction

During the last decade we elaborated convenient protocols for the synthesis of perfluorinated aryl-, alkenyl-, alkynyl-, alkyltrifluoroborates, and related analogues.^[1,2] These borates were mainly used as precursors for the corresponding organyldifluoroboranes by fluoride abstraction with boron trifluoride or arsenic pentafluoride. Organyldifluoroboranes were the reagents by choice to introduce the corresponding organyl groups into hypervalent moieties of halogen fluorides and xenon fluorides and allowed the synthesis of organyliodonium(III and V),^[3] organylbromonium(III),^[4,5] and organylxenonium(II and IV)^[6] salts. Other reactivities of polyfluoroorganyl(fluoro)borates are only rarely investigated. Potassium polyfluorophenyltrifluoroborates and trifluoroethenyltrifluoroborates were in-

* Prof. Dr. H.-J. Frohn Fax: +49-203-379-2231

E-Mail: h-j.frohn@uni-due.de [a] N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS

Acad. Lavrentjev Avenue 9 630090 Novosibirsk, Russia

 (b) G. K. Boreskov Institute of Catalysis, SB RAS Acad. Lavrentjev Avenue 5

630090 Novosibirsk, Russia [c] Inorganic Chemistry Department

University of Duisburg-Essen Lotharstrasse 1 47048 Duisburg, Germany

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/zaac.201100276 or from the author.

In the course of systematic studies of perfluoroorganylboron compounds, we investigated reactions of perfluorinated alk-

fluorodeboration. Suspensions of the insoluble K[CF₂=CFBF₃] salt re-

acted with Cl₂ and Br₂ in CH₂Cl₂ giving preferentially products of

halogen addition across the C=C bond. In reactions with ICl iodode-

boration with formation of CF2=CFI occurred besides 1,2-addition

with formation of $[CF_2I-CFClBF_3]^-$. The halodeboration reaction of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ with Br₂, "BrF", and ICl, of K[trans-

C₆H₅CF=CFBF₃] with Br₂, and of [Bu₄N][*trans*-C₄F₉CF=CFBF₃] with

volved in platinum-catalyzed cross-coupling reactions with carbon electrophiles to give polyfluorobiphenyls or polyfluoro-

styrenes, respectively.^[7–9] The nickel-catalyzed hydrodefluori-

nation of potassium pentafluorophenyltrifluoroborate with zinc

in aqueous DMF, DMA, or NMP displayed the unexpected

ortho-directing effect of the weakly coordinating BF3⁻ substit-

uent and resulted in the formation of the 2,3,4,5-tetrafluo-

rophenyltrifluoroborate anion and 1.2.3.4-tetrafluorobenz-

ene.^[10] We reported the carbon-boron bond cleavage in a

series of polyfluorinated organyltrifluoroborates and their hy-

drocarbon analogues (hydrodeboration reactions) with protic

acids of different strength^[11] and had found the stereospecific

replacement of the BF_3^- group by hydrogen in

K[RCF=CFBF₃] to form the corresponding polyfluoroalkenes

*R*CF=CFH. Fluorine addition across the C=C bond took place when perfluoroalkenyltrifluoroborates were treated with xenon difluoride in super acidic anhydrous hydrogen fluoride

(aHF).^[12] When XeF₂ was reacted with $RCF=CFBF_2$ (R = H,

F, cis-CF₃, cis-C₂F₅) in halocarbon solvents (CH₂Cl₂,

 $CF_3CH_2CF_2CH_3$) xenonium salts [RCF=CFXe]X were formed

with two types of anions, $X = [BF_4]^-$ and $[RCF_2-CF_2BF_3]^-$.^[13]

Analogous products were observed in the reaction of XeF₂

with CF₂=CClBF₂ in PFB,^[14] whereas no organyltrifluorobor-

ate anions were formed in reactions of alkynyldifluoroboranes

 $RC \equiv CBF_2$ [$R = CF_3$, C_3F_7 , (CF_3)₂CF, $CF_3CF = CF$ (*cis* and

trans), C₆F₅, C₄H₉, (CH₃)₃C] with XeF₂ under similar condi-

ICl proceeded stereospecifically.

tions.[15]

1-enyltrifluoroborates, alk-1-ynyltrifluoroborates, and selected low-fluorinated and non-fluorinated analogues and alkyltrifluoroborates with halogenating agents of different nature [fluorine, chlorine, bromine, bromine trifluoride + bromine (1:1, "BrF"), and iodine chloride] in halocarbon solvents (CH₂Cl₂, CHCl₃, CF₃CH₂CF₂CH₃).

For convenience, the substituent R' at C-2 in $R'C^2F = C^1FX$ molecules or ions is specified by *cis* or *trans* relative to the position of $X = BF_3^-$ or Hal. The fluorine atoms in the $F_2C=CXY$ moiety are specified by *cis* or *trans* relative to the position of $X = BF_3^-$ and iodine (Y = F, CF₃, CF₂Cl).

Halodeboration of $[RBF_3]^-$ by dihalogen (Cl₂, Br₂) or interhalogen (ICl) should result in *R*Cl, *R*Br, or *R*I and $[BCIF_3]^-$ or $[BBrF_3]^-$, respectively. In all reactions with Cl₂ and Br₂ we observed unambiguously only $[BF_4]^-$ (¹⁹F, ¹¹B). Principally, equilibration by halide exchange may lead to $[BF_4]^-$: $4[BHalF_3]^- \leftrightarrows 3[BF_4]^- + <[BHal_4]^->$. We did not obtain NMR spectroscopic results, which agree with the reported data of $[BF_nHal_{4-n}]^-$ (Hal = Cl, Br; n = 0-3).^[16,17]

Results

Preparation of Tetrabutylammonium Organyltrifluoroborates

In our current study we compare the reactivities of organyltrifluoroborates towards selected halogenating agents in solution and on the surface of the salts. We chose tetrabutylammonium organyltrifluoroborates as soluble salts in dichloromethane, chloroform, and 1,1,1,3,3-pentafluorobutane (PFB) and potassium organyltrifluoroborates as insoluble salts in dichloromethane. The tetrabutylammonium salts can be easily prepared from the corresponding potassium salts by metathesis with $[Bu_4N]X$ ($X = Br, BF_4$) in MeCN in high yields (Scheme 1). Compared with reactions of $[Bu_4N]OH$ in aqueous solution or related approaches^[18] this procedure guarantees dry products, which is important for the use of $[Bu_4N][RBF_3]$ salts under anhydrous conditions in subsequent reactions.

	MeCN		
K[<i>R</i> BF ₃] + [Bu ₄ N] <i>X</i>	\longrightarrow	K <i>X</i> ↓ + [Bu₄N][<i>R</i> BF₃]	
		70–95%	

$$\label{eq:rescaled} \begin{split} R &= CF_2 = CF, \ CF_2 = C(CF_3), \ cis-C_2F_5CF = CF, \ trans-C_4F_9CF = CF, \ trans-C_4H_9CF = CF, \\ C_4H_9CH = CH \ (isomeric \ mixture), \ CF_3C = C, \ C_4H_9C = C, \ C_6F_{13}, \ C_4H_9; \ X = Br, \ BF_4 \end{split}$$

Scheme 1.

Reaction of Tetrabutylammonium Trifluoropropynyltrifluoroborate with Fluorine in PFB Solution

Generally, the result of reactions of organic compounds with elemental fluorine is determined inter alia by a number of process-factors including the design of the reactor. In the current study we bubbled fluorine diluted with nitrogen (5% v/v) through a stirred diluted solution of $[Bu_4N][CF_3C \equiv CBF_3]$ in PFB at ≈ 0 °C. Monitoring of the reaction with less than one

equivalent of fluorine by ¹⁹F NMR spectroscopy confirmed the multiple addition of fluorine across the C=C bond forming [Bu₄N][CF₃CF₂-CF₂BF₃]. The yield decreased slightly from 60 to 52% with the increase of conversion of [Bu₄N][CF₃C=CBF₃] from 10 to 44%. Parallel the cleavage of the carbon-boron bond proceeded, indicated by the ratio [Bu₄N][BF₄] to [Bu₄N][CF₃CF₂-CF₂BF₃], which grew from 0.56 to 0.90. The ¹⁹F NMR signals of the low boiling perfluorocarbon co-products as well as the resonances (¹¹B, ¹⁹F) of the intermediate borate anion [CF₃CF=CFBF₃]⁻ were not detected (Scheme 2).

	PFB		
$[Bu_4N][CF_3C=CBF_3] + <1 F_2/N_2$	\longrightarrow	[Bu ₄ N][CF ₃ CF ₂ -CF ₂ BF ₃] +	[Bu ₄ N][BF ₄]
(44% conversion)	≈0 °C,1 h	52%	47%

Scheme 2.

Reactions of Tetrabutylammonium Perfluoroalkenyl- and Perfluoroalkynyltrifluoroborates with Chlorine in Halocarbon Solutions

A solution of $[Bu_4N][trans-C_4F_9CF=CFBF_3]$ was saturated with Cl₂ (excess) and kept at approximately 20 °C for 24 h in a sealed tube. After evaporation of the volatiles, $[Bu_4N][C_4F_9CFCI-CFCIBF_3]$ was obtained in 94% yield. $[Bu_4N][CF_2=CFBF_3]$ reacted faster than $[Bu_4N][trans-C_4F_9CF=CFBF_3]$. Bubbling of Cl₂ (excess) into a solution (≈ 0 °C) of $[Bu_4N][CF_2=CFBF_3]$ in dichloromethane resulted in the total conversion of $[Bu_4N][CF_2=CFBF_3]$ within 0.5 h with formation of $[Bu_4N][CF_2CI-CFCIBF_3]$, CF₂=CFCl, and $[Bu_4N][BF_4]$ (molar ratio = 33:14:48) (Scheme 3).

		СН	₂ Cl ₂ , ampoule	
[Bu ₄ N][trans-C ₄ F ₉ CF=CFBF ₃] ·	+ >1 Cl ₂	_		[Bu ₄ N][C ₄ F ₉ CFCI-CFCIBF ₃]
(100% conversion)		≈2	0 ℃, 24 h	94%
	CH ₂ Cl ₂			
$[Bu_4N][CF_2=CFBF_3] + >1 Cl_2$		\rightarrow	[Bu ₄ N][CF ₂ C	I-CFCIBF3] + CF2=CFCI +
(100% conversion)	≈0 °C, 0.5 h		33%	14%
			[Bu ₄ N][BF ₄]	
			48%	

Scheme 3.

 $[Bu_4N][CF_3C=CBF_3]$ reacted with an excess of Cl₂ at approximately 20 °C slower than $[Bu_4N][trans-C_4F_9CF=CFBF_3]$ and $[Bu_4N][CF_2=CFBF_3]$. Bubbling of Cl₂ into a solution of $[Bu_4N][CF_3C=CBF_3]$ (\approx 0 °C) and reacting the mixture in a sealed tube (\approx 20 °C) for 24 h resulted in 62% conversion of $[Bu_4N][CF_3C=CBF_3]$ and gave $[Bu_4N][CF_3CCl=CClBF_3]$ (54%, *cis/trans* = 46:54), $[Bu_4N][CF_3CCl_2-CCl_2BF_3]$ (4%), $[Bu_4N][BF_4]$ (42%), trace quantities of CF_3C=CCl, CF_3CCl_2-CCl_3, besides minor amounts of unknown products (Scheme 4).

	CH ₂ Cl ₂ , ampoule			
[Bu ₄ N][CF ₃ C≡CBF ₃] + >1 Cl ₂	$2 \longrightarrow$	[Bu ₄ N][CF ₃ C	CI=CCIBF	3] +
(62% conversion)	≈20 ℃, 24 h	54%, cis:trai	ns = 46:54	
[Bu₄N][CF	=3CCl2-CCl2BF3] +	+ [Bu ₄ N][BF ₄] +	FCF3C≡C0	CI + CF ₃ CCI ₂ -CC
4%		42%	trace	trace

Scheme 4.

The further treatment of such a solution with a new excess of chlorine (≈ 20 °C, sealed tube) for additional 33 h led to the total consumption of [Bu₄N][CF₃C=CBF₃] and the majority of [Bu₄N][*cis*-CF₃CCl=CClBF₃]. The ¹¹B and ¹⁹F NMR spectra displayed the signals of [Bu₄N][*trans*-CF₃CCl=CClBF₃] (59%), [Bu₄N][*cis*-CF₃CCl=CClBF₃] (< 3%), [Bu₄N][CF₃CCl₂-CCl₂BF₃] (8%), and [Bu₄N][BF₄] (26%), besides several unknown compounds, which contained CF₃ groups. The formation of CF₃CCl=CCl₂ was not detected. Noteworthy, that partial chlorination of the tetrabutylammonium cation proceeded, which was deduced from the ¹H NMR spectra of the reaction solution.

Reactions of Tetrabutylammonium Organyltrifluoroborates with Bromine in Halocarbon Solutions

Solutions of [Bu₄N][C_nF_{2n+1}CF=CFBF₃] in CH₂Cl₂ reacted with Br2 at approximately 20 °C slowly forming bromoperfluoroalkenes, -alkanes, and [Bu₄N][BF₄]. These reactions were accompanied by *cis/trans* isomerization of the starting borates. Perfluoro-1,2-dibromoalkyltrifluoroborates were not detected as intermediates in such isomerization processes. Thus, [Bu₄N][cis-C₂F₅CF=CFBF₃] and an equimolar amount of Br₂ gave after 21 h an isomeric mixture of $[Bu_4N][C_2F_5CF=CFBF_3]$ (*cis/trans* = 72:28) besides smaller quantities of $C_2F_5CF=CFBr$, $C_2F_5CFBr-CFHBr$, and $[Bu_4N][BF_4]$. Heating of $[Bu_4N][C_2F_5CF=CFBF_3]$ (cis/trans = 60:40) with Br₂ (in excess) in CH₂Cl₂ (65-70 °C, 9 h) gave $[Bu_4N][C_2F_5CF=CFBF_3]$ (cis/trans = 75:25), $C_2F_5CF=CFBr$, and $[Bu_4N][BF_4]$. Similarly, $[Bu_4N][trans-C_4F_9CF=CFBF_3]$ was partially isomerized (≈ 20 °C) after 66 h (*cis/trans* = 62:38) and $C_4F_9CF=CFBr$ (*cis/trans* = 17:83), and $[Bu_4N][BF_4]$ were formed. When the reaction was performed in the absence of day-light, or [Bu₄N][C₄F₉CF=CFBF₃] was treated with Br₂ at 65-70 °C for 11 h, the same products were obtained (Scheme 5).

 $[Bu_4N][CF_2=CFBF_3]$ reacted fast with an excess of Br₂ to yield $[Bu_4N][CF_2Br-CFBrBF_3]$, $CF_2=CFBr$, and $[Bu_4N][BF_4]$ (Scheme 6). The formation of $[Bu_4N][CF_2Br-CFBrBF_3]$ was the only example of bromine addition to the C=C bond of an alk-1-enyltrifluoroborate observed in this study.

 $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ reacted with Br_2 (1 equiv.) in CH₂Cl₂ to yield *trans*-C₄H₉CF=CFBr, *trans*-C₄H₉CF=CFH, and $[Bu_4N][BF_4]$. The reaction in CHCl₃ proceeded in a similar way. When adding a second equivalent of Br_2 *trans*-C₄H₉CF=CFBr was partially isomerized to *cis*-C₄H₉CF=CFBr and both isomers underwent partial addition of bromine to form C₄H₉CFBr–CFBr₂. *Trans*-C₄H₉CF=CFH added Br_2 and was completely converted to C₄H₉CFBr–CFHBr (Scheme 7).

			mətry
[Bu ₄ N][cis-C ₂ F ₅ CF=CFBF ₃] + Br ₂		[Bu₄N][C₂F₅CF=CFBF₃] + [Bu₄N][BF₄] +	
[≈20 °C. 21 h	81%, cis:trans = 72:28 16%	
		C ₂ F ₅ CF=CFBr + C ₂ F ₅ CFBr-CFHBr	
		13% 6%	
		(cis:trans = 25:75)	
		,	
	CH ₂ Cl ₂		
$[Bu_4N][C_2F_5CF{=}CFBF_3] + >1 \ Br_2$	\longrightarrow	$[Bu_4N][C_2F_5CF=CFBF_3] + [Bu_4N][BF_4] +$	
(<i>cis:trans</i> = 60:40)	65–70 ℃, 9 h	53%, <i>cis:trans</i> = 75:25 46%)	
		C ₂ F ₅ CF=CFBr	
		53%, <i>cis:trans</i> = 37:63	
	CH ₂ Cl ₂		
$[Bu_4N][trans-C_4F_9CF=CFBF_3] + <$	1 Bf ₂ —	$\longrightarrow \qquad [Bu_4N][C_4F_9CF=CFBF_3] + [Bu_4N][E$	5-4] +
	≈20 °C	, 66 h 76%, <i>cis:trans</i> = 62:38 11%	
		$G_4F_9CF=CFBr$	
		16%, CIS: trans = 17.83	
	CH ₂ Cl ₂		
[Bu ₄ N][C ₄ F ₉ CF=CFBF ₃] + >1 Br ₂	→ →	[Bu ₄ N][C ₄ F ₉ CF=CFBF ₃] + [Bu ₄ N][BF ₄] +	
(cis:trans = 42:58)	65–70 ℃, 11 h	32%, cis:trans = 67:33 95%	
		C₄F ₉ CF=CFBr	
		68%, <i>cis:trans</i> = 15:85	
Scheme 5.			
	CH ₂ Cl ₂		
$[Bu_4N][CF_2=CFBF_3] + >1 Br_2$	\longrightarrow	[Bu ₄ N][CF ₂ Br-CFBrBF ₃] + CF ₂ =CF	Br +
(100% conversion)	≈ 0 ℃, 15 min	18% 45%	
		[Bu ₄ N][BF ₄] + CF ₂ =CFH + CF ₂ Br-C	FBr ₂
		55% trace trace	
Scheme 6.			
	CH ₂ Cl ₂		
[Bu ₄ N][trans-C ₄ H ₉ CF=CFBF ₃] +	Br ₂ —	\rightarrow trans-C ₄ H ₉ CF=CFBr +	
(100% conversion)	≈20 °C,5 r	min 71%	
		<i>trans</i> -C ₄ H ₉ CF=CFH + [Bu ₄ N][BF ₄]	
		24% 100%	
1	equiv Br ₂ , CHCl ₃		
[Bu ₄ N][<i>trans</i> -C ₄ H ₉ CF=CFBF ₃]	\longrightarrow	<i>trans</i> -C ₄ H ₉ CF=CFBr + <i>trans</i> -C ₄ H ₉ CF=C	FH +
(100% conversion)	≈20 ℃, 1 h	57% 33%	
		C ₄ H ₉ CFBr-CFHBr + [Bu ₄ N][BF ₄]	
		trace 110%	
2	equiv Br ₂ , CHCl ₃		
	\longrightarrow	trans-04HgCF=CFBr + cis-04HgCF=CFE	5r +
	≈20 ℃, 15 h	C ₄ H ₉ CFBr-CFBr ₂ + C ₄ H ₉ CFBr-CFHBr	
At	ter separation	(molar ratio 11:7:35:47)	

Scheme 7.

 $[Bu_4N][C_4H_9CH=CHBF_3]$ (*cis/trans* = 67:33) and an excess of Br₂ underwent bromodeboration in CHCl₃ at approximately 20 °C to C₄H₉CH=CHBr (*cis/trans* = 63:37). Furthermore C₄H₉CHBr-CH₂Br and $[Bu_4N][BF_4]$ were present. Hex-1-ene was not detected, presumable due to a fast addition of bromine with formation of C₄H₉CHBr-CH₂Br (Scheme 8).

	011013		
$[Bu_4N][C_4H_9CH{=}CHBF_3] + > Br_2$	\longrightarrow	C ₄ H ₉ CH=CHBr +	C ₄ H ₉ CHBr-CH ₂ Br +
(<i>cis:trans</i> = 67:33)	≈20 ℃, 1 h	48%	30%
		(<i>cis:trans</i> = 63:37	7)
		[Bu ₄ N][BF ₄]	
		100%	

Scheme 8.

The conversion of $[Bu_4N][CF_3C \equiv CBF_3]$ with Br_2 (1 equiv.) was 86% after 1 h at approximately 20 °C and resulted in

 $[Bu_4N][CF_3CBr=CBrBF_3] \ (cis/trans = 62:38), \ small \ amounts \ of \ CF_3CBr=CBr_2, \ and \ [Bu_4N][BF_4]. \ [Bu_4N][CF_3CBr=CBrBF_3] \ and \ an \ excess \ of \ Br_2 \ underwent \ C-B \ bond \ splitting \ to \ alkene \ CF_3CBr=CBr_2. \ Bromine \ addition \ across \ the \ C=C \ bond \ of \ [Bu_4N][CF_3CBr=CBrBF_3] \ did \ not \ occur \ (Scheme \ 9).$

	CH ₂ Cl ₂			
$[Bu_4N][CF_3C{=}CBF_3]+Br_2$	\longrightarrow	[Bu ₄ N][CF ₃	CBr=CBrBF ₃] +	
(86% conversion)	≈20 ℃, 1 h	92%, <i>cis:trans</i> = 62:38		
		CF₃CBr=CI	Br ₂ + [Bu ₄ N][BF ₄]	
		6%	6%	
		CH ₂ Cl ₂		
[Bu ₄ N][CF ₃ CBr=CBrBF ₃] +	Br ₂ (excess)	\longrightarrow	CF ₃ CBr=CBr ₂ +	[Bu ₄ N][BF ₄]
		≈20 ℃, 24 h	75%	75%

Scheme 9.

Bromine and a cold CHCl₃ solution of $[Bu_4N][C_4H_9C\equiv CBF_3]$ formed $C_4H_9C\equiv CBr$, $C_4H_9C\equiv CH$, besides $[Bu_4N][BF_4],$ $C_4H_9CBr=CBr_2$, and trans-C4H9CBr=CHBr, whereas cis-C4H9CBr=CHBr was only present as a trace (Scheme 10). With an excess of bromine hexynes $C_4H_9C \equiv CH$ and $C_4H_9C \equiv CBr$ were completely converted into the alkenes *trans*- $C_4H_9CBr=CHBr$ and $C_4H_9CBr=CBr_2$, respectively.

$[Bu_4N][C_4H_9C{\equiv}CBF_3]+Br_2$	\longrightarrow	C₄H ₉ C≡CBr +	C₄H ₉ C≡CH +	- [Bu ₄ N][BF ₄] +
(100% conversion)	≈0 °C,1 h	29%	25%	100%
		C ₄ H ₉ CBr=CBr	r₂ + <i>trans</i> -C₄⊦	l₀CBr=CHBr
		18%	18%	

Scheme 10.

Noteworthy that $[Bu_4N][C_6F_{13}BF_3]$ did not react with bromine, while $[Bu_4N][C_4H_9BF_3]$ reacted within 1 h under C–B bond cleavage under bromo- and protodeboration (Scheme 11).

	CHCl₃	
[Bu ₄ N][C ₆ F ₁₃ BF ₃] + Br ₂	\longrightarrow	no reaction
	≈ 20 ℃, 3 d	
	CHCI ₃	
$[Bu_4N][C_4H_9BF_3] + Br_2$	\longrightarrow	$C_4H_9Br + C_4H_{10} + [Bu_4N][BF_4]$
(100% conversion)	≈ 20 ℃, 1 h	50% 43% 93%

Scheme 11.

Reactions of Tetrabutylammonium Fluoroalkenyl- and Fluoroalkynyltrifluoroborates with BrF_3 - Br_2 (1:1, Equivalent of "BrF") in Halocarbon Solutions

In a preceding paper^[4] we showed that the reaction of $[Bu_4N][cis-C_2F_5CF=CFBF_3]$ with BrF_3 in PFB followed two routes: (a) addition of BrF across the C=C bond with formation of $[Bu_4N][C_2F_5CFBr-CF_2BF_3]$ and (b) cleavage of the C-B bond with formation of $C_2F_5CF=CF_2$ (ratio $[Bu_4N][C_2F_5CFBr-CF_2BF_3]/C_2F_5CF=CF_2 = 59:41$) and $[Bu_4N][BF_4]$ (Scheme 12).

Scheme 12.

The equimolar mixture of bromine trifluoride and bromine is often described as an equivalent of "BrF" although the nature of the key reactive species is not doubtless proven as well as the mechanism of bromofluorination reactions with such mixtures.^[19–21] We prepared solutions of BrF₃–Br₂ (1:1) in PFB and found that this solvent is not attacked at 20–25 °C at least for 2 days. The ¹⁹F NMR spectrum displayed a broad singlet at –23 ppm ($\Delta v_{1/2} = 1512$ Hz at 24 °C). This resonance is in the same region as the signal of BrF₃ in PFB ($\delta = -17.9$; s, $\Delta v_{1/2} = 27$ Hz).^[4]

The interaction of BrF_3-Br_2 (1:1, ≈ 0.5 equiv. "BrF") with a PFB solution of $[Bu_4N][cis-C_2F_5CF=CFBF_3]$ showed partial isomerization of $[Bu_4N][C_2F_5CF=CFBF_3]$ (*cis/trans* = 56:44) and in a smaller quantity yield of $[Bu_4N][C_2F_5CFBr-CF_2BF_3]$, $C_2F_5CF=CFBr$, and $[Bu_4N][BF_4]$ (Scheme 13).

	PFB	
[Bu ₄ N][cis-C ₂ F ₅ CF=CFBF ₃] + 0.16 (BrF ₃ + Br	$_{2}) \longrightarrow$	[Bu ₄ N][C ₂ F ₅ CF=CFBF ₃] +
	≈20 ℃, 5 h	71%, <i>cis:trans</i> = 56:44
[Bu ₄ N][C ₂ F ₅ CFBr-CF ₂ I	BF ₃] + [Bu ₄	N][BF ₄] + C ₂ F ₅ CF=CFBr
25%	3%	3%, <i>cis:trans</i> = 40:60

Scheme 13.

 $[Bu_4N][CF_2=CFBF_3]$ reacted fast with BrF₃-Br₂ (1:1) in PFB already at -15 °C to yield CF₂=CFBr, C₂F₅Br, and $[Bu_4N][BF_4]$. Polyfluorinated ethyltrifluoroborates were not found (Scheme 14).

	PFB			
$[{\sf Bu}_4{\sf N}][{\sf CF}_2{=}{\sf CFBF}_3] + 0.33 \ ({\sf BrF}_3 + {\sf Br}_2)$	\longrightarrow	$CF_2=CFBr +$	C ₂ F ₅ Br +	[Bu ₄ N][BF ₄]
(100% conversion)	–15 ℃, 15 min	50%	32%	100%

Scheme 14.

 $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ reacted with BrF₃-Br₂ (1:1) under cleavage of the C–B bond giving *trans*-C₄H₉CF=CFBr and $[Bu_4N][BF_4]$ (Scheme 15).

	PFB	
$[Bu_4N][\textit{trans-}C_4H_9CF{=}CFBF_3] + 0.3 \ (BrF_3 + Br_2)$	\longrightarrow	trans-C ₄ H ₉ CF=CFBr +
(82% conversion)	~0 to≈20 °C, 1 h	63%
		[Bu ₄ N][BF ₄]
		89%

Scheme 15.

Treatment of $[Bu_4N][CF_3C \equiv CBF_3]$ with BrF_3-Br_2 (1.2 equiv. "BrF") in PFB resulted in 28% conversion of $[Bu_4N][CF_3C \equiv CBF_3]$ yielding $[Bu_4N][CF_3CBr = CBrBF_3]$, $[Bu_4N][CF_3CBr_2-CF_2BF_3]$, $[Bu_4N][CF_3CBr_2-CFBrBF_3]$, $CF_3C \equiv CBr$, $CF_3CBr = CBr_2$, and $[Bu_4N][BF_4]$. The reaction with further BrF_3-Br_2 (4.8 equiv. "BrF") led to the total conversion of $[Bu_4N][CF_3C \equiv CBF_3]$, the transformation of $[Bu_4N][CF_3CBr = CBrBF_3]$ to $CF_3CBr = CBr_2$, and an increased yield of $[Bu_4N][CF_3CBr_2-CF_2BF_3]$ and of $[Bu_4N][BF_4]$. $[Bu_4N][CF_3CBr=CFBF_3]$ was not detected as precursor of $[Bu_4N][CF_3CBr_2-CF_2BF_3]$ and $[Bu_4N][CF_3CBr_2-CFBrBF_3]$ (Scheme 16).

	PFB				
$[Bu_4N][CF_3C \equiv CBF_3] + n (BrF_3 + Brain Brai$	$r_2) \longrightarrow$	[Bu ₄ N][Cl	-₃CBr=CB	lrBF₃] +	[Bu ₄ N][BF ₄]
	≈20 ℃, 0.5 or 4 h		(cis:trans	5)	
n = 0.4 (28% conversion)		46%	63:37		50%
n = 1.6 (100% conversion)		8%	86:14		55%
$[Bu_4N][CF_3CBr_2-CF_2BF_3] + [Bu_4N]$][CF ₃ CBr ₂ -CFBr	BF ₃] + CF	₃C≡CBr +	CF ₃ CBr	=CBr ₂ +
20% 7%		9%	,	17%	
- 28%		-		32%	

Scheme 16.

Reactions of Tetrabutylammonium Organyltrifluoroborates with Iodine Chloride in Halocarbon Solutions

Carbon-boron bond cleavage occurred fast in reactions of perfluoroalkenyltrifluoroborates with iodine chloride in dichloromethane at approximately 20 °C. Thus, $[Bu_4N][CF_2=CFBF_3]$ underwent 75% conversion into CF₂=CFI within 15 minutes. The exhaustive formation of *trans*-C₄F₉CF=CFI from $[Bu_4N][trans$ -C₄F₉CF=CFBF₃] and ICl indicates the regiospecifity of this process. Noteworthy, that the formation of CF₂=C(CF₃)I (major) from $[Bu_4N][CF_2=C(CF_3)BF_3]$ was accompanied by CF₂=C(CF₂Cl)I (minor) (Scheme 17).

	CH ₂ Cl ₂			
[Bu ₄ N][CF ₂ =CFBF ₃] + >1 ICI	\longrightarrow	CF ₂ =CFI	+ B-F species	
(100% conversion)	≈20 ℃, 15 min	75%		
	CH ₂ C	l ₂		
[Bu ₄ N][trans-C ₄ F ₉ CF=CFBF ₃]	+ >1 ICI	\longrightarrow	trans-C ₄ F ₉ CF=CF	I + B-F species
(100% conversion)	≈20 %	C, 30 min	100%	
	CH ₂ Cl ₂			
$[Bu_4N][CF_2=C(CF_3)BF_3] + >1 I$	$CI \longrightarrow$	CF ₂ =C(CF ₃)I + CF ₂ =C(CF	2CI)I + B-F specie
(82% conversion)	≈ 20 ℃, 30 min	76%	6%	

Scheme 17.

Treatment of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ with 1 equiv. of iodine chloride in CHCl₃ led to the quantitative cleavage of the carbon–boron bond with formation of *trans*-C₄H₉CF=CFI and *trans*-C₄H₉CF=CFH (Scheme 18).

	CHCl₃		
[Bu ₄ N][trans-C ₄ H ₉ CF=CFBF ₃]	+ ICI \longrightarrow	<i>trans</i> -C ₄ H ₉ CF=	CFI +
(100% conversion)	≈20 °C, 0.5 h	64%	
		<i>trans</i> -C ₄ H ₉ CF=	CFH + [Bu ₄ N][BF ₄]
		36%	100%

Scheme 18.

Besides $[Bu_4N][BF_4]$, $C_4H_9CH=CHI$ (*cis/trans* = 55:45) was the main organic product of the 1:1 reaction of $[Bu_4N][C_4H_9CH=CHBF_3]$ (*cis/trans* = 67:33) with ICl. In addition, $C_4H_9CHCl-CH_2I$ and $C_4H_9CHCl-CH_2Cl$ were found (Scheme 19).

		Chemie 4	N	Chemistry
	CH ₂ Cl ₂			
[Bu ₄ N][C ₄ H ₉ CH=CHBF ₃] + ICI	\longrightarrow	C ₄ H ₉ CH=CHI +		
(<i>cis:trans</i> = 67:33)	≈20 ℃, 1 h	41%, <i>cis:trans</i> = 55:45		

C ₄ H ₉ CHCI-	-CH ₂ I + C ₄ H ₉ CHCI-CI	H ₂ Cl + [Bu ₄ N][BF ₄]
11%	11%	100%

Scheme 19.

 $[Bu_4N][CF_3C \equiv CBF_3]$ underwent complete iododeboration within 1 h forming $CF_3C \equiv CI$ and $[Bu_4N][BF_4]$ (Scheme 20).

	CH ₂ Cl ₂		
[Bu ₄ N][CF ₃ C≡CBF ₃] + >1 ICI	\longrightarrow	CF ₃ C≡CI +	$[Bu_4N][BF_4]$
(100% conversion)	≈20 °C,1 h	89%	84%

Scheme 20.

The 1:1 reaction of $[Bu_4N][C_4H_9BF_3]$ with ICl in CH_2Cl_2 gave mainly iodobutane (iododeboration) and a significant amount of butane (protodeboration) (Scheme 21).

	CH ₂ Cl ₂			
$[Bu_4N][C_4H_9BF_3] + ICI$	\longrightarrow	C₄H ₉ I +	C ₄ H ₁₀ +	- [Bu ₄ N][BF ₄]
(100% conversion)	≈20 ℃, 3 h	48%	19%	100%

Scheme 21.

Surface Reactions of Potassium Organyltrifluoroborates with Halogenating Agents

In contrast to the well soluble tetrabutylammonium organyltrifluoroborate salts, the corresponding potassium salts are insoluble in CH₂Cl₂, CHCl₃, and PFB (¹⁹F NMR). Nevertheless, some of them reacted with halogenating agents in halocarbon suspensions.

Bubbling of an excess of chlorine into a stirred suspension of K[CF₂=CFBF₃] in CH₂Cl₂ at approximately 20 °C led to salt K[CF₂Cl–CFClBF₃] and CF₂Cl–CFCl₂ (trace). In contrast, a suspension of K[*trans*-C₄F₉CF=CFBF₃] in 1,2-dichloroethane did not react with chlorine under those conditions (Scheme 22).

	CH ₂ Cl ₂ -susp				
$K[CF_2=CFBF_3] + >1 CI_2$		\rightarrow	K[CF ₂ CI-	CFCIBF ₃] +	CF ₂ CI-CFCI ₂
(66% conversion)	≈20 ℃, 0.5 I	n	65%		trace
		1,2-	DCE-susp.		
K[trans-C ₄ F ₉ CF=CFBF ₃]	+ >1 Cl ₂		\longrightarrow	no reaction	
		≈20)℃, 1 h		
		CCI	4-susp.		
K[trans-C ₄ F ₉ CF=CFBF ₃]	+ >1 Br ₂	_	\longrightarrow	no reaction	
		93–	95 ℃, 14 h		

Scheme 22.

No reaction took place when K[*trans*-C₄F₉CF=CFBF₃] and bromine were combined, even under more rigorous conditions (CCl₄, sealed tube, \leq 95 °C, 14 h) (Scheme 22).

The reaction of $K[CF_2=CFBF_3]$ (suspension in CH_2Cl_2) with bromine (1 equiv.) at 0 °C gave $K[CF_2Br-CFBrBF_3]$ (93% isolated yield) and a minor amount (5%) of $CF_2Br-CFBr_2$. Irradiation combined with more rigorous conditions did not have a positive effect on the result (Scheme 23).

	CH ₂ Cl ₂ -susp.		
K[CF ₂ =CFBF ₃] + Br ₂	\longrightarrow	K[CF ₂ Br-CFBrBF ₃] +	CF ₂ Br-CFBr ₂
(100% conversion)	≈0 ℃, 1 h	93%	5%
	CH ₂ Cl ₂ -susp., hv		
K[CF ₂ =CFBF ₃] + Br ₂	\longrightarrow	K[CF ₂ Br-CFBrBF ₃]	+ CF ₂ Br-CFBr ₂
(100% conversion)	≈20 ℃, 9 h	64%	7%

Scheme 23.

K[*trans*-C₄F₉CF=CFBF₃] in a halocarbon suspension did not react with bromine (CH₂Cl₂, ≈20 °C, 20 h; CCl₄, ≤95 °C, 14 h) as shown in Scheme 22. In contrast, exclusively carbon– boron bond cleavage took place in surface reactions of CH₂Cl₂ suspensions of K[*trans*-C₄H₉CF=CFBF₃] and K[*trans*-C₆H₅CF=CFBF₃] with bromine. The primarily formed bromoalkenes C₄H₉CF=CFBr and *trans*-C₆H₅CF=CFBr added in a second step bromine across the C=C bond yielding the tribromodifluoroalkanes C₄H₉CFBr–CFBr₂ and C₆H₅CFBr–CFBr₂, respectively, which were the major products (Scheme 24).

1.	CH ₂ Cl ₂ -susp.			
K[trans-C ₄ H ₉ CF=CFBF ₃] + >1 Br ₂ -	\longrightarrow	C ₄ H ₉ CF=CFBr + C ₄ H ₉ CFBr-CFBr ₂ +		
(100% conversion)	≈20 °C,1 h	7%	47%	
:	2. H ₂ O	(<i>cis:trans</i> = 40:60)		
		C ₄ H ₉ CF=CFH +	C₄H₀CFBr–CHFBr	
		16%	16%	
		(<i>cis:trans</i> = 18:8:	2)	
	1. CH ₂ Cl ₂ -susp).		
K[trans-C ₆ H ₅ CF=CFBF ₃] + >1 Br ₂	\longrightarrow	<i>trans</i> -C ₆ H₅CF=	CFBr + C ₆ H₅CFBr−CFBr	
(100% conversion)	≈20 °C,1 h	14%	75%	
	2. H ₂ O			

Scheme 24.

Astonishing, that the alkynyltrifluoroborate salt $K[CF_3C \equiv CBF_3]$ did not react with a large excess of bromine in CH_2Cl_2 -suspension within 36 h (≈ 20 °C) (Scheme 25).

Scheme 25.

When a suspension of K[C₄H₉BF₃] in CH₂Cl₂ was stirred with an excess of bromine (≈ 20 °C, 6 h) only <5% conversion of K[C₄H₉BF₃] was found and traces of C₄H₉Br and C₄H₁₀ were observed (Scheme 25).

A CH₂Cl₂-suspension of salt K[CF₂=CFBF₃] was treated with ICl and CF₂=CFI was formed together with K[CF₂I– CFClBF₃]. After working-up the products and isolation of K[CF₂I–CFClBF₃], the ¹⁹F NMR spectrum showed an admixture of an additional borate, presumably, K[FC(O)–CFClBF₃] (Scheme 26).

	CH ₂ Cl ₂ -susp.			
K[CF ₂ =CFBF ₃] + >1 ICI	\longrightarrow	CF ₂ =CFI +	K[CF ₂ I-CFCIBF ₃] +	K[FC(O)-CFCIBF ₃]
(92% conversion)	≈20 ℃, 1.5 h	31%	29%	7%

Scheme 26.

Discussion

Reactions of alkenyl- and alkynyltrifluoroborate salts with halogenating agents in halocarbon solvents can principally proceed on two paths, (a) addition across the C=C or C≡C bond and (b) under carbon–boron bond cleavage. The C–B bond of alkyltrifluoroborates remained intact on path (a) under the reaction conditions (halocarbons, mostly ambient temperature), whereas the products of path (b) could underwent further conversions. A detailed analysis of these secondary processes was out of the scope of our current investigation.

The reactions of alkenyl- and alkynyltrifluoroborate salts with halogenating agents in halocarbon solvents were sometimes complex. They can be summarized using simplified descriptions:

1. $[Bu_4N][CF_3C=CBF_3]$ reacted with fluorine preferred by fluorine addition across the C=C triple bond and in a subsequent faster step across the C=C double bond. $[Bu_4N][CF_3CF=CFBF_3]$ could not be observed as an intermediate product of this reaction sequence. On an alternative channel the C–B bond was cleaved. $[Bu_4N][BF_4]$ was a characteristic final product of the second channel. The relative contribution of the first channel (fluorine addition to multiple C–C bonds, a typical radical reaction) was estimated to 50–60%.

2. The reaction of [Bu₄N][trans-C₄F₉CF=CFBF₃] with chlorine gave [Bu₄N][C₄F₉CFCl–CFClBF₃] in 94% yield. Replacement of $R = C_4F_9$ in $[Bu_4N][RCF=CFBF_3]$ by the less electron-withdrawing substituent R = F led to an increasing contribution of the C-B bond cleavage (Scheme 3). In contrast, in the surface reaction of K[CF₂=CFBF₃] with Cl₂ the addition of chlorine to the double bond was the favored reaction channel (65% yield of K[CF2Cl-CFClBF3]). In CH2Cl2 perfluoropropynyltrifluoroborate solution the salt $[Bu_4N][CF_3C \equiv CBF_3]$ showed that 1,2-dichlorination was C–B preferred over bond cleavage (ratio $[Bu_4N][CF_3CCl=CClBF_3]/[Bu_4N][BF_4] = 56:44$ at 62% conversion of [Bu₄N][CF₃C≡CBF₃] and 71:29 at 100% conversion of $[Bu_4N][CF_3C \equiv CBF_3]$). In addition it is worth mentioning that with progressive conversion the trans isomer of [Bu₄N][CF₃CCl=CClBF₃] increased. The parallel trend of C-B bond cleavage and diminishing of [Bu₄N][cis-CF₃CCl=CClBF₃] with progressive conversion leads to the conclusion that the C-B bond cleavage of [Bu₄N][cis-CF₃CCl=CClBF₃] is favored over [Bu₄N][trans-CF₃CCl=CClBF₃]. The consecutive chlorination reaction of [Bu₄N][CF₃CCl=CClBF₃] with Cl₂ proceeded very slowly. This reactivity is different to the second fluorination step of $[Bu_4N][CF_3C \equiv CBF_3].$

3. Reactions of [Bu₄N][C_nF_{2n+1}CF=CFBF₃] with bromine occurred slowly and resulted in a complete C-B bond cleavage. Even [Bu₄N][CF₂=CFBF₃] reacted predominantly under C-B bond cleavage. Besides the bromine addition product, $[Bu_4N][CF_2Br-CFBrBF_3],$ was formed. In contrast, K[CF₂Br-CFBrBF₃] was obtained in up to 93% isolated yield from K[CF₂=CFBF₃] in the surface reaction in CH₂Cl₂. $[Bu_4N][CF_3C \equiv CBF_3]$ and bromine gave [Bu₄N][CF₃CBr=CBrBF₃] (92% yield) in CH₂Cl₂ solution. It is important to mention that [Bu₄N][CF₃CBr=CBrBF₃] reacted with a further equivalent of bromine slowly under complete C-B bond cleavage. In case of alkyltrifluoroborates the C-B bond cleavage with bromine depended on the nature of the alkyl group: the perfluoroalkyl-B bond was inert, whereas the non-fluorinated alkyl-B bond underwent a fast cleavage in reactions with bromine (bromodeboration and protodeboration). [Bu₄N][*trans*-C₄H₉CF=CFBF₃] reacted significantly faster with bromine than $[Bu_4N][C_nF_{2n+1}CF=CFBF_3]$ salts predominantly under bromodeboration and in a lower extent under protodeboration. With an excess of bromine the [trans- $C_4H_9CF=CFBF_3$]⁻ anion underwent partial isomerization.

H–Hal – necessary for protodeboration – may stem from halogen attacks on C–H bond in the solvent or the cation. A further radical channel is discussed under 7.

A plausible explanation of the *cis/trans* isomerization of alkenyl groups in alkenyltrifluoroborate anions is based on addition of a halogen electrophile to C=C followed by C–C bond rotation and elimination of the electrophile.

4. When $[Bu_4N][cis-C_2F_5CF=CFBF_3]$ reacted with ca. 0.5 equiv. of "bromine fluoride" (BrF_3 + Br_2, 1:1), bromofluorination (addition of Br^{δ +} at C-2) of the C=C bond was the main reaction channel. In a lower extend bromofluorination proceeded also in case of $[Bu_4N][CF_3C=CBF_3]$ (two times) and $[Bu_4N][CF_3CBr=CBrBF_3]$. In contrast, salts $[Bu_4N][RCF=CFBF_3]$ (R = F, trans-C₄H₉) formed no 2-bromo-1-fluoroalkyltrifluoroborates. Instead of BrF addition to the C=C bond bromodeboration proceeded with BrF.

5. Reactions of soluble tetrabutylammonium borates $[Bu_4N][RBF_3]$ ($R = R_FCF=CF$, $R_FC\equiv C$, or *trans*-C₄H₉CF=CF) with ICl underwent exclusively carbon–boron bond cleavage to yield *R*I. However, the surface reaction of K[CF₂=CFBF₃] with ICl led to equal amounts of CF₂=CFI and K[CF₂I–CFCIBF₃] (I^{δ+} adds to C-2 of the C=C bond).

6. Some of the CH₂Cl₂ insoluble potassium organyltrifluoroborates showed no reaction with halogenating agents under reasonable conditions: K[*trans*-C₄F₉CF=CFBF₃]/Cl₂, K[*trans*-C₄F₉CF=CFBF₃]/Br₂, K[CF₃C=CBF₃]/Br₂, and K[C₄H₉BF₃]/ Br₂. Insoluble K[CF₂=CFBF₃] underwent with Cl₂ or Br₂ preferentially halogen addition across the C=C bond. When one of the electron-withdrawing F² atoms was substituted by a nonfluorinated alkyl or phenyl group bromodeboration proceeded followed by a fast bromine addition across the C=C bond. K[CF₂=CFBF₃] showed in reactions with dipolar ICl both reaction channels: ICl addition and iododeboration. In agreement with the polarity of the C–B σ bond I^{δ+} was added to C-1 and CF₂=CFI was formed and the polarity of the C=C π bond caused the addition of $I^{\delta +}$ to C-2 and $K[CF_2I\text{-}CFClBF_3]$ was obtained.

7. We can make some conclusions, e.g., for reactions with bromine concerning electronic and steric influences based on a limited number of experiments: (a) The electrophilic attack of Br₂ on C-1 of the alkenylborate anion $[RCF=CFBF_3]^-$ is favored in case of less electron-withdrawing groups R. (b) The *trans* isomer of isomeric mixtures of $[R_{\rm F}CF=CFBF_3]^-$ ($R_{\rm F}=$ $C_{2}F_{5}$, $C_{4}F_{9}$) underwent a faster C-B cleavage than the *cis* isomer, which can be deduced to a steric protection of C-1 in case of the cis isomer. (c) Organyltrifluoroborate anions can be formally considered as adducts of the organyl anion and BF₃. This simplification is helpful to rationalize the different reactivity e.g. of the anions $[CF_3C \equiv CBF_3]^$ and $[C_4H_9C \equiv CBF_3]^-$ in solution. The organyl group of the latter has a more carbanionic character, which favors in reactions with bromine the formation of $C_4H_9C \equiv CBr$ (nucleophilic attack on the electrophile Br_2) and $C_4H_9C \equiv CH$ (one-electron oxidation followed by radical attack on C-H bonds). This consideration is additionally supported by the experimental results of alkyltrifluoroborates and bromine. The [C₆F₁₃BF₃]⁻ anion has a weak C-B bond caused by the repulsion of the partial positive charge on the adjacent carbon and boron atoms. But the weak bond is not accompanied by high reactivity. In contrast, a nucleophilic attack on Br2 did not proceed because of the low nucleophilicity of the carbanion. The opposite situation can be discussed for the [C₄H₉BF₃]⁻ anion in reactions with Br₂, which gave C_4H_9Br and C_4H_{10} , the suspected products for interactions of the corresponding carbanion and bromine.

8. Potassium organyltrifluoroborates are insoluble in halocarbons (proven by ¹⁹F NMR spectroscopy). In the solid the anions have a fixed orientation on the surface and are less activated by collisions with solvent molecules as in diluted solutions. In conclusion the number of reaction channels is reduced. In our case the addition across the double bond of the alkenyl group became preference over the C–B bond cleavage.

Experimental Section

Materials and Measurements

The NMR spectra were recorded with the Bruker spectrometers AVANCE 300 (¹H at 300.13 MHz, ¹⁹F at 282.40 MHz, ¹¹B at 96.29 MHz, ¹³C at 75.47 MHz) and AVANCE 600 (¹¹B at 192.60 MHz). The chemical shifts are referenced to TMS (¹H, ¹³C), BF₃·OEt₂/CDCl₃ (15 % v/v) (¹¹B), and CCl₃F [¹⁹F, with C₆F₆ as secondary reference (–162.9 ppm)]. The IR spectra were recorded with a Bruker Vector 22 spectrometer and the high resolution mass spectra with a Finnigan MAT 8200 instrument (EI mode).

The composition of the reaction mixtures and the yields of products were determined by ¹H or ¹⁹F NMR spectroscopy using the internal integral standards $C_6H_5CF_3$, C_6F_6 , or $[Bu_4N][PF_6]$.

1,1,1,3,3-Pentafluorobutane (PFB) (Solvay Fluor und Derivate GmbH) was stored over molecular sieves 3 Å before use. Acetonitrile and dichloromethane were purified and dried using described procedures [22]. Chloroform, carbon tetrachloride, and 1,2-dichloroethane were washed with water (twice), dried with CaCl₂, stirred with P_4O_{10} for

several hours and distilled off. The purified solvents were stored over molecular sieves (3 Å) before use. [Bu₄N][BF₄] (Fluka), [Bu₄N]Br (Fluka), and ICl (Fluka) were used as supplied. Chlorine (n mmol) was prepared by addition of 37% hydrochloric acid (0.8n mL) to KMnO₄ $(0.8n \text{ mmol}, 126n \text{ mg})^{[23]}$ in a slow stream of argon. Crude chlorine in argon was passed through calcinated CaO in a column (D = 0.5 cm, L = 3 cm) to remove HCl and moisture. Bromine was washed with concentrated H₂SO₄ and distilled over P₄O₁₀. Bromine trifluoride was prepared by bubbling of fluorine (25% v/v in nitrogen) into dry bromine at 8-20 °C. The organyltrifluoroborate salts [Bu₄N][cis- $C_2F_5CF=CFBF_3$],^[4] K[CF₂=CFBF₃], K[trans-C₄F₉CF=CFBF₃], K[*trans*-C₄H₉CF=CFBF₃], K[*trans*-C₆H₅CF=CFBF₃], K[cis- $C_2F_5CF=CFBF_3]$,^[24] K[CF₂=C(CF₃)BF₃],^[14] K[CF₃C=CBF₃],^[25] $K[C_4H_9CH=CHBF_3]$, $K[C_4H_9BF_3]$,^[11] and $K[C_6F_{13}BF_3]$ ^[4] were synthesized using published procedures. Solubilities of selected organylfluoroborate salts in different solvents are given in Table S1 (Supporting Information).

The synthesis of K[C₄H₉C≡CBF₃] was performed according to ref.^[26]. K[C₄H₉C≡CBF₃]. ¹H NMR (CD₃CN): $\delta = 2.12$ [t, ³*J*(H³, H⁴) = 7 Hz, 2 H, H³], 1.42 (m, 2CH₂), 0.91 [t, ³*J*(H⁶, H⁵) = 7 Hz, 3 H, H⁶]. ¹⁹F NMR (CD₃CN): $\delta = -133.6$ [q (1:1:1:1), ¹*J*(F, B) = 38 Hz, 3F, BF₃]. ¹¹B NMR (CD₃CN): $\delta = -1.9$ [q, ¹*J*(B, F) = 38 Hz, *B*F₃]. ¹⁹F NMR ([D₆]DMSO): $\delta = -131.1$ [broadened q (1:1:1:1), 3F, BF₃]. ¹³C{¹⁹F} NMR ([D₆]DMSO): $\delta = 92.4$ (br. m, C-1), 90.3 (m, C-2), 31.8 [t, ¹*J*(C-4, H⁴) = 125 Hz, C-4], 22.2 [t, ¹*J*(C-5, H⁵) = 124 Hz, C-5], 19.3 [t, ¹*J*(C-3, H³) = 128 Hz, C-3], 14.2 [q, ¹*J*(C-6, H⁶) = 125 Hz, C-6]. NMR spectroscopic data in [D₆]acetone (cf.^[26,27]) are given in Table S2 (Supporting Information).

Manipulations with fluorine and BrF₃ were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (block copolymer of tetrafluoroethylene and perfluoroalkoxytrifluoroethylene) equipment in an atmosphere of dry argon. The NMR spectra of BrF₃ and BrF₃-Br₂ solutions were measured in FEP inliners ($D_i = 3.50 \pm 0.05$ mm, $D_o = 4.10 \pm 0.05$ mm).

Preparation of Tetrabutylammonium Organyltrifluoroborates

Preparation of [Bu₄N][CF₂=CFBF₃]: A solution of [Bu₄N][BF₄] (0.99 g, 3.0 mmol) in MeCN (5 mL) was added to a solution of K[CF₂=CFBF₃] (575 mg, 3.0 mmol) in MeCN (10 mL). The resulting suspension was stirred for 1 h. The mother liquor was separated from K[BF₄] by sequential centrifugation and decantation. Finally the solvent was evaporated under reduced pressure. The colorless viscous product was dried in a vacuum desiccator with Sicapent[®] and gave a white solid (1.13 g, 2.27 mmol) (yield 92 %). ¹¹B NMR (CD₂Cl₂): $\delta =$ 0.5 [ddq ²*J*(B, F¹) = 25, ³*J*(B, F^{2trans}) = 7, ¹*J*(B, F) = 41 Hz, *B*F₃]. ¹³C{¹⁹F^{2cis,2trans}} NMR (CD₃CN): $\delta =$ 160.4 (C-2), 136.6 [q (1:1:1:1) d, ¹*J*(C-1, B) = 100, ¹*J*(C-1, F¹) = 220 Hz, C-1] ([CF₂=CFBF₃]⁻); 59.2, 24.2, 20.2, 13.5 ([(C₄H₉)₄N]⁺). ¹⁹F NMR (CD₂Cl₂): $\delta =$ -102.4 [d, ²*J*(F^{2trans}, F^{2cis}) = 91 Hz, 1F, F^{2trans}], -125.1 [dd, ²*J*(F^{2cis}, F^{2trans}) = 91, ³*J*(F^{2cis}, F¹) = 112 Hz, 1F, F^{2cis}], -144.3 [q (1:1:1:1), ¹*J*(F, B) = 41 Hz, 3F, BF₃], -196.3 [d, ³*J*(F¹, F^{2cis}) = 112 Hz, 1F, F¹] ppm.

Preparation of [Bu₄N][CF₂=C(CF₃)BF₃]: The salt (310 mg, 70%) was obtained from [Bu₄N][BF₄] (288 mg, 0.87 mmol) and K[CF₂=C(CF₃)**BF₃]** (207 mg, 0.87 mmol) in MeCN (2 mL) as described above. ¹³C {¹⁹F} **NMR** (CD₂Cl₂): δ = 157.7 (F₂C=), 126.8 (F₃CC=), 84.9 [q (1:1:1:1), ¹J(C-1, B) = 80 Hz, C-1] ([CF₂=C(CF₃) **BF₃]**⁻); 58.9, 23.9, 19.9, 13.0 ([(C4H₉)₄N]⁺). ¹⁹F **NMR** (CD₂Cl₂): δ =

-55.0 (m, 3F, CF₃), -69.5 (m, 1F, F^{2trans}), -78.2 (m, 1F, F^{2cis}), -138.0 [q (1:1:1:1), ¹*J*(F, B) = 42 Hz, 3F, BF₃] ppm.

Preparation of [Bu₄N][*trans*-C₄F₉CF=CFBF₃]: The salt (485 mg, 82%) was obtained from [Bu₄N]Br (322 mg, 1.0 mmol) and K[*trans*-C₄F₉CF=CFBF₃] (388 mg, 1.0 mmol) in MeCN (11 mL) as described above. ¹¹B NMR (CH₂Cl₂): $\delta = -0.4$ [qd, ¹*J*(B, F) = 38, ²*J*(B, F¹) = 27 Hz, *B*F₃]. ¹⁹F NMR (CH₂Cl₂): $\delta = -81.3$ (3F, F⁶), -116.5 (2F, F³), -124.7, -126.4 (4F, F^{4.5}), -143.9 [q (1:1:1:1), ¹*J*(F, B) = 42 Hz, 3F, BF₃], -153.3 (1F, F¹), -177.6 (1F, F²) ppm.

Preparation of [Bu₄N][CF₃C≡CBF₃]: The salt (404 mg, 88%) was prepared from [Bu₄N][BF₄] (374 mg, 1.13 mmol) and K[CF₃C≡CBF₃] (235 mg, 1.17 mmol) in MeCN (3.5 mL) as described above. ¹¹B NMR (PFB): δ = -2.7 [q, ¹*J*(B, F) = 31 Hz, *B*F₃]. ¹¹B NMR (CH₂Cl₂): δ = -3.3 [q, ¹*J*(B, F) = 32 Hz, *B*F₃]. ¹⁹F NMR (PFB): δ = -47.4 (s, 3F, F³), -132.8 [q (1:1:1:1), ¹*J*(F, B) = 31 Hz, 3F, BF₃]. ¹⁹F NMR (CH₂Cl₂): δ = -49.0 (s, 3F, F³), -136.0 [q (1:1:1:1), ¹*J*(F, B) = 32 Hz, 3F, BF₃].

[Bu₄N][trans-C₄H₉CF=CFBF₃]: Preparation of Salt K[C₄H₉CF=CFBF₃] (392 mg, 1.74 mmol) was suspended in MeCN (5 mL) and [Bu₄N]Br (561 mg, 1.74 mmol) was added in one portion. The suspension was stirred for 1 h. The mother liquor was separated by sequential centrifugation and decantation and evaporated under reduced pressure. The colorless viscous oil was pumped in a vacuumdesiccator with Sicapent[®] and gave a solid product (707 mg, 95%). ¹**H** NMR (CDCl₃): $\delta = 2.24$ [dtt, ³*J*(H³, F²) = 24, ⁴*J*(H³, H⁵) = 7, ${}^{4}J(\mathrm{H}^{3}, \mathrm{F}^{1}) = 7 \mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{3}], 1.35 \mathrm{(m, 2CH_{2})}, 0.92 \mathrm{[t, }{}^{3}J(\mathrm{H}^{6}, \mathrm{H}^{5}) =$ 7 Hz, 3 H, H⁶] [*trans*-C₄H₉CF = CFBF₃]⁻; 3.14 (m, 4CH₂), 1.54 (m, $4CH_2$, 1.35 (m, $4CH_2$), 0.92 [t, ${}^{3}J(H^4, H^3) = 7 Hz, 4CH_3$] $[(C_4H_9)_4N]^+$. ¹¹**B** NMR (CDCl₃): $\delta = 0.7$ (br. s, $\Delta v_{1/2} = 149$ Hz, BF_3). ¹⁹**F** NMR (CDCl₃): $\delta = -158.6$ [dtg ³*J*(F², F¹) = 119, ³*J*(F², H³) = 24, ${}^{4}J(F^{2}, BF) = 10 \text{ Hz}, 1F, F^{2}], -172.5 \text{ [d }{}^{3}J(F^{1}, F^{2}) = 119 \text{ Hz}, 1F, F^{1}],$ -143.6 [broadened q (1:1:1:1), 3F, BF₃].

Preparation of [Bu₄N][C₄H₉CH=CHBF₃]: The salt (664 mg, 90%) was obtained as a colorless viscous oil from [Bu₄N]Br (603 mg, 1.87 mmol) and K[C₄H₉CH=CHBF₃] (*cisltrans* = 69:31) (355 mg, 1.87 mmol) in MeCN (15 mL) as described above. ¹H NMR (CDCl₃): $\delta = 5.75$ [dt, ³*J*(H², H¹) = 18, ³*J*(H², H³) = 6 Hz, 1 H, H²], 5.41 [d, ³*J*(H¹, H²) = 18 Hz, 1 H, H¹], 2.03 (m, 2 H, H³), 1.57 (m, CH₂), 1.25 (m, CH₂), 0.80 (m, 3 H, H⁶) [*trans*-C₄H₉CH=CHBF₃]⁻; 5.65 (m, 1 H, H²), 5.31 [dq ³*J*(H¹, H²) = 13, ³*J*(H¹, BF) = 6 Hz, 1 H, H¹], 2.19 (m, 2 H, H³), 1.57 (m, CH₂), 1.25 (m, CH₂), 0.80 (m, 3 H, H⁶) [*cis*-C₄H₉CH=CHBF₃]⁻; 3.20 (m, 4CH₂), 1.57 (m, 4CH₂), 1.37 (m, 4CH₂), 0.93 [t, ³*J*(H⁴, H³) = 7 Hz, 4CH₃] [(C₄H₉)₄N]⁺. ¹¹B NMR (CDCl₃): δ = 2.9 [q, ¹*J*(B, F) = 58 Hz, *B*F₃]. ¹⁹F NMR (CDCl₃): δ = -135.6 [broadened q (1:1:1:1), 3F, BF₃] [*trans*-C₄H₉CH=CHBF₃]⁻; -140.9 [broadened q (1:1:1:1), 3F, BF₃] [*trans*-C₄H₉CH=CHBF₃]⁻.

Preparation of [Bu₄N][C₄H₉C≡CBF₃]: The salt (650 mg, 94%) was obtained as a colorless viscous oil from [Bu₄N]Br (570 mg, 1.77 mmol) and K[C₄H₉C≡CBF₃] (333 mg, 1.77 mmol) in MeCN (10 mL) as described above. ¹H NMR (CDCl₃): δ = 2.03 [t, ³*J*(H³, H⁴) = 7 Hz, 2 H, H³], 1.36 (m, 2CH₂), 0.78 [t, ³*J*(H⁶, H⁵) = 7 Hz, 3 H, H⁶] [C₄H₉C≡CBF₃]⁻; 3.19 (m, 4CH₂), 1.56 (m, 4CH₂), 1.36 (m, 4CH₂), 0.92 [t, ³*J*(H⁴, H³) = 7 Hz, 4CH₃] [(C₄H₉)₄N]⁺. ¹¹B NMR (CDCl₃): δ = -1.6 (br. s, Δν_{1/2} = 126 Hz, *B*F₃]. ¹⁹F NMR (CDCl₃): δ = -133.9 [broadened q (1:1:1:1), 3F, BF₃].

Preparation of $[Bu_4N][C_4H_9BF_3]$ **:** The salt (710 mg, 91%) was prepared as a colorless viscous oil from $[Bu_4N]Br$ (680 mg, 2.13 mmol) and K $[C_4H_9BF_3]$ (349 mg, 2.13 mmol) in MeCN (10 mL) as described

above. ¹**H** NMR (CDCl₃): $\delta = 1.22$ (m, 2CH₂), 0.78 [t, ³*J*(H⁴, H³) = 7 Hz, 3 H, H⁴], 0.14 (m, 2 H, H¹), [C₄H₉BF₃]⁻; 3.17 (m, 4CH₂), 1.55 (m, 4CH₂), 1.36 (m, 4CH₂), 0.92 [t, ³*J*(H⁴, H³) = 7 Hz, 4CH₃] [(C₄H₉)₄N]⁺. ¹¹B NMR (CDCl₃): $\delta = 5.4$ (br. s, $\Delta v_{1/2} = 218$ Hz, *B*F₃). ¹⁹F NMR (CDCl₃): $\delta = -141.1$ [broadened q (1:1:1:1), 3F, BF₃].

Preparation of [Bu₄N][C₆F₁₃BF₃]: The salt (336 mg, 89%) was prepared as a colorless viscous oil from [Bu₄N]Br (193 mg, 0.60 mmol) and K[C₆F₁₃BF₃] (292 mg, 0.68 mmol) in MeCN (5 mL) as described above. ¹H NMR (CDCl₃): δ = 3.20 (m, 4CH₂), 1.55 (m, 4CH₂), 1.36 (m, 4CH₂), 0.90 [t, ³*J*(H⁴, H³) = 7 Hz, 4CH₃] [(C₄H₉)₄N]^{+. 19}F NMR (CDCl₃): δ = -80.0 [t, ⁴*J*(F⁶, F⁴) = 10 Hz, 3F, F⁶], -121.9, -122.6, -123.0 (3CF₂), -126.1 (m, 2F, F⁵), -131.8 (m, 2F, F¹), -149.6 [q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF₃].

Reaction of $[Bu_4N][CF_3C \equiv CBF_3]$ with Fluorine in PFB Solution

A solution of [Bu₄N][CF₃C≡CBF₃] (117 mg, 0.29 mmol) in PFB (2 mL) was charged into an 8 mm i. d. FEP trap equipped with a magnetic stir bar and cooled to 0 °C. Less than the equivalent amount of fluorine (0.19 mmol) diluted with nitrogen (5% v/v) was bubbled in 3 steps into the cold stirred solution. After 15 min the reaction was interrupted, the solution was flushed with dry argon, and a probe was taken in a cold (0 °C) FEP inliner. The solution contained $[Bu_4N][CF_3C \equiv CBF_3]$ (0.260 mmol, 10% conversion). $[Bu_4N][C_3F_7BF_3]$ (0.018 mmol, 60%) (identified by ¹⁹F NMR^[28]), and [Bu₄N][BF₄] (0.010 mmol, 33%). The probe was combined with the main reaction solution and the treatment with fluorine was continued. Similarly as described before, the composition of the reaction solution was determined after 30 min {[Bu₄N][CF₃C=CBF₃] (0.230 mmol) (21% conversion), [Bu₄N][C₃F₇BF₃] (0.035 mmol, 57%), [Bu₄N][BF₄] (0.030 mmol, 49\%)} and after 60 min $\{[Bu_4N][CF_3C\equiv CBF_3]\}$ (0.160 mmol) (44%) conversion). $[Bu_4N][C_3F_7BF_3]$ (0.067 mmol, 52%), $[Bu_4N][BF_4]$ (0.060 mmol, 47%)}. In addition, the signals of CF₃CH₂CF₂CH₂F (trace quantities of fluorination of PFB) and HF were detected (19F NMR, 0 °C).

Reactions of Perfluoroalkenyl- and Perfluoroalkynyltrifluoroborates with Chlorine in Halocarbon Solutions

Reaction of [Bu₄N][*trans*-C₄F₉CF=CFBF₃]: A solution of [Bu₄N][*trans*-C₄F₉CF=CFBF₃] (0.39 mmol) in CH₂Cl₂ in a glass ampoule (3 mL) with a magnetic stir bar was cooled to 0 °C (ice bath) in an atmosphere of dry argon. Chlorine (0.8 mmol) in dry argon was slowly bubbled into the stirred solution within 20 min. The ampoule was sealed and the yellow-greenish solution was stirred for 24 h at ≈ 20 °C. The ¹⁹F NMR spectrum showed the absence of [*trans*-C₄F₉CF=CFBF₃]⁻ and new signals of [C₄F₉CFCl–CFClBF₃]⁻ (0.39 mmol) (C₆F₆, internal integral standard). After evaporation of the volatile components at reduced pressure and ≈ 20 °C, a colorless viscous oil (243 mg, 94%) was obtained.

[Bu₄N][**C₄F₉CFCI–CFCIBF₃]:** ¹¹**B** NMR (CD₃CN): δ = 0.2 [dq ²*J*(B, F¹) = 17, ¹*J*(B, F) = 40 Hz] (diastereomer C); 0.0 [dq ²*J*(B, F¹) = 18, ¹*J*(B, F) = 38 Hz] (diastereomer A); -0.5 [dq ²*J*(B, F¹) = 20, ¹*J*(B, F) = 41 Hz] (diastereomer B) (ratio A:B:C = 59:29:12). ¹⁹F NMR (CD₃CN): δ = -79.9 [tt, ⁴*J*(F⁶, F⁵) = 3, ³*J*(F⁶, F⁴) = 10 Hz, 3F, F⁶], -112.2 [md ²*J*(F^{3A}, F^{3B}) = 286 Hz, 1F, F^{3A}], -113.2 [md ²*J*(F^{3B}, F^{3A}) = 286 Hz, 1F, F^{3B}], -118.0 [md ²*J*(F^{4A}, F^{4B}] = 296 Hz, 1F, F^{4A}], -119.0 [md ²*J*(F^{4B}, F^{4A}) = 296 Hz, 1F, F^{4B}], -124.4 [md ²*J*(F^{5A}, F^{5B}) =

289 Hz, 1F, F^{5A}], -125.3 [md ²*J*(F^{5B} , F^{5A}) = 289 Hz, 1F, F^{5B}], -127.3 (m, 1F, F¹), -135.1 (m, 1F, F²), -148.0 [q (1:1:1:1), ${}^{1}J(F, B) = 36$ Hz, 3F, BF₃] (diastereomer A); -80.0 [tt, ${}^{4}J(F^{6}, F^{5}) = 3$ Hz, t ${}^{3}J(F^{6}, F^{4}) =$ 10 Hz, 3F, F⁶], -113.4 [md ${}^{2}J(F^{3A}, F^{3B}) = 286$ Hz, 1F, F^{3A}], -115.0 $[md ^{2}J(F^{3B}, F^{3A}) = 286 Hz, 1F, F^{3B}), -118.0 (md ^{2}J(F^{4A}, F^{4B}) =$ 298 Hz, 1F, F^{4A}), $-119.9 \text{ (md } {}^{2}J(F^{4B}, F^{4A}) = 298 \text{ Hz}, 1F, F^{4B}], -121.7$ $[md {}^{2}J(F^{5A}, F^{5B}) = 318 \text{ Hz}, 1F, F^{5A}], -124.8 [md {}^{2}J(F^{5B}, F^{5A}) =$ 318 Hz, 1F, F^{5B}], -124.8 (m, 1F, F¹), -134.0 (m, 1F, F²), -149.7 [q $(1:1:1:1), {}^{1}J(F, B) = 41 \text{ Hz}, 3F, BF_{3}$ (diastereomer B); -80.0 [tt, ${}^{4}J(F^{6}, B)$ F^5) = 3, ${}^{3}J(F^6, F^4)$ = 10 Hz, 3F, F^6], -111.3 [md ${}^{2}J(F^{3A}, F^{3B})$ = 286 Hz, 1F, F^{3A}], -113.5 [md ²*J*(F^{3B} , F^{3A}) = 287 Hz, 1F, F^{3B}], -117.2 [md ${}^{2}J(F^{4A}, F^{4B}) = 293 \text{ Hz}, 1F, F^{4A}\}, -119.9 \text{ [md } {}^{2}J(F^{4B}, F^{4A}) = 293 \text{ Hz},$ 1F, F^{4B}], -123.4 (m, 1F, F¹), -124.8 (m, 2F, F⁵), -134.7 (m, 1F, F²), -148.1 [q (1:1:1:1), ${}^{1}J(F, B) = 36$ Hz, 3F, BF₃] (diastereomer C) (ratio A:B:C = 57:31:12). ¹⁹F NMR spectroscopic data in CDCl₃ are given in Table S2 (Supporting Information).

Reaction of [Bu₄N][CF₂=CFBF₃]: A solution of [Bu₄N][CF₂=CFBF₃] (0.21 mmol) in CH₂Cl₂ (1 mL) and CD₂Cl₂ (0.2 mL) in a glass tube was cooled to 0 °C (ice bath) in an atmosphere of dry argon and chlorine (0.3 mmol) in argon was slowly bubbled into the solution for 30 min. The colorless solution contained [Bu₄N][CF₂Cl–CFClBF₃] (0.07 mmol, 33%), CF₂=CFCl (0.03 mmol, 14%), and [Bu₄N][BF₄] (0.10 mmol, 48%). [Bu₄N][CF₂=CFBF₃] was totally consumed (¹¹B and ¹⁹F NMR).

[Bu₄N][CF₂Cl-CFClBF₃]: ¹¹B NMR (CH₂Cl₂ + CD₂Cl₂): $\delta = 0.0$ [dq ²*J*(B, F¹) = 17, ¹*J*(B, F) = 40 Hz]. ¹⁹F NMR (CH₂Cl₂ + CD₂Cl₂): $\delta =$ -60.1 [qdd ⁴*J*(F^{2A}, B*F*₃) = 6, ³*J*(F^{2A}, F¹) = 13, ²*J*(F^{2A}, F^{2B}) = 167 Hz, 1F, F^{2A}], -61.5 [qdd ⁴*J*(F^{2B}, B*F*₃) = 6, ³*J*(F^{2A}, F¹) = 12, ²*J*(F^{2B}, F^{2A}) = 167 Hz, 1F, F^{2B}], -143.2 (m, 1F, F¹), -150.9 [dtq (1:1:1:1), ³*J*(B*F*₃, F¹) = 6, ⁴*J*(B*F*₃, F²) = 6, ¹*J*(F, B) = 40 Hz, 3F, B*F*₃].

Reaction of [Bu₄N][CF₃C=CBF₃]: A. A solution of [Bu₄N][CF₃C=CBF₃] (0.39 mmol) in CH₂Cl₂ (3 mL) in a glass ampoule with a magnetic stir bar was cooled to 0 °C (ice bath) in an atmosphere of dry argon. Chlorine (1.0 mmol) in dry argon was bubbled into the stirred solution for 10 min. The ampoule was sealed and kept at ≈ 20 °C for 24 h. The solution contained [Bu₄N][CF₃C=CBF₃] (0.15 mmol, 62 % conversion), [Bu₄N][*cis*-CF₃CCl=CClBF₃] (0.06 mmol, 25%), [Bu₄N][*trans*-CF₃CCl=CClBF₃] (0.07 mmol, 29%), [Bu₄N][CF₃C=CCl₂-CCl₂BF₃] (0.01 mmol, 42%) besides traces of CF₃C=CCl [δ (F) –50.0 (s)], CF₃CCl₂-CCl₃^[29] and minor amounts of unknown products.

B. A solution of $[Bu_4N][CF_3C \equiv CBF_3]$ (0.39 mmol) and chlorine (0.8 mmol) in CH₂Cl₂ (3 mL) was prepared as above and stirred at ≈ 20 °C for 3 h in a test tube closed with a stopper. A probe showed the presence of $[CF_3C \equiv CBF_3]^-$ (0.27 mmol, 31% conversion), [cis- $CF_3CCl=CClBF_3]^-$ (0.07 mmol, 18%), [trans-CF_3CCl=CClBF_3]^-(0.02 mmol, 5%), [CF₃CCl₂-CCl₂BF₃]⁻ (0.01 mmol, 3%), and [BF₄]⁻ (0.02 mmol, 5%). This solution was filled into a glass ampoule, treated again with chlorine (0.8 mmol) at 0 °C. The ampoule was sealed and kept at ≈20 °C. After 21 h the yellow-greenish solution contained $[Bu_4N][CF_3C=CBF_3]$ (0.15 mmol, 62% conversion), $[Bu_4N][cis-$ CF₃CCl=CClBF₃] (0.07 mmol, 18%), [Bu₄N][trans-CF₃CCl=CClBF₃] (0.07 mmol, 18%), [Bu₄N][CF₃CCl₂CCl₂BF₃] (0.01 mmol, 3%), and $[Bu_4N][BF_4]$ (0.09 mmol, 23%). The treatment with chlorine (1.0 mmol) was repeated in an ampoule at ≈ 20 °C for additional 33 h. The ¹⁹F NMR spectrum confirmed the complete conversion of $[Bu_4N][CF_3C \equiv CBF_3]$. $[Bu_4N][cis-CF_3CCl=CClBF_3]$ (<0.01 mmol, [Bu₄N][*trans*-CF₃CCl=CClBF₃] (0.23 mmol, 59%). < 3%).

 $\label{eq:stars} \begin{array}{ll} [Bu_4N][CF_3CCl_2-CCl_2BF_3] & (0.03 \mbox{ mmol}, \ 8 \ \%), \ \mbox{ and } \ [Bu_4N][BF_4] \\ (0.10 \mbox{ mmol}, \ 26 \ \%) \mbox{ were observed besides unknown products.} \end{array}$

[Bu₄N][*cis*-CF₃CCl=CClBF₃]: ¹¹B NMR (CD₃CN): $\delta = 0.0$ [q, ¹*J*(B, F) = 37 Hz, BF₃]. ¹⁹F NMR (CD₃CN): $\delta = -59.2$ [q, ⁵*J*(F³, B*F*) = 10 Hz, 3F, F³], -138.5 [qq (1:1:1:1), ⁵*J*(*F*B, F³) = 10, ¹*J*(F, B) = 37 Hz, 3F, BF₃]. ¹⁹F NMR (CH₂Cl₂): $\delta = -60.5$ [q, ⁵*J*(F³, B*F*) = 10 Hz, 3F, F³], -139.2 [qq (1:1:1:1), ⁵*J*(*F*B, F³) = 9, ¹*J*(F, B) = 38 Hz, 3F, BF₃].

[Bu₄N][*trans*-**CF**₃**CCl=CClBF**₃]: ¹¹**B NMR** (CD₃CN): $\delta = 0.7$ [q, ¹*J*(B, F) = 36 Hz, BF₃]. ¹⁹F NMR (CD₃CN): $\delta = -68.7$ [q, ⁵*J*(F³, B*F*) = 8 Hz, 3F, F³], -145.4 [qq (1:1:1:1), ⁵*J*(*F*B, F³) = 8, ¹*J*(F, B) = 35 Hz, 3F, BF₃]. ¹⁹F **NMR** (CH₂Cl₂): $\delta = -70.1$ [q, ⁵*J*(F³, B*F*) = 8 Hz, 3F, F³], -146.3 [qq (1:1:1:1), ⁵*J*(*F*B, F³) = 7, ¹*J*(F, B) = 36 Hz, 3F, BF₃].

[Bu₄N][CF₃CCl₂–CCl₂BF₃]: ¹¹B NMR (CD₃CN): δ = 0.1 [q, ¹*J*(B, F) = 39 Hz, BF₃] (conformer A); -2.0 [q, ¹*J*(B, F) = 44 Hz, BF₃] (conformer B); 0.1 [q, ¹*J*(B, F) = 36 Hz, BF₃] (conformer C) (ratio A:B:C = 56:16:28]. ¹⁹F NMR (CD₃CN): δ = -59.4 (s, 3F, F³), -140.9 [q (1:1:1:1), ¹*J*(F, B) = 38 Hz, 3F, BF₃] (conformer A); -60.0 (s, 3F, F³), -141.8 [q (1:1:1:1), ¹*J*(F, B) = 44 Hz, 3F, BF₃] (conformer B); -60.0 (s, 3F, F³), -135.1 [q (1:1:1:1), ¹*J*(F, B) = 35 Hz, 3F, BF₃] (conformer C) (ratio A:B:C = 43:24:33).

Reactions of Organyltrifluoroborates with Bromine in Halocarbon Solutions

Reaction of [Bu₄N][cis-C₂F₅CF=CFBF₃]: A solution of bromine (51 mg, 0.32 mmol) in CH₂Cl₂ (1.2 mL) was added dropwise to a stirred solution of [Bu₄N][cis-C₂F₅CF=CFBF₃] (152 mg, 0.31 mmol) in CH₂Cl₂ (1 mL) at ≈20 °C. After stirring for 21 h the orange-red solution contained [Bu₄N][C₂F₅CF=CFBF₃] (0.25 mmol, 81%) (cis/trans = 72:28), C₂F₅CF=CFBr^[30] (0.04 mmol, 13%) (cis/trans = 25:75), C₂F₅CFBr–CFHBr (0.02 mmol, 6%), and [Bu₄N][BF₄] (0.05 mmol, 16%]. After 48 h, the ¹⁹F NMR spectrum of the pale yellow solution showed the resonances of [Bu₄N][C₂F₅CF=CFBF₃] (0.15 mmol, 48%) (*cis/trans* = 60:40), C₂F₅CF=CFBr (0.05 mmol, 16%) (cis/trans = 20:80), cis-C₂F₅CF=CFH^[24] (0.01 mmol, 3%), C₂F₅CFBr-CFHBr^[30] [δ(F) -85.5 (m, 3F, F⁴), -119.9 (m, 2F, F³), $-132.1 \text{ (m, 1F, F}^2), -148.6 \text{ (d, } {}^2J(\text{F}^1, \text{H}^1) = 52 \text{ Hz}, 1\text{F}, \text{F}^1)] (0.01 \text{ mmol},$ 3%), and [Bu₄N][BF₄] (0.06 mmol, 19%). To support the identification of C₂F₅CFBr-CFHBr in the reaction solution by NMR spectroscopy, the homologue C4F9CFBr-CFHBr was prepared and characterized (cf. last experiment).

Reaction of [Bu₄N][*trans*-C₄F₉CF=CFBF₃]: A. A solution of bromine (48 mg, 0.30 mmol) in CH₂Cl₂ (1.1 mL) was added dropwise to a solution of [Bu₄N][*trans*-C₄F₉CF=CFBF₃] (224 mg, 0.38 mmol) in CH₂Cl₂ (3 mL) at ~20 °C. The red solution was stirred without protection against light. After 24 h the solution was still red colored. After 66 h, the ¹⁹F NMR spectrum of the now pale yellow solution showed the resonances of [C₄F₉CF=CFBF₃]⁻ (0.29 mmol, 76%) (*cis/trans* = 62:38), C₄F₉CF=CFBF (0.06 mmol, 16%) (*cis/trans* = 17:83), and [BF₄]⁻ (0.04 mmol, 11%). Further maintain at ~20 °C for 28 h did not change the composition of the reaction solution.

B. A solution of bromine (99 mg, 0.62 mmol) and [Bu₄N][*trans*-C₄F₉CF=CFBF₃] (259 mg, 0.44 mmol) in CH₂Cl₂ (5.5 mL) was stirred at \approx 20 °C in a flask coated with aluminum foil. After 24 h the ¹⁹F NMR spectrum of the red solution displayed the signals of [C₄F₉CF=CFBF₃]⁻ (0.35 mmol, 80%) (*cisltrans* = 17:83), *trans*-C₄F₉CF=CFBF (0.08 mmol, 18%), and [BF₄]⁻ (0.08 mmol, 18%). After 84 h the ¹⁹F NMR spectrum of the still red solution showed the

signals of $[C_4F_9CF=CFBF_3]^-$ (0.33 mmol, 75%) (*cis/trans* = 24:76), *trans*-C_4F_9CF=CFBr^[31] (0.11 mmol, 25%), and $[BF_4]^-$ (0.10 mmol, 23%), besides minor unknown admixtures.

Reactions of [Bu₄N][(*cis and trans*)- $C_nF_{2n+1}CF=CFBF_3$]: A. A solution of [Bu₄N][$C_2F_5CF=CFBF_3$] (0.15 mmol) (*cis/trans* = 60:40), and bromine (0.27 mmol) in CH₂Cl₂ (1 mL) was heated at 65–70 °C for 9 h and left overnight at ≈20 °C. The yellow solution was washed with cold water and dried with MgSO₄. The ¹⁹F NMR spectrum showed the resonances of [$C_2F_5CF=CFBF_3$]⁻ (0.08 mmol, 53 %) (*cis/trans* = 75:25), C₂F₅CF=CFBr (0.07 mmol, 46 %) (*cis/trans* = 37:63), and [BF₄]⁻ (0.07 mmol, 46 %).

B. A solution of $[Bu_4N][C_4F_9CF=CFBF_3]^-$ (0.19 mmol) (*cis/trans* = 42:58), and bromine (0.27 mmol) in CH₂Cl₂ (1 mL) was heated at 65–70 °C for 11 h and left overnight at ≈ 20 °C. The resulting yellow solution was washed with cold water and dried with MgSO₄. The ¹⁹F NMR spectrum displayed the resonances of $[Bu_4N][C_4F_9CF=CFBF_3]^-$ (0.06 mmol, 32%) (*cis/trans* = 67:33), C₄F₉CF=CFBr (0.13 mmol, 68%) (*cis/trans* = 15:85), and $[BF_4]^-$ (0.18 mmol, 95%).

cis-C₄F₉CF=CFBr: ¹⁹F NMR (CH₂Cl₂): $\delta = -83.2$ [dt, ³*J*(F¹, F²) = 16, ⁴*J*(F¹, F³) = 4 Hz, 1F, F¹], -115.6 [td, ⁴*J*(F³, F⁵) = 10, ³*J*(F³, F²) = 12 Hz, 2F, F³], -140.5 (m, 1F, F²); the resonances of the fluorine atoms F^{4,5,6} overlapped with those of *trans*-C₄F₉CF = CFBr.

Reaction of [Bu₄N][CF₂=CFBF₃]: A solution of bromine (42 mg, 0.26 mmol) in CH₂Cl₂ (0.2 mL) was added dropwise to a stirred solution of [Bu₄N][CF₂=CFBF₃] (86 mg, 0.22 mmol) in CH₂Cl₂ (0.5 mL) at 0–2 °C. After 15 min, the ¹¹B and ¹⁹F NMR spectra of the pale yellow solution showed the absence of [CF₂=CFBF₃]⁻ and the formation of the molecule CF₂=CFBF (0.10 mmol, 45%), of the anions [CF₂Br–CFBFBF₃]⁻ (0.04 mmol, 18%) and [BF₄]⁻ (0.12 mmol, 55%) besides traces of CF₂=CFH and CF₂Br–CFBr₂.

[Bu₄N][CF₂Br–CFBrBF₃]: ¹¹B NMR (CH₂Cl₂ + CD₂Cl₂): δ = -0.8 [dq ²*J*(B, F¹) = 16, ¹*J*(B, F) = 40 Hz]. ¹⁹F NMR (CH₂Cl₂ + CD₂Cl₂): δ = -50.4 [d, ²*J*(F^{2A}, F^{2B}) = 165 Hz, 1F, F^{2A}], -52.3 [dd, ³*J*(F^{2A}, F¹) = 22, ²*J*(F^{2B}, F^{2A}) = 165 Hz, 1F, F^{2B}], -138.0 (m, 1F, F¹), -147.8 (BF₃, overlapping with the signal of the other conformers) (conformer A); δ = -48.0 [qd, ⁴*J*(F^{2A}, BF₃) = 17, ²*J*(F^{2A}, F^{2B}) = 161 Hz, 1F, F^{2A}], -52.1 [qdd ⁴*J*(F^{2B}, BF₃) = 8, ³*J*(F^{2B}, F¹) = 27, ²*J*(F^{2B}, F^{2A}) = 161 Hz, 1F, F^{2B}], -134.0 (m, 1F, F¹), -147.8 (BF₃, overlapping with the signal of the other conformers) (conformer B); δ = -48.3 [qdd ⁴*J*(F^{2A}, BF₃) = 9, ³*J*(F^{2A}, F¹) = 10, ²*J*(F^{2A}, F^{2B}) = 167 Hz, 1F, F^{2A}], -52.2 [qdd ⁴*J*(F^{2B}, BF₃) = 8, ³*J*(F^{2B}, F¹) = 15, ²*J*(F^{2B}, F^{2A}) = 167 Hz, 1F, F^{2B}], -134.0 (m, 1F, F¹), -147.8 (BF₃, overlapping with the signal of the other conformer C) (ratio A:B:C = 53:25:22).

Reaction of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$: A. A solution of bromine (0.30 mmol) in CHCl₃ (1 mL) was added dropwise to a solution of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ (0.30 mmol) in CHCl₃ (1 mL) at 0 °C within 15 min. The color of bromine disappeared immediately after addition. The yellow solution was stirred for 1 h at ≈ 20 °C and diluted with CDCl₃. The ¹H and ¹⁹F NMR spectra showed the resonances of *trans*-C_4H_9CF=CFBr (0.17 mmol, 57 %), *trans*-C_4H_9CF=CFH^[32] (0.10 mmol, 33 %), and $[Bu_4N][BF_4]$ (0.33 mmol, 110%) besides a trace of C_4H_9CFBr-CFHBr.

The solution was treated with a further equivalent of bromine (0.30 mmol) in CHCl₃ (1 mL) and stirred at ≈ 20 °C for 15 h. All volatiles were distilled off at 80 °C (bath). The residue was cooled to ≈ 20 °C and extracted with CCl₄ (2 × 1 mL). The extract was passed through a short column (2 cm length) with anhydrous MgSO₄ and a

probe was diluted with CDCl₃. The ¹H and ¹⁹F NMR spectra showed the resonances of *trans*-C₄H₉CF=CFBr, *cis*-C₄H₉CF=CFBr, C₄H₉CF=CFBr, and C₄H₉CFBr–CFHBr (molar ratio = 11:7:35:47), besides minor amounts of unknown products.

B. A solution of bromine (0.21 mmol) in CH₂Cl₂ (0.7 mL) was added dropwise to a solution of $[Bu_4N][trans-C_4H_9CF=CFBF_3]$ (0.21 mmol) in CH₂Cl₂ (2.5 mL) at ≈ 20 °C within 5 min. The color of bromine disappeared immediately after addition. The ¹⁹F NMR spectrum showed the resonances of *trans*-C₄H₉CF=CFBr (0.15 mmol, 71%), *trans*-C_4H₉CF=CFH (0.05 mmol, 24%), and $[Bu_4N][BF_4]$ (0.21 mmol, 100%).

trans-C₄H₉CF=CFBr: ¹H NMR (CDCl₃ + CCl₄): δ = 2.41 [tdd, ³*J*(H³, H⁴) = 7, ⁴*J*(H³, F¹) = 6, ³*J*(H³, F²) = 21 Hz, 2 H, H³], 1.54 (m, CH₂), 1.37 (m, CH₂), 0.93 [t, ³*J*(H⁶, H⁵) = 7 Hz, 3 H, H⁶]. ¹⁹F NMR (CDCl₃ + CCl₄): δ = -127.3 [td, ⁴*J*(F¹, H³) = 5, ³*J*(F¹, F²) = 134 Hz, 1F, F¹], -140.0 [td, ³*J*(F², H³) = 22, ³*J*(F², F¹) = 134 Hz, 1F, F²].

cis-C₄H₉CF=CFBr: ¹H NMR (CDCl₃ + CCl₄): $\delta = 2.50$ [td, ³*J*(H³, H⁴) = 7, ³*J*(H³, F²) = 21 Hz, 2 H, H³], 1.5–1.3 (m, 2CH₂), 0.9 [t, ³*J*(H⁶, H⁵) = 7 Hz, 3 H, H⁶]. ¹⁹F NMR (CDCl₃ + CCl₄): $\delta = -108.7$ [d, ³*J*(F¹, F²) = 14 Hz, 1F, F¹], -128.4 [td, ³*J*(F², H³) = 22, ³*J*(F², F¹) = 14 Hz, 1F, F²].

C₄**H**₉**CFBr**-**CFBr**₂: ¹⁹**F NMR** (CDCl₃ + CCl₄): δ –62.8 [d, ³*J*(F¹, F²) = 22 Hz, 1F, F¹], -110.5 [dd, ³*J*(F², F¹) = 25, ³*J*(F², H^{3A}) = 35 Hz, 1F, F²] {cf. C₇H₁₅CFBrCFBr₂ (CDCl₃): δ = -62.1 [d, ³*J*(F¹, F²) = 25.9 Hz, 1F, F¹], -109.7 [dd, ³*J*(F², F¹) = 25.9, ³*J*(F², H^{3A}) = 38.2 Hz, 1F, F²] ^[33]}.

Reaction of [Bu₄N][C₄H₉CH=CHBF₃]: A solution of bromine (0.33 mmol) in CHCl₃ (1 mL) was added dropwise to a solution of [Bu₄N][C₄H₉CH=CHBF₃] (0.33 mmol) (*cis*{*trans* = 67:33) in CHCl₃ (1 mL) at ≈ 20 °C within 10 min. The color of bromine disappeared immediately after addition. The yellow solution was stirred for 1 h. The ¹H and ¹⁹F NMR spectra displayed the resonances of C₄H₉CH=CHBr^[34] (0.16 mmol, 48%) (*cis*{*trans* = 63:37), C₄H₉CHBr-CH₂Br^[35] (0.10 mmol, 30%), and [Bu₄N][BF₄] (0.33 mmol, 100%).

Reaction of [Bu₄N][CF₃C≡CBF₃]: Bromine (89 mg, 0.55 mmol) dissolved in CH₂Cl₂ (0.5 mL) was added to a stirred cold (0 °C) solution of [Bu₄N][CF₃C≡CBF₃] (230 mg, 0.57 mmol) in CH₂Cl₂ (1.5 mL). After 10 min the bath was removed and the solution was stirred at \approx 20 °C over a period of 1 h. The ¹¹B and ¹⁹F NMR spectra showed the formation of [Bu₄N][CF₃CBr=CBrBF₃] (*cis/trans* = 62:38) (0.45 mmol, 92%), [Bu₄N][BF₄], and CF₃CBr=CBr₂ (both ~0.03 mmol, 6%]. The conversion of the starting borate was determined to 86%. A second portion of bromine (107 mg, 0.66 mmol)

(total 196 mg, 1.22 mmol) in CH₂Cl₂ (0.8 mL) was added. After stirring at \approx 20 °C for 24 h, the red solution contained [Bu₄N][BF₄] (0.43 mmol, 75%), CF₃CBr=CBr₂ (0.43 mmol, 75%), and [Bu₄N][CF₃CBr=CBrBF₃] (0.09 mmol, 16%) (*cis/trans* = 62:38), (¹⁹F NMR). The solution was concentrated on an evaporator and the oil was extracted with CCl₄ (0.5 mL). The pale yellow extract contained CF₃CBr=CBr₂ (0.40 mmol, 70%) (¹³C, ¹⁹F NMR).

$$\begin{split} & [\mathbf{Bu_4N}][\mathbf{CF_3CBr=CBrBF_3}]: \ {}^{11}\mathbf{B} \ \mathbf{NMR} \ (\mathrm{CH_2Cl_2}): \ \delta = 0.3 \ [q, \ {}^{1}J(\mathrm{B}, \mathrm{F}) \\ & = 38 \ \mathrm{Hz}, \ \mathrm{BF_3}]. \ {}^{19}\mathbf{F} \ \mathbf{NMR} \ (\mathrm{CH_2Cl_2}): \ \delta = -57.4 \ [q, \ {}^{5}J(\mathrm{F}^3, \ \mathrm{B}F_3) = 11 \ \mathrm{Hz}, \\ & 3\mathrm{F}, \ \mathrm{F}^3], \ -137.5 \ [q \ (1:1:1:1)q, \ {}^{1}J(\mathrm{F}, \ \mathrm{B}) = 37, \ {}^{5}J(\mathrm{B}F_3, \ \mathrm{F}^3) = 11 \ \mathrm{Hz}, \\ & 3\mathrm{F}, \ \mathrm{B}F_3] \ ([\mathit{cis}\text{-}\mathrm{CF_3CBr=CBrBF_3]^-); \ -57.8 \ [q, \ {}^{5}J(\mathrm{F}^3, \ \mathrm{B}F_3) = 1 \ \mathrm{Hz}, \\ & 3\mathrm{F}, \ \mathrm{F}^3], \ -140.4 \ [q \ (1:1:1:1), \ {}^{1}J(\mathrm{F}, \ \mathrm{B}) = 38 \ \mathrm{Hz}, \ 3\mathrm{F}, \ \mathrm{B}F_3] \ ([\mathit{trans-CF_3CBr=CBrBF_3]^-). \end{split}$$

CF₃CBr=CBr₂: ¹³C **NMR** (CCl₄): δ = 121.0 [q, ¹*J*(C-3, F³) = 275 Hz, C-3], 115.8 [q, ²*J*(C-2, F³) = 39 Hz, C-2], 99.9 [q, ³*J*(C-1, F³) = 3 Hz, C-1]. ¹⁹F **NMR** (CCl₄): δ = -58.6 (s, 3F, F³).

Reaction of $[Bu_4N][C_4H_9C=CBF_3]$: A solution of bromine (0.30 mmol) in CHCl₃ (1 mL) was added dropwise to a solution of $[Bu_4N][C_4H_9C=CBF_3]$ (0.28 mmol) in CHCl₃ (1 mL) at 0 °C within 15 min. The color of bromine disappeared immediately after addition. The yellow solution was stirred for 1 h at ≈ 20 °C. The ¹H and ¹⁹F NMR spectra showed the resonances of C₄H₉C=CBr¹³⁶ (0.08 mmol, 29%), C₄H₉C=CH (0.07 mmol, 25%), *trans*-C₄H₉CBr=CHBr¹³⁶] (0.05 mmol, 18%), C₄H₉CBr=CBr₂¹³⁶ (0.05 mmol, 18%), and [Bu₄N][BF₄] (0.28 mmol, 100%).

To confirm the presence of the alkynes $C_4H_9C\equiv CH$ and $C_4H_9C\equiv CBr$, the solution was treated with bromine (0.33 mmol) in CHCl₃ (1 mL) and stirred at ≈ 20 °C for 15 h. All volatiles were distilled off at 80 °C (bath), the residue was cooled to ≈ 20 °C and extracted with CCl₄ (2 × 1 mL). The extract was passed through a short column (2 cm length) with anhydrous MgSO₄ and a probe was diluted with CDCl₃. The ¹H and ¹⁹F NMR spectra showed the resonances of *trans*-C₄H₉CBr=CHBr, *cis*-C₄H₉CBr=CHBr,^[36] and C₄H₉CBr=CBr₂ (molar ratio = 40:16:44) besides minor amounts of unknown products and the absence of the alkynes and of [Bu₄N][BF₄].

Reaction of [Bu₄N][C₄H₉BF₃]: A solution of bromine (0.30 mmol) in CHCl₃ (1 mL) was added dropwise to a solution of [Bu₄N][C₄H₉BF₃] (0.30 mmol) in CHCl₃ (1 mL) at 0 °C within 15 min. The color of bromine disappeared immediately after addition. The yellow solution was stirred for 1 h at \approx 20 °C. The ¹H and ¹⁹F NMR spectra showed the resonances of C₄H₉Br (0.15 mmol, 50%), C₄H₁₀ (0.13 mmol, 43%), and [Bu₄N][BF₄] (0.28 mmol, 93%).

Attempted Reaction of $[Bu_4N][C_6F_{13}BF_3]$ with Bromine: A solution of $[Bu_4N][C_6F_{13}BF_3]$ (0.30 mmol) in CHCl₃ (2.3 mL) and bromine (0.30 mmol) in CHCl₃ (1 mL) was stirred at \approx 20 °C for 3 d. No reaction was detected (¹⁹F NMR).

Reactions of Fluoroalkenyl- and Fluoroalkynyltrifluoroborates with Bromine Trifluoride-Bromine (1:1, Equivalent of "BrF")

Preparation of Bromine Trifluoride-bromine (1:1) Solutions: A solution of BrF_3 (100 mg, 0.73 mmol) in PFB (0.4 mL) was stirred with dried NaF (32 mg) for 2 h and centrifuged. The mother liquor was transferred into a 8 mm. i. d. FEP trap equipped with a magnetic stir bar in an atmosphere of dry argon. A solution of bromine (116 mg, 0.73 mmol) in PFB (0.5 mL) was added in one portion. A red-brown solution resulted which was diluted with PFB (0.1 mL).

(BrF₃-Br₂) (1:1): ¹⁹F NMR (PFB 24 °C): $\delta = -23.0$ (s, $\Delta v_{1/2} = 1512 \text{ Hz}$) {cf. with ¹⁹F NMR spectrum of BrF₃ in PFB at 24 °C: $\delta = -17.9$ (s, $\Delta v_{1/2} = 27 \text{ Hz})^{[4]}$ }.

The solubility of bromine in PFB (160 mg, 1.00 mmol per mL of PFB; 21 °C) was determined visually by portion-wise addition of PFP to Br_2 in a narrow-diameter tube.

Reaction of [Bu₄N][*cis*-C₂F₅CF=CFBF₃] with "BrF": A solution of BrF₃ (0.10 mmol) and Br₂ (0.10 mmol) (0.30 mmol "BrF") in PFB (0.1 mL) was added to a stirred solution of [Bu₄N][*cis*-C₂F₅CF=CFBF₃] (0.63 mmol) in PFB (2 mL). The red-orange solution was stirred at ≈ 20 °C for 5 h and changed the color to yellow. The ¹⁹F NMR spectrum showed the resonances of [Bu₄N][C₂F₅CF=CFBF₃] (0.45 mmol, 71%) (*cis/trans* = 56:44), [Bu₄N][C₂F₅CFBr-CF₂BF₃] (0.16 mmol, 25%) besides C₂F₅CF=CFBr (0.02 mmol, 3%) (*cis/trans* = 40:60) and [Bu₄N][BF₄] (0.02 mmol, 3%). No changes were observed after further 50 h at ≈ 20 °C.

Reaction of $[Bu_4N][CF_2=CFBF_3]$ **with "BrF":** A solution of $[Bu_4N][CF_2=CFBF_3]$ (136 mg, 0.34 mmol) and $[Bu_4N][PF_6]$ (35 mg, 0.09 mmol) (internal integral standard) in PFB (2.1 mL) in a 11.7 mm. i. d. PFA trap was cooled to -15 °C. Afterwards, a solution of BrF_3 (0.11 mmol) and Br_2 (0.11 mmol) (0.33 mmol of "BrF") in PFB (0.15 mL) was added in one portion with stirring. Within 1 min a colorless solution was formed. After 15 min at -15 °C, the solution contained [Bu_4N][BF_4] (0.34 mmol, 100%), CF_2=CFBr (0.17 mmol, 50%), and CF_3-CF_2Br (0.11 mmol, 32%) and traces of CF_2=CFH and [Bu_4N][CF_2=CFBF_3] besides the standard [Bu_4N][PF_6] (¹¹B, ¹⁹F NMR).

Reaction of [Bu₄N][*trans*-C₄H₉CF=CFBF₃] with "BrF": A cold (0 °C) solution of BrF₃ (0.10 mmol) and Br₂ (0.10 mmol) (0.30 mmol "BrF") in PFB (0.1 mL) was added to a cold (0 °C) stirred solution of [Bu₄N][*trans*-C₄H₉CF=CFBF₃] (0.33 mmol) in PFB (9 mL). The paleyellow solution was stirred at 0 °C for 30 min and at ≈20 °C for 30 min. The ¹⁹F NMR spectrum showed the resonances of [Bu₄N][*trans*-C₄H₉CF=CFBF₃] (0.06 mmol, 82 % conversion), *trans*-C₄H₉CF=CFBr (0.17 mmol, 63 %), and [Bu₄N][BF₄] (0.24 mmol, 89 %). The volatile components were distilled off and collected and the residue was extracted with CCl₄ (2 mL). The extract was combined with the distillate and concentrated to a volume of 2 mL. The ¹H and ¹⁹F NMR spectra showed the presence of *trans*-C₄H₉CF=CFBr (0.24 mmol, 73 %), besides an admixture of PFB and traces of *cis*-C₄H₉CF=CFBr, *cis*- and *trans*-C₄H₉CF=CFH.

C₄H₉CF=CFBr: MS (EI) calcd. for $C_6H_9BrF_2$ 197.9850209 (⁷⁹Br), found 197.9852 (⁷⁹Br).

Reaction of [Bu₄N][CF₃C=CBF₃] with "BrF": A solution of [Bu₄N][CF₃C=CBF₃] (101 mg, 250 µmol) and [Bu₄N][PF₆] (59 mg, 153 µmol) (internal integral standard) in PFB (1.3 mL) in a 8.0 mm. i. d. FEP trap was cooled to ≈ 0 °C. Afterwards, solutions of BrF₃ (100 µmol) and Br₂ (100 µmol) (300 µmol of "BrF") in PFB (0.1 mL) were added. The solution was stirred at ≈ 20 °C for 0.5 h till discoloration. It contained [Bu₄N][CF₃C=CBF₃] (180 µmol, 28% conversion), [Bu₄N][CF₃CBr=CBrBF₃] (32 µmol, 46%) (*cis/trans* = 63:37), [Bu₄N][CF₃CBr₂-CFBrBF₃] (5 µmol, 7%), [Bu₄N][CF₃CBr₂-CF₂BF₃] (14 µmol, 20%), [Bu₄N][BF₄] (35 µmol, 50%), CF₃C=CBr (6 µmol, 9%), and CF₃CBr=CBr₂ (12 µmol, 17%) (¹⁹F NMR). The solution was reacted with further BrF₃ (300 µmol) and Br₂ (300 µmol) (total amount: 1200 µmol of "BrF") in PFB (0.1 mL). The red-orange solution was stirred at ≈ 20 °C for 4 h and became pale yellow. It contained [Bu₄N][CF₃CBr=CBrBF₃] (21 µmol, 8%) (*cis/trans* = 86:14), V. V. Bardin, N. Y. Adonin, H.-J. Frohn

[Bu₄N][CF₃CBr₂–CF₂BF₃] (70 μmol, 28%), [Bu₄N][BF₄] (138 μmol, 55%), and CF₃CBr=CBr₂ (80 μmol, 32%) (¹⁹F NMR). The solvent was removed on an evaporator at <30 °C (bath) and the remaining yellow oil was extracted with CCl₄ (1 mL). The extract contained CF₃CBr=CBr₂ besides residual PFB (¹⁹F NMR). In all cases, signals of minor unrecognized components were observed besides PFB. In the first step, the presence of [Bu₄N][CF₃CBr₂–CFBrBF₃] (≤5 μmol) (signals at δ = -57.7 [dq ⁴J(F³, F¹) = 9, ⁵J(F³, BF₃) = 9 Hz, 3F, F³), -68.0 (m, 1F, F¹), -139.7 [q, ¹J(F,B) = 38 Hz, 3F, BF₃] was assumed.

Reactions of Tetrabutylammonium Organyltrifluoroborates with Iodine Chloride in Halocarbon Solutions

Reaction of [Bu₄N][trans-C₄F₉CF=CFBF₃]: A solution of [Bu₄N][trans-C₄F₉CF=CFBF₃] (190 mg, 0.32 mmol) in CH₂Cl₂ (0.5 mL) was treated with portions of a solution of ICl (67 mg, 0.41 mmol) in CH₂Cl₂ (0.3 mL) at ≈ 20 °C. The addition of the first portion of ICl (0.12 mmol, 0.38 equiv.) ended with a molar ratio of [Bu₄N][trans-C₄F₉CF=CFBF₃] to trans-C₄F₉CF=CFI of 64:36 which did not change within 20 h. The addition of following portions of ICl and sequential NMR measurements after 30 min showed the fast conversion of [Bu₄N][trans-C₄F₉CF=CFBF₃] to trans-C₄F₉CF=CFI (*n* equiv. ICl/ratio ([Bu₄N][trans-C₄F₉CF=CFBF₃]: trans-C₄F₉CF=CFI): 0.38/56:44; 0.53/32:68; 1.28/0:100). The ¹⁹F NMR spectra contained a broadened signal ($\Delta v_{1/2} = 255$ Hz) of a *F*-B resonance at $\delta = -144$ ppm.

trans-C₄F₉CF=CFI: ¹⁹F NMR (CH₂Cl₂): $\delta = -81.8$ [tt, ³*J*(F⁶, F⁵) = 3, ⁴*J*(F⁶, F⁴) = 10 Hz, 3F, F⁶], -106.9 [ttd, ⁵*J*(F¹, F⁴) = 6, ⁴*J*(F¹, F³) = 27, ³*J*(F¹, F²) = 150 Hz, 1F, F¹], -117.4 [dtd ³*J*(F³, F²) = 13, ⁴*J*(F³, F⁵) = 13, ⁴*J*(F³, F¹) = 26 Hz, 2F, F³], -125.2 (m, 2F, F⁴), -127.1 (m, 2F, F⁵), -145.9 [md ³*J*(F², F¹) = 150 Hz, 1F, F²] {ref.^[31] ¹⁹F NMR (CH₂Cl₂): $\delta = -81.7$ (3F, F⁶), -106.6 [ttd, ⁵*J*(F¹, F⁴) = 5.5, ⁴*J*(F¹, F³) = 27, ³*J*(F¹, F²) = 151 Hz, 1F, F¹], -117.0 (2F, F³), -124.8 (2F, F⁴), -126.9 (2F, F⁵), -144.8 [d, ³*J*(F², F¹) = 151 Hz, 1F, F²]}.

Reaction of [Bu₄N][CF₂=C(CF₃)BF₃]: A solution of ICl (120 mg, 0.73 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise to a solution of [Bu₄N][CF₂=C(CF₃)BF₃] (273 mg, 0.62 mmol) in CH₂Cl₂ (0.7 mL) at ≈ 20 °C over a period of 30 min. The ¹⁹F NMR spectrum showed the formation of CF₂=C(CF₃)I (0.47 mmol, 76%) and CF₂=C(CF₂Cl)I (0.04 mmol, 6%) and contained a broadened *F*-B signal at $\delta = -144$ ppm ($\Delta v_{1/2} = 347$ Hz). The ¹¹B NMR spectrum contained unresolved signals at 3.5 and 0 ppm in the integral ratio 3:100.

$$\begin{split} \mathbf{CF_2=C(CF_3)I:} \ ^{19}\mathbf{F} \ \mathbf{NMR} \ (\mathrm{CH}_2\mathrm{Cl}_2): \ \delta &= -58.6 \ [\mathrm{dd}, \ ^4J(\mathrm{F}^3, \ \mathrm{F}^{1cis}) = 11, \\ ^4J(\mathrm{F}^3, \ \mathrm{F}^{1trans}) &= 22 \ \mathrm{Hz}, \ 3\mathrm{F}, \ \mathrm{F}^3], \ -61.7 \ [\mathrm{dq} \ \ ^2J(\mathrm{F}^{1trans}, \ \mathrm{F}^{1cis}) = 3, \\ ^4J(\mathrm{F}^{1trans}, \ \mathrm{F}^3) &= 22 \ \mathrm{Hz}, \ 1\mathrm{F}, \ \mathrm{F}^{1trans}], \ -61.9 \ [\mathrm{dq} \ \ ^2J(\mathrm{F}^{1cis}, \ \mathrm{F}^{1trans}) = 3, \\ ^4J(\mathrm{F}^{1cis}, \ \mathrm{F}^3) &= 11 \ \mathrm{Hz}, \ 1\mathrm{F}, \ \mathrm{F}^{1cis}] \ \{\mathrm{ref}^{137} \ \ ^{19}\mathbf{F} \ \mathbf{NMR} \ (\mathrm{DMF}): \ \delta = -58.8 \\ [\mathrm{d} \ 22 \ \mathrm{Hz}, \ \mathrm{d} \ 11 \ \mathrm{Hz}, \ 3\mathrm{F}, \ \mathrm{F}^3], \ -61.6 \ [\mathrm{q} \ 22 \ \mathrm{Hz}, \ \mathrm{d} \ 2 \ \mathrm{Hz}, \ 1\mathrm{F}], \ -62.0 \ [\mathrm{q} \ 11 \ \mathrm{Hz}, \ \mathrm{d} \ \mathrm{Hz}, \ 1\mathrm{F}] \}. \end{split}$$

CF₂=C(CF₂Cl)I: ¹⁹**F NMR** (CH₂Cl₂): $\delta = -43.7$ [dd, ⁴*J*(F³, F¹*cis*) = 9, ⁴*J*(F³, F¹*trans*) = 29 Hz, 2F, F³], -61.4 [dt, ²*J*(F¹*trans*, F¹*cis*) = 4, ⁴*J*(F¹*trans*, F³) = 29 Hz, 1F, F¹*trans*], -63.3 [dt, ²*J*(F¹*cis*, F¹*trans*) = 4, ⁴*J*(F¹*cis*, F³) = 9 Hz, 1F, F¹*cis*].

Reaction of [Bu₄N][CF₂=CFBF₃]: A dark solution of ICl (66 mg, 0.40 mmol) in CH₂Cl₂ (0.3 mL) was added dropwise to a stirred solution of [Bu₄N][CF₂=CFBF₃] (110 mg, 0.28 mmol) in CH₂Cl₂ (0.5 mL) at \approx 20 °C. The yellowish solution was stirred for 15 min. The ¹⁹F NMR spectrum displayed the formation of CF₂=CFI (0.21 mmol, 75%) and contained a broadened *F*-B signal at δ = -144 ppm (Δ v_{1/2}

= 268 Hz). The ¹¹B NMR spectrum contained unresolved signals at 2.5 and -1.0 ppm in the ratio 1:100 and no resonances of either [CF₂=CFBF₃]⁻ nor [CF₂X–CFYBF₃]⁻.

Reaction of [Bu₄N][*trans***-C₄H₉CF=CFBF₃]: A solution of ICl (0.38 mmol) in CHCl₃ (1 mL) was added dropwise to a solution of [Bu₄N][***trans***-C₄H₉CF=CFBF₃] (0.36 mmol) in CHCl₃ (1.1 mL) at \approx 20 \,^{\circ}C within 5 min. The color of ICl disappeared immediately after dropping. The yellow solution was stirred for 0.5 h at \approx 20 \,^{\circ}C and diluted with CDCl₃. The ¹H and ¹⁹F NMR spectra showed the resonances of** *trans***-C₄H₉CF=CFI (0.23 mmol, 64 %),** *trans***-C₄H₉CF=CFH (0.13 mmol, 36 %), and [Bu₄N][BF₄] (0.36 mmol, 100 %; a singlet at \delta = -152.2 \, ppm) besides a weak resonance at \delta = -126 \, ppm (\Delta v_{1/2} = 97 \, Hz).**

trans-C₄H₉CF=CFI: ¹H NMR (CDCl₃ + CHCl₃): δ = 2.46 [tdd, ³*J*(H³, H⁴) = 7, ⁴*J*(H³, F¹) = 6, ³*J*(H³, F²) = 21 Hz, 2H, H³], 1.6–1.3 (m, 4H, H^{4, 5}), 0.87 [t, ³*J*(H⁶, H⁵) = 7 Hz, 3H, H⁶] {ref.^[38]} δ = 2.65 [dq ³*J*(H³, F²) = 20, ⁴*J*(H³, F¹) = 7.5 Hz, 2H, H³], 1.5 (4H), 0.95 (t, 3H, H⁶)}. ¹⁹F NMR (CDCl₃ + CHCl₃): δ = -129.1 [td, ⁴*J*(F¹, H³) = 6, ³*J*(F¹, F²) = 141 Hz, 1F, F¹], -130.9 [td, ³*J*(F², H³) = 22, ³*J*(F², F¹) = 141 Hz, 1F, F²] {ref.^[38]} δ = -128.2 (dt, 1F, F¹), -130.6 (dt, 1F, F²); ³*J*(F¹, F²) = 141 Hz}.

Reaction of [Bu₄N][C₄H₉CH=CHBF₃]: A solution of ICl (0.27 mmol) in CH₂Cl₂ (0.9 mL) was added dropwise within 5 min to a solution of $[Bu_4N][C_4H_9CH=CHBF_3]$ (*cis/trans* = 67:33) (0.27 mmol) in CH₂Cl₂ (1 mL) at 20 °C. The color of ICl disappeared immediately after dropping. After the last drop a red-brownish solution remained which was stirred for 1 h at 20 °C. The ¹H NMR spectrum showed the resonances of $C_4H_9CH=CHI^{[39]}$ (0.11 mmol, 41%) $(cis/trans = 55:45), C_4H_9CHCl-CH_2I^{[40]}$ (0.03 mmol, 11%), $C_4H_9CHCl-CH_2Cl^{[41]}$ (0.03 mmol, 11%), and $[Bu_4N][BF_4]$ (0.27 mmol, 100%). To remove the latter salt, the solution was diluted with CCl₄ (2 mL), and the volatile components were distilled off at 70 °C (bath). The yellow distillate contained drops of a dense red oil, which were removed by passing through a short column (length 1.5 cm) filled with anhydrous MgSO₄. The yellow liquid phase contained C₄H₉CH=CHI^[39] (31%) (*cis/trans* = 58:42), C₄H₉CHCl-CH₂I (32%), C₄H₉CH=CHCl (5%) (cis/trans = 40:60), besides minor unknown products (GC-MS data).

Reaction of [Bu₄N][CF₃C=CBF₃]: A solution of ICl (85 mg, 0.52 mmol) in CH₂Cl₂ (0.2 mL) was added dropwise to a solution of [Bu₄N][CF₃C=CBF₃] (152 mg, 0.38 mmol) in CH₂Cl₂ (0.9 mL) at ≈ 20 °C over a period of 1 h. The ¹⁹F NMR spectrum showed the formation of CF₃C=CI (0.34 mmol, 89%) ($\delta = -50.7$ ppm) (proved by the addition of the pure substance^[42]) besides [Bu₄N][BF₄] { δ (F) = -152 ppm [q, ¹*J*(F, B) = 1 Hz]} (0.32 mmol, 84%).

Reaction of [Bu₄N][C₄H₉BF₃]: A solution of ICl (0.31 mmol) in CH₂Cl₂ (1 mL) was added dropwise to a solution of [Bu₄N][C₄H₉BF₃] (0.31 mmol) in CH₂Cl₂ (0.9 mL) at 20 °C. The color of ICl disappeared immediately after dropping. After the last drop a red-brownish solution remained. The solution was stirred for 3 h at 20 °C. The ¹H and ¹⁹F NMR spectra showed the resonances of C₄H₉I (0.15 mmol, 48%), C₄H₁₀ (0.06 mmol, 19%), [Bu₄N][BF₄] { δ (F) = -152 ppm (s)} (0.31 mmol, 100%) and a very broad resonance at δ = -132 ppm.

Reactions on the Surface of Potassium Perfluoroalkenyltrifluoroborates with Chlorine in Halocarbons

Reaction of K[CF₂=CFBF₃]: Chlorine (4.5 mmol) was bubbled into a stirred suspension of K[CF₂=CFBF₃] (173 mg, 0.92 mmol) in CH₂Cl₂

(2 mL) at ~20 °C for 0.5 h. The separated mother liquor showed the presence of CF₂Cl–CFCl₂ (0.01 mmol, 1%) (¹⁹F NMR). The solid part was dried in vacuo, extracted with MeCN (2 mL). The extract was evaporated to dryness to yield a white solid, K[CF₂Cl–CFClBF₃], (155 mg, 65%).

When a stirred suspension of K[CF₂Cl–CFClBF₃] (155 mg) in dichloromethane (2 mL) was treated with further chlorine (4.5 mmol) (\approx 20 °C, 30 min), no further reaction occurred. The ¹⁹F NMR spectrum of the mother liquor showed no fluoroorganic compounds. After evaporation of the suspension in vacuo to dryness, K[CF₂Cl–CFClBF₃] (145 mg) was recovered.

K[**CF**₂**CI–CFCIBF**₃]: ¹¹**B NMR** (CH₃CN): $\delta = -0.1$ [dq ²*J*(B, F¹) = 16, ¹*J*(B, F) = 39 Hz]. ¹⁹**F NMR** (CH₃CN): $\delta = -60.2$ [qdd ⁴*J*(F^{2A}, BF₃) = 7, ³*J*(F^{2A}, F¹) = 13, ²*J*(F^{2A}, F^{2B}) = 169 Hz, 1F, F^{2A}], -61.5 [qdd ⁴*J*(F^{2B}, BF₃) = 6, ³*J*(F^{2B}, F¹) = 12, ²*J*(F^{2B}, F^{2A}) = 169 Hz, 1F, F^{2B}], -142.0 (m, 1F, F¹), -149.5 [dtq (1:1:1:1), ³*J*(BF₃, F¹) = 6, ⁴*J*(BF₃, F²) = 6, ¹*J*(F, B) = 39 Hz, 3F, BF₃]. Anal. for C₂BCl₂F₆K (258,83): calcd. C 9.28; Cl 27.40 %; F 44.04; found: C 9.1; Cl 27.2; F 44.5 %.

Attempted Reaction of K[*trans*-C₄F₉CF=CFBF₃]: Chlorine (3 mmol) in argon was slowly bubbled into a stirred suspension of K[*trans*-C₄F₉CF=CFBF₃] (249 mg, 0.64 mmol) in 1,2-dichloroethane (2.5 mL) for 1 h. The solid was filtered off. After drying on air 222 mg of the starting borate was recovered (19 F NMR).

Reactions on the Surface of Potassium Organyltrifluoroborates with Bromine in Halocarbons

Reaction of K[CF₂=CFBF₃]: A. Bromine (95 mg, 0.59 mmol) was added to a suspension of K[CF₂=CFBF₃] (110 mg, 0.55 mmol) in CH₂Cl₂ (1 mL) at \approx 0 °C. The suspension was stirred for 1 h before the mother liquor was separated. The precipitate was washed with CH₂Cl₂ (2 × 2 mL). The combined extracts contained CF₂Br–CFBr₂ (0.03 mmol, 5%) (¹⁹F NMR). The solid residue was dried in vacuo and extracted with MeCN. The extract was evaporated to dryness yielding K[CF₂Br–CFBrF₃] (178 mg, 93% yield).

B. The reaction of bromine (160 mg, 1.00 mmol) and K[CF₂=CFBF₃] (190 mg, 1.00 mmol) in CH₂Cl₂ suspension (1 mL) was performed at \approx 20 °C for 24 h as above. The combined CH₂Cl₂ extracts contained CF₂Br–CFBr₂ (0.08 mmol, 8%) and a trace of CF₂Br–CFHBr (¹⁹F NMR). Borate K[CF₂Br–CFBrBF₃] was isolated in 70% yield (242 mg).

C. K[CF₂=CFBF₃] (116 mg, 0.61 mmol) was suspended in CH₂Cl₂ (0.5 mL) in a quartz tube and bromine (99 mg, 0.61 mmol) was added. The suspension was stirred at \approx 20 °C for 9 h under irradiation with a photo lamp (100 W). The mother liquor was separated. The solid part was washed with CH₂Cl₂ (2 × 2 mL). The combined extracts contained CF₂Br–CFBr₂ (0.04 mmol, 7%) (¹⁹F NMR). The solid residue was dried in vacuo and extracted with acetone. The extract was evaporated to dryness yielding K[CF₂Br–CFBr₃] (135 mg, 0.39 mmol, 64% yield).

K[**CF**₂**Br**-**CFBrBF**₃]: ¹¹**B NMR** (CH₃CN): $\delta = 0.0$ [dq ²*J*(B, F¹) = 16, ¹*J*(B, F) = 39 Hz]. ¹⁹**F NMR** (CH₃CN): $\delta = -50.7$ [qdd ⁴*J*(F^{2A}, BF₃) = 6, ³*J*(F^{2A}, F¹) = 18, ²*J*(F^{2A}, F^{2B}) = 167 Hz, 1F, F^{2A}], -52.7 [qdd ⁴*J*(F^{2B}, BF₃) = 6, ³*J*(F^{2B}, F¹) = 21, ²*J*(F^{2B}, F^{2A}) = 167 Hz, 1F, F^{2B}], -138.5 (m, 1F, F¹), -147.7 [q (1:1:1:1)dt, ¹*J*(F, B) = 39, ³*J*(BF₃, F¹) = 6, ⁴*J*(BF₃, F²) = 6 Hz, 3F, BF₃] (conformer A, cf. reaction of [Bu₄N][CF₂=CFBF₃] with Br₂). NMR spectroscopic data in DMSO

are given in Table S2 (Supporting Information). Anal. for $C_2BBr_2F_6K$ (347,73): calcd. C 6.91; Br 45.96; F 32.78 %; found: C 6.8; Br 45.7; F 33.0 %.

CF₂Br–CFBr₂. ¹⁹**F NMR** (CH₃CN): $\delta = -59.0$ [d, ³*J*(F², F¹) = 17 Hz, 2F, F²], -70.4 [t, ³*J*(F¹, F²) = 17 Hz, 1F, F¹) {ref.^[43] (in CF₂Cl₂) (-36 °C): $\delta = -59.1$ (2F F²), -68.9 (1F F¹)}.

 $\begin{array}{l} \textbf{CF}_{2}\textbf{Br}-\textbf{CFHBr:} \ \ {}^{19}\textbf{F} \ \textbf{NMR} \ (\textbf{CH}_{2}\textbf{Cl}_{2}): \ \delta = -59.6 \ [ddd, \ {}^{3}J(\textbf{F}^{2A}, \ \textbf{H}^{1}) = \\ \textbf{3}, \ {}^{3}J(\textbf{F}^{2A}, \ \textbf{F}^{1}) = 24, \ {}^{2}J(\textbf{F}^{2A}, \ \textbf{F}^{2B}) = 172 \ \textbf{Hz}, \ \textbf{1F}, \ \textbf{F}^{2A}], \ -63.9 \ [ddd, \ {}^{3}J(\textbf{F}^{2B}, \ \textbf{H}^{1}) = 9, \ {}^{3}J(\textbf{F}^{2B}, \ \textbf{F}^{1}) = 21, \ {}^{2}J(\textbf{F}^{2B}, \ \textbf{F}^{2A}) = 172 \ \textbf{Hz}, \ \textbf{1F}, \ \textbf{F}^{2B}], \\ -149.4 \ [ddd, \ {}^{2}J(\textbf{F}^{1}, \ \textbf{H}^{1}) = 47, \ {}^{3}J(\textbf{F}^{1}, \ \textbf{F}^{2A}) = 24, \ {}^{3}J(\textbf{F}^{1}, \ \textbf{F}^{2B}) = 21 \ \textbf{Hz}, \\ \textbf{1F}, \ \textbf{F}^{2}] \ \{\textbf{ref.}^{[44]} \ (\textbf{in } \textbf{CCl}_{3}\textbf{F}): \ \delta = -59.3 \ (\textbf{1F}, \ \textbf{F}^{2A}), \ -63.8 \ (\textbf{1F}, \ \textbf{F}^{2B}), \ -149.3 \\ (\textbf{1F}, \ \textbf{F}^{1}); \ {}^{3}J(\textbf{F}^{2A}, \ \textbf{H}^{1}) = 3.4, \ {}^{3}J(\textbf{F}^{2A}, \ \textbf{F}^{1}) = 24.0, \ {}^{2}J(\textbf{F}^{2A}, \ \textbf{F}^{2B}) = 172.5, \\ {}^{3}J(\textbf{F}^{2B}, \ \textbf{H}^{1}) = 9.1, \ {}^{3}J(\textbf{F}^{2B}, \ \textbf{F}^{1}) = 20.6, \ {}^{2}J(\textbf{F}^{1}, \ \textbf{H}^{1}) = 47.0 \ \textbf{Hz}) \}. \end{array}$

Attempted Reaction of K[*trans*-C₄F₉CF=CFBF₃]: A. K[*trans*-C₄F₉CF=CFBF₃] (118 mg, 0.30 mmol) was suspended in a solution of bromine (64 mg, 0.40 mmol) in CCl₄ (1 mL) and stirred at 93–95 °C (sealed tube) for 14 h. After cooling to 20 °C, the solid part was isolated, washed with CH₂Cl₂ (4 mL), and dried in vacuo. The starting material K[*trans*-C₄F₉CF=CFBF₃] (113 mg, 96%) (¹⁹F NMR) was recovered.

B. K[*trans*-C₄F₉CF=CFBF₃] (186 mg, 0.48 mmol) was suspended in a solution of bromine (87 mg, 0.54 mmol) in CH₂Cl₂ (1.5 mL) and stirred at ≈ 20 °C for 20 h. The solid part was separated, washed with CH₂Cl₂ (2 mL), and dried in vacuo to give K[*trans*-C₄F₉CF=CFBF₃] (168 mg, 90%) (¹⁹F NMR).

Reaction of K[*trans*-C₄H₉CF=CFBF₃]: A solution of bromine (118 mg, 0.74 mmol) in CH₂Cl₂ (0.2 mL) was added dropwise to a suspension of K[*trans*-C₄H₉CF=CFBF₃] (98 mg, 0.43 mmol) in CH₂Cl₂ (2 mL) at ≈ 20 °C within 5 min. The color of bromine disappeared within a few min. The suspension was stirred for 1 h, the mother liquor was separated by centrifugation, washed with water and dried with MgSO₄. The ¹⁹F NMR spectrum showed the resonances of C₄H₉CF=CFBr (*cis/trans* = 40:60) (0.03 mmol, 7%), C₄H₉CF=CFH (*cis/trans* = 18:82) (0.07 mmol, 16%), C₄H₉CFBr–CFBr₂ (0.20 mmol, 47%), and C₄H₉CFBr–CFHBr (0.07 mmol, 16%). The precipitate was washed with CH₂Cl₂ and dried in vacuo. The acetone extract contained only traces of fluoroorganics (¹⁹F NMR).

Reaction of K[*trans*-C₆H₅CF=CFBF₃]: A solution of bromine (78 mg, 0.49 mmol) in CH₂Cl₂ (0.2 mL) was added dropwise to a suspension of K[*trans*-C₆H₅CF=CFBF₃] (71 mg, 0.28 mmol) in CH₂Cl₂ (2 mL) at \approx 20 °C within 5 min. The suspension was stirred for 1 h, the mother liquor was separated after centrifugation, washed with water and dried with MgSO₄. The ¹⁹F NMR spectrum showed the resonances of *trans*-C₆H₅CF=CFBr (0.04 mmol, 14%) and C₆H₅CFBr–CFBr₂ (0.21 mmol, 75%) besides minor amounts of unknown products. The precipitate was washed with CH₂Cl₂ and dried in vacuo. The acetone extract contained only traces of fluoroorganics (¹⁹F NMR).

Attempted Reaction of K[C₄H₉BF₃]: A solution of bromine (0.54 mmol) in CH₂Cl₂ (1.8 mL) was added to a suspension of K[C₄H₉BF₃] (78 mg, 0.47 mmol) in CH₂Cl₂ (1 mL) at ≈ 20 °C. The red suspension was stirred for 6 h. The mother liquor contained only traces of C₄H₉Br and C₄H₁₀ (¹H NMR).

Attempted Reaction of K[CF₃C=CBF₃]: A suspension of salt K[CF₃C=CBF₃] (100 mg, 0.50 mmol) and bromine (252 mg, 1.57 mmol) was stirred in CH₂Cl₂ (1 mL) at \approx 20 °C for 36 h. The ¹⁹F NMR spectrum of the decanted mother liquor showed a negligible

amount of fluoroorganic compounds. The solid was washed with CH_2Cl_2 (2 mL) and dried in vacuo to recover K[CF₃C=CBF₃] (92 mg, 92%) (¹⁹F NMR).

Reaction on the Surface of K[CF₂=CFBF₃] with Iodine Chloride in Halocarbon

A solution of ICl (1.13 mmol) in CH₂Cl₂ (5 mL) was added dropwise to the stirred suspension of K[CF₂=CFBF₃] (174 mg, 0.92 mmol) in CH_2Cl_2 (1 mL) at ≈ 20 °C. The suspension was stirred for 1.5 h and centrifuged. The mother liquor was decanted. The dark violet solution contained CF2=CFI (0.26 mmol, 31%) and unknown products (19F NMR). The solid part was washed with CH_2Cl_2 (2×2 mL), dried in vacuo at ≈ 20 °C for 1 h and extracted with MeCN (2×2 mL). The solvent was removed under reduced pressure at 25 °C to give a vellowish solid (122 mg). The ¹¹B and ¹⁹F NMR spectra in CD₃CN showed the resonances of K[CF₂=CFBF₃] (0.07 mmol, 92% conversion), K[CF₂I-CFClBF₃] (0.25 mmol, 29%) besides an admixture of presumably K[FC(O)–CFClBF₃] (0.06 mmol, 7%) {signals at $\delta = 18.8$ $[qd, {}^{4}J(F^{2}, BF_{3}) = 6, {}^{3}J(F^{2}, F^{1}) = 44 Hz, 1F, F^{2}], -148.3 (m, 1F, F1),$ $-150.6 \, [ddq \, (1:1:1:1), \, {}^{4}J(BF_{3}, F^{2}) = 6, \, {}^{3}J(BF_{3}, F^{1}) = 10, \, {}^{1}J(F, B) =$ 38 Hz, 3F, BF₃] (¹⁹F NMR) and at 0.8 [dq ${}^{2}J(B, F^{1}) = 15$, ${}^{1}J(B, F) =$ 39 Hz] (¹¹B NMR)}.

K[CF₂I-CFCIBF₃]: ¹¹**B NMR** (CD₃CN): $\delta = 0.6$ [dq ²*J*(B, F¹) = 15, ¹*J*(B, F) = 38 Hz]. ¹⁹**F NMR** (CD₃CN): $\delta = -54.2$ [dd, ³*J*(F^{2A}, F¹) = 19, ²*J*(F^{2A}, F^{2B}) = 165 Hz, 1F, F^{2A}], -57.4 [qdd ⁴*J*(F^{2B}, BF₃) = 7, ³*J*(F^{2B}, F¹) = 20, ²*J*(F^{2B}, F^{2A}) = 165 Hz, 1F, F^{2B}], -147.0 (m, 1F, F¹), -147.4 [q (1:1:1:1), ¹*J*(F, B) = 39 Hz, 3F, BF₃].

Reaction of trans- C_4F_9CF =CHF with Bromine

The heterogeneous mixture of *trans*-C₄F₉CF=CHF (1.0 g, 3.5 mmol) and bromine (0.6 g, 3.6 mmol) was stirred in a quartz tube at 30 °C under irradiation with a super-high-pressure mercury lamp (λ >365 nm, 240 W) (two lamps DRK 120) for 15 h. The bottom and the upper phase contained *cis*-C₄F₉CF=CHF and C₄F₉CFBr-CHFBr. The signals of *trans*-C₄F₉CF=CHF were not detected. After addition of a new portion of bromine (0.6 g, 3.6 mmol) the irradiation was continued for 24 h. The reaction mixture was washed with aqueous Na₂S₂O₅, with water, and finally dried with MgSO₄. The ¹⁹F NMR spectrum showed the signals of C₄F₉CFBr-CHFBr and a trace of *cis*-C₄F₉CF=CHF. Distillation gave pure C₄F₉CFBr-CHFBr (0.82 g, 0.85 mmol, 53 %) (b. p. 135–138 °C).

 $C_4F_9CFBr-CHFBr: {}^{1}H NMR (CDCl_3): \delta = 6.80 [d, {}^{2}J(H^{1}, F^{1}) =$ 48 Hz, 1H, H¹] (diastereomer A); 6.68 [dd, ${}^{3}J(H^{1}, F^{2}) = 12, {}^{2}J(H^{1}, F^{1})$ = 48 Hz, 1H, H¹] (diastereomer B) (A:B = 55:45). ¹⁹F NMR (CDCl₃): $\delta = -81.7$ [tt, ${}^{3}J(F^{6}, F^{5}) = 3$, ${}^{4}J(F^{6}, F^{4}) = 10$ Hz, 3F, F⁶], -111.7 [md ${}^{2}J(F^{3A}, F^{3B}) = 289 \text{ Hz}, 1F, F^{3A}], -114.0 \text{ [md } {}^{2}J(F^{3B}, F^{3A}) = 289 \text{ Hz},$ 1F, F^{3B}], -120.1 [md ${}^{2}J(F^{4A}, F^{4B}) = 298$ Hz, 1F, F^{4A}], -121.0 [md ${}^{2}J(F^{4B}, F^{4A}) = 298 \text{ Hz}, 1F, F^{4B}], -126.6 \text{ [md } {}^{2}J(F^{5A}, F^{5B}) = 294 \text{ Hz},$ 1F, F^{5A}], -127.2 [md ²J(F^{5B} , F^{5A}) = 294 Hz, 1F, F^{5B}], -129.3 [md ${}^{3}J(F^{2}, F^{1}) = 41$ Hz, 1F, F²], -146.0 [ttdd, ${}^{5}J(F^{1}, F^{4}) = 3$, ${}^{4}J(F^{1}, F^{3}) =$ 12, ${}^{3}J(F^{1}, F^{2}) = 40$, ${}^{1}J(F^{1}, H^{1}) = 48$ Hz, 1F, F¹] (diastereomer A); -81.7 [tt, ${}^{3}J(F^{6}, F^{5}) = 3$, ${}^{4}J(F^{6}, F^{4}) = 10$ Hz, 3F, F⁶], -112.4 [md ${}^{2}J(F^{3A}, F^{3B})$ = 291 Hz, 1F, F^{3A}], -112.9 [md ²*J*(F^{3B} , F^{3A}) = 291 Hz, 1F, F^{3B}], -120.9 (m, 2F, F⁴), -126.9 (m, 2F, F⁵), -133.1 (m, 1F, F²), -143.9 [md ²*J*(F¹, H^{1}) = 48 Hz, 1F, F¹] (diastereomer B) (A:B = 55:45). **IR** (neat): \tilde{v} = 2991 (C-H), 1750, 1356, 1328, 1240, 1224, 1211, 1142, 1101, 1064, 1033, 911, 812, 778, 743, 712, 700, 662, 629, 595, 577, 531 cm⁻¹. MS (EI) calcd. for C₆HBr₂F₁₁ 439.82703 (⁷⁹Br), found 439.82704 (⁷⁹Br).

Zeitschrift für anorganische und allgemeine Chemie

Supporting Information (see footnote on the first page of this article): Solubilities of selected organylfluoroborate salts in different solvents. NMR spectroscopic data of $K[C_4H_9C=CBF_3]$ in [D₆]acetone.

Acknowledgement

We gratefully acknowledge financial support by the *Deutsche Forschungsgemeinschaft*, the *Russian Foundation for Basic Research*, the *Fonds der Chemischen Industrie*, and *Solvay Fluor und Derivate GmbH* for donation of PFB.

References

- [1] V. V. Bardin, H.-J. Frohn, *Main Group Met. Chem.* **2002**, *25*, 589–613.
- [2] a) N. Yu. Adonin, V. V. Bardin, Usp. Khim. 2010, 79, 832–860;
 b) N. Yu. Adonin, V. V. Bardin, Russ. Chem. Rev. (Engl. Transl.) 2010, 79, 757–785.
- [3] H.-J. Frohn, M. E. Hirschberg, A. Wenda, V. V. Bardin, J. Fluorine Chem. 2008, 129, 459–473.
- [4] H.-J. Frohn, M. Giesen, D. Welting, V. V. Bardin, J. Fluorine Chem. 2010, 131, 922–936.
- [5] H.-J. Frohn, M. Giesen, V. V. Bardin, J. Fluorine Chem. 2010, 131, 969–974.
- [6] a) H.-J. Frohn, V. V. Bardin, Organoxenonium salts. Synthesis by "Xenodeborylation", Reactivities, and NMR Spectroscopic Properties in: Recent Developments in Carbocation and Onium Ion Chemistry, ACS Symposium Series 965 (Ed.: K. K. Laali) Oxford University Press, 2007, pp 428–457; b) H.-J. Frohn, V. V. Bardin, Organometallics 2001, 20, 4750–4762.
- [7] H.-J. Frohn, N. Yu. Adonin, V. V. Bardin, V. F. Starichenko, *Tetra-hedron Lett.* 2002, 43, 8111–8114.
- [8] N. Yu. Adonin, D. E. Babushkin, V. N. Parmon, V. V. Bardin, G. A. Kostin, V. I. Mashukov, H.-J. Frohn, *Tetrahedron* 2008, 64, 5920–5924.
- [9] N. Yu. Adonin, V. V. Bardin, Chem. Today 2009, 27, 31-33.
- [10] N. Yu. Adonin, S. A. Prikhod'ko, V. V. Bardin, V. N. Parmon, *Mendeleev Commun.* **2009**, *19*, 260–262.
- [11] V. V. Bardin, S. G. Idemskaya, H.-J. Frohn, Z. Anorg. Allg. Chem. 2002, 628, 883–895.
- [12] H.-J. Frohn, V. V. Bardin, Z. Anorg. Allg. Chem. 2002, 628, 1853– 1856.
- [13] H.-J. Frohn, N. Yu. Adonin, V. V. Bardin, Z. Anorg. Allg. Chem. 2003, 629, 2499–2508.
- [14] H.-J. Frohn, V. V. Bardin, Z. Anorg. Allg. Chem. 2003, 629, 2465– 2469.
- [15] H.-J. Frohn, V. V. Bardin, Eur. J. Inorg. Chem. 2006, 3948–3953.
- [16] J. S. Hartman, G. J. Schrobilgen, *Inorg. Chem.* **1972**, *11*, 940–951.
- [17] J. S. Hartman, Z. Yuan, A. Fox, A. Nguyen, Can. J. Chem. 1996, 74, 2131–2142.
- [18] S. Darses, J.-P. Genet, Chem. Rev. 2008, 85, 289-325.
- [19] a) S. Rozen, Electrophilic Fluorination with Elemental Fluorine and Reagents derived from it, in: Advances in Organic Synthesis (Eds.: Atta-ur-Rahman, K. K. Laali) vol. 2, Bentham Science Publ., 2006, pp 3–41; b) D. F. Shellhamer, V. L. Heasley, The Chemistry of Interhalogen Monofluorides. in: Advances in Organic Synthesis (Eds.: Atta-ur-Rahman, K. K. Laali) vol. 2, Bentham Science Publ., 2006, pp 43–48.

- [20] L. M. Yagupolskii, Introduction of Fluorine by Halogen Fluorides in: Houben-Weyl Methods of Organic Chemistry, Organo-Fluorine Compounds, (Eds.: B. Baasner, H. Hagemann, J. C. Tatlow) 4th ed., vol. E10a, Thieme, Stuttgart, 2000, pp. 234–264.
- [21] L. S. Boguslavskaja, N. N. Chuvatkin, Halogen Fluorides in Organic Synthesis in: New Fluorinating Agents in Organic Synthesis, (Eds.: L. S. German, S. V. Zemskov) Springer, Berlin, 1989, pp. 140–196.
- [22] H.-J. Frohn, M. E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 2008, 634, 2539–2550.
- [23] a) F. Tellier, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 1989, 362, 23–29; b) G. Brauer, Handbuch der Präparativen Anorganischen Chemie, vol. 1, F. Enke Verlag, Stuttgart, p. 289.
- [24] H.-J. Frohn, V. V. Bardin, Z. Anorg. Allg. Chem. 2001, 627, 2499– 2505.
- [25] V. V. Bardin, N. Yu. Adonin, H.-J. Frohn, Organometallics 2005, 24, 5311–5317.
- [26] G. A. Molander, B. W. Katona, F. Machrouhi, J. Org. Chem. 2002, 67, 8416–8423.
- [27] S. Darses, G. Michaud, J.-P. Genet, Eur. J. Org. Chem. 1999, 1875–1883.
- [28] N. Yu. Adonin, V. V. Bardin, H.-J. Frohn, *Main Group Met. Chem.* 2009, 32, 109–114.
- [29] T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima, S. Morikawa, J. Fluorine Chem. 1992, 57, 259–284.
- [30] a) T. I. Filyakova, M. I. Kodess, A. Y. Zapevalov, *Zh. Org. Khim.* 1998, 34, 1317–1323; b) T. I. Filyakova, M. I. Kodess, A. Y. Zapevalov, *Russ. J. Org. Chem. (Engl. Transl.)* 1998, 34, 1256–1259.
- [31] R. D. Howells, H. Gilman, J. Fluorine Chem. 1975, 5, 99-114.
- [32] S. Martin, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 1984, 264, 155–161.
- [33] T. Gouyon, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 1990, 394, 37–44.
- [34] P. Jankowski, M. Masnyk, J. Wicha, Synth. Commun. 1989, 19, 873–880.
- [35] G. W. Kabalka, K. Yang, N. K. Reddy, C. Narayana, Synth. Commun. 1998, 28, 925–929.
- [36] Y. Inoue, T. Fukunaga, T. Hakushi, J. Org. Chem. 1983, 48, 1732– 1737.
- [37] P. A. Morken, R. F. Campbell, D. J. Burton, J. Org. Chem. 1993, 58, 1167–1172.
- [38] F. Tellier, R. Sauvêtre, J.-F. Normant, J. Organomet. Chem. 1987, 328, 1–13.
- [39] J. C. Stille, J. H. Simpson, J. Am. Chem. Soc. 1987, 109, 2138– 2152.
- [40] a) N. V. Zyk, G. A. Sereda, S. E. Sosonyuk, N. S. Zefirov, *Izv. Akad. Nauk* 1997, 877–878; b) N. V. Zyk, G. A. Sereda, S. E. Sosonyuk, N. S. Zefirov, *Russ. Chem. Bull.* 1997, *106*, 843–844.
- [41] a) M. S. Dzheiranshivili, M. B. Levinskii, N. G. Chkhubianishvili,
 I. B. Afanas'ev, *Zh. Org. Khim.* **1980**, *16*, 516–518; b) M. S.
 Dzheiranshivili, M. B. Levinskii, N. G. Chkhubianishvili, I. B.
 Afanas'ev, *J. Org. Chem. USSR (Engl. Transl.)* **1980**, *16*, 445–447.
- [42] H.-J. Frohn, V. V. Bardin, Z. Anorg. Allg. Chem. 2008, 634, 82– 86.
- [43] R. A. Newmark, C. H. Sederholm, J. Chem. Phys. 1965, 43, 602– 623.
- [44] R. D. Norris, G. Binsch, J. Am. Chem. Soc. 1973, 95, 182-190.

Received: June 21, 2011 Published Online: September 29, 2011