ORGANOMETALLICS

MX=AgCl, AuCl

Modular Synthesis of Chiral NHC Precursors and Their Silver and Gold Complexes

Zita Szabo, Matyas Timari, Rudolf Kassai, Bianka Szokol, Attila C. Benyei, Tamás Gáti, Attila Paczal,* and Andras Kotschy*

on formation of their silver or gold complexes a third element of asymmetry, axial chirality through hindered rotation of the aromatic substituent, is also present. The systematic study of the stereoselective formation of the NHC precursors led to scalable routes without the need for chiral chromatography. The NHC precursors were transformed efficiently into their silver and gold complexes, whose structural features were studied in detail both in solution and in the solid phase.

HC(OEt),

INTRODUCTION

The first isolation of a free N-heterocyclic carbene (NHC) by Arduengo¹ initiated a rapid development of this field.² This was fueled by the easily tunable electronic and steric properties of NHC ligands through structural modifications and the strength of the NHC-metal bond resulting in stable complexes. In addition to the utility of their metal complexes in catalysis, these carbenes have found widespread use in organocatalysis³ and in materials science;⁴ for some of their transition-metal complexes antibacterial and anticancer effects have also been reported.⁵

element of central chirality in the side chain, and for some of them

The increasing prominence of asymmetric transformations led to the development of chiral NHC precursors and their metal complexes. Several enantioselective transformations were reported employing C_2 -symmetrical NHCs.⁶ The research into C_1 -symmetrical NHCs has also developed dynamically in recent years due to reports of an improved control of stereoselectivity over C2-symmetrical analogues in several transformations.⁷ The majority of the C_1 -symmetrical NHC precursors reported to date possess a dihydroimidazole core with symmetrical C4 and C5 substituents and different substituents on the two nitrogen atoms of the carbene center (Figure 1). Alternatively, the symmetry of the central core can be broken through cyclization, resulting in a bi- or polycyclic carbene core. The number of examples with a nonsymmetrical monocyclic core (i.e., thiazole, triazole)⁸ is more limited, and only a few examples of imidazolium⁹ or dihydroimidazolium¹⁰ salts, having different substituents at C4 and C5, have been reported.

Figure 1. Representative examples of C_{2^-} and C_{1^-} symmetrical chiral NHC precursors and our target NHC carbene complex structures (bottom right).

Received: August 6, 2020

Scheme 1. Synthesis of the Key Intermediates 5a-c

Scheme 2. Synthesis of NHC Precursors 9a-h Using Amines as Diversity Sources

In NHCs bearing the stereodirecting group in the backbone, the chiral information is typically remote from the catalytically active metal center. The transfer of chirality can further be complicated by freely rotating N substituents, resulting in poor enantioselectivities. In the more successful examples this difficulty is countered by the fact that the generation of the NHC complex generates axial chirality at a hitherto freely rotating substituent, which is in the proximity of the catalytically active site, as first reported for C_2 -symmetrical NHC complexes by Grubbs and co-workers (Figure 1).¹¹

This concept was successfully extended to C_1 -symmetrical NHCs having a symmetrical¹² or asymmetrical backbone substitution¹³ (Figure 1). In a recent example achiral NHC precursors were transformed into chiral NHC-copper complexes, the asymmetry being generated on complex formation through hindered rotation, and the enantiomers could be separated by chiral chromatography.¹⁴

In asymmetric transformations optimization of the constitution of the NHC and, in case axial chirality is generated on complex formation, its conformational properties are equally important. This implies that the development of modular and scalable synthetic routes to chiral NHCs are a prerequisite of catalyst development.¹⁵ Understanding the interplay of inherent backbone and side-chain chirality of NHCs and the way axial chirality emerges during complex formation is important to arrive at efficient enantioselective catalysts. With these principles in mind, we set out to develop a synthetic route that is applicable to a diverse set of NHC precursors starting from easily accessible reagents, is easy to execute, and is scalable. In addition to preparing chiral NHC precursors, we also wanted to synthesize the corresponding NHC-silver and NHC-gold complexes to study their structure and dynamic behavior.

The general structure of the targeted NHC complexes is shown in Figure 1. All target molecules are based on the imidazolidine framework, with backbone chirality being derived from a nonsymmetrical *tert*-butyl substitution. All NHCs carried a chiral side chain, and to ensure the stability of the NHC complexes, all molecules carried a bulky aromatic substituent. In certain cases, this aromatic substituent was such that it could be a source of axial chirality on complex formation.

RESULTS AND DISCUSSION

Our synthetic approach relied on the synthesis of the appropriately substituted ethylenediamine derivative followed by ring closure with a C1 synthon. The first key intermediate we wanted to prepare was the aminoaldehyde 5, which already incorporated the tert-butyl group and the bulky aromatic substituent on the nitrogen atom (Scheme 1). We first synthesized the racemic aldehyde 5a in four steps. The reaction of glyoxal acid ethyl ester (1) and diisopropylaniline in the presence of a catalytic amount of formic acid at ambient temperature showed complete conversion after 3 h. The resulting Schiff base 2 was purified by column chromatography to give a honey-like liquid, which was reacted with tBuMgCl in anhydrous THF at 0 °C. The formed racemic amino ester mixture 3 was converted to amino alcohol 4a by reduction with LiAlH₄ in THF. The enantiomers 4b.c could be separated at this stage by chiral chromatography. Both the racemic amino alcohol 4a and also the pure compounds 4b,c were oxidized to the desired aminoaldehyde at 0 °C with Dess-Martin periodinane. We noted that it was important to add 1.1 equiv of water for an improved reaction profile and higher yield. After complete conversion the products 5a-c were isolated by a simple workup without chromatography.

The second stage of the process was the generation of the appropriate NHC precursors. With the homochiral aminoaldehyde 5b or 5c as the starting material, a set of diamines (8a-1) were prepared, the synthetic route depending on the nature of the substituent. The first approach relied on the introduction of diversity by the appropriate amine reagents Scheme 3. Synthesis of NHC Precursors 14a-d through the Diversification of Diamine 11

using reductive amination (Scheme 2). Sc was reacted with the corresponding amines 6a-h followed by the in situ reduction of the formed Schiff bases using NaBH₄ or LiAlH₄. Although the imines 7a-h could be isolated in the process, this did not lead to improved overall yields. Amines 6a,b, 6c,d, and 6e,f resulted in the diastereoisomeric product pairs 8a,b, 8c,d, and 8e,f, respectively. Their ¹H NMR spectra not only confirmed their structure but also provided evidence that the stereo-chemical integrity was not modified during the preparation. The concluding step of this sequence was the ring closure of the diamines to give carbene precursors 9a-h. Using triethyl orthoformate as the solvent and ammonium chloride as the anion source we isolated the (4S)-4-*tert*-butyldihydroimidazo-lium salts in good yield.

The next synthesis route was inspired by the fact that not all amines are commercially available in optically pure form (Scheme 3). We produced the enantiomerically pure diamine 11 in two steps from aldehyde 5b. The condensation of 5b with 4-methoxybenzylamine, followed by reduction with sodium borohydride, gave the PMB-protected diamine 10. Removal of the PMB group by hydrogenolysis afforded the free diamine 11, which was reacted with nonsymmetrical ketones 12a,b following a reductive amination protocol. The diastereomeric pairs thus obtained could be separated by normal phase chromatography to give enantiopure diamines 13a-d. The synthetic sequence was completed by the imidazolidine ring closure using the previous conditions, and we obtained the homochiral carbene precursors 14a-d.

The ease of separation of the diastereoisomeric diamines 13a-d prompted us to investigate briefly if the combination of racemic aldehyde 5a with enantiomerically pure amines, followed by normal-phase chromatographic separation, would be an equally feasible approach to the homochiral diamines (Scheme 4). 5a was reacted with commercially available enantiomerically pure phenethylamine (6a) and 1-naphthylamine (6c).

The obtained diastereomeric mixtures (8a and 13e, 8c and 13f) were separated efficiently by normal-phase column chromatography to give the appropriate enantiopure compounds, with two of them, 8a,c, showing the same NMR spectra and chromatographic properties as the previously prepared batches. The ring closure of the new diamines 13e,f, under standard conditions, gave the new carbene precursors 14e,f, respectively.

The weakness of the synthesis route described in Scheme 1 is the need for chiral chromatography. This could, in principle, be avoided if we used a chiral ester of glyoxalic acid as the Scheme 4. Synthesis of Enantiopure Diamines and NHC Precursors Starting from Racemic Aminoaldehyde 5a

starting material. To test this hypothesis, we choose the Lmenthyl ester 17a, which was prepared from glyoxalic acid (16) and L-menthol (15a) in a biphasic reaction in the presence of a catalytic amount of H_2SO_4 (Scheme 5). After separation of the two phases the oxoacetate 17a in diisopropyl ether was reacted with diisopropylaniline in the presence of a catalytic amount of formic acid at room temperature. The resulting Schiff base 18a was purified by normal-phase column chromatography. Then *t*BuMgCl in anhydrous THF was added to the Schiff base at 0 °C. Under these reaction conditions the diastereomer ratio obtained for 19a and 19c was 3:7. The temperature dependence of the diastereomer ratio was also investigated. Unfortunately, running the reaction at -80 °C or at boiling temperature led to the same diastereoisomer ratio as that at 0 °C.

From the diastereomer mixture we were able to isolate the major component **19c** by stirring the mixture overnight in 1.25 M ethanolic hydrochloric acid. Sequential recrystallizations from hexane gave pure **19c** as a white crystalline hydrochloric acid salt. The NMR spectra of the obtained salt confirmed the presence of a single diastereoisomer.

Compound **19c** was converted to the desired amino alcohol by reduction with $LiAlH_4$. Since the crude product was contaminated by menthol, it was purified as an HBF₄ salt. After filtration and setting of the pH to 7 the amino alcohol **4c** was obtained as a colorless oil. Enantiomerically pure **4c** was oxidized to aldehyde **5c** at 0 °C with Dess–Martin periodinane under the aforementioned conditions and was isolated in high purity. An X-ray crystallography study of the gold complexes Scheme 5. Synthesis of the Enantiopure Aminoaldehydes 5b,c Using Menthol as Chiral Inducer

Scheme 6. Synthesis of NHC Precursors 9i and 14g

(see later) revealed that starting from L-menthol 4c and 5c (compounds with S configuration at C4) are formed, while when D-menthol was used, their enantiomers 4b and 5b (compounds with R configuration at C4) are formed. The mother liquor from the recrystallization of the different 19a-c mixtures could also be reused by reduction of the ester and separation of the enantiomers 4b and 4c by chiral chromatography.

Although we were able to obtain 19c in an enantiopure form, the observed asymmetric induction (7:3 ratio) during its formation was suboptimal. To better understand the addition step, we repeated it using the o-tert-butylaniline analogue 18c (Scheme 6). The reaction of 18c and tBuMgCl yielded a mixture of diastereomers $(19e_{f}f)$ in a 6:4 ratio that is inferior even to the previous case. In contrast to 19a,c, diastereomers 19e,f could only be separated by normal-phase chromatography. The pure diastereomers were converted to the amino alcohols 4d,e in good yield by reduction with LiAlH₄. However, when the amino alcohol 4d was oxidized using the standard conditions, we obtained a racemic aldehyde as the product, probably due to stability problems. 5d was not sufficiently stable for purification; therefore, the crude product was carried on to the next reductive amination step. Chromatographic purification yielded the two compounds 8i and 13g, whose structure analysis confirmed that they were diastereoisomers. After the usual ring-closure procedure we obtained a pair of new, diastereomeric carbene precursors, 9i and 14g.

Having obtained a diverse set of heterocyclic carbene precursors, we converted them into their silver complexes. Fourteen dihydroimidazolium salts (9a-i, 14a-d,g) were treated with silver oxide in DCM at ambient temperature, and the appropriate silver-NHC chloride complexes (20a-i, 21a-d,g) were isolated (Scheme 7). These complexes not only are interesting in their own right but can also serve as the source of other metal-NHC complexes through transmetalation.

Exploiting this possibility, we treated the silver complexes with gold(I) chloride dimethyl sulfide reagent to yield the corresponding gold(I)-carbene chloride complexes **22a**–*i*, **23a**–*d*,*g*. The structures of the formed late-transition-metal-NHC complexes was characterized both by NMR spectroscopy and X-ray crystallography.

The NMR spectra of the silver complexes 20a-h and 21a-e agreed well with their structures. The complex formation led to a restricted conformational freedom of the benzene ring attached to N3, which was evident from the NMR spectra. Despite the presence of a symmetrically trisubstituted benzene

Scheme 7. Transformation of the N-Heterocyclic Carbene Precursors to NHC-Silver and NHC-Gold Complexes

ring, a spin system with three diastereotopic aromatic hydrogens was identified for the phenyl group. The different chemical environment supports that there is a hindered rotation around the bond connecting the benzene and imidazolidine rings. Consequently, the two isopropyl groups are also diasteretopic on the benzene ring: i.e., two CH and four CH₃ groups are visible in the ¹H NMR spectrum.

Another interesting phenomenon was observed in the DEPTQ NMR spectra of the NHC silver complexes. Silver has two NMR-active spin 1/2 isotopes, ¹⁰⁷Ag and ¹⁰⁹Ag (natural abundances 51.8% and 48.2%, respectively): i.e., in the vicinity of the silver atom a doublet is expected on the ¹³C signals as the silver couples with carbons. Two doublet signals ($J_{C,Ag} = 240$ Hz) were observed at 208.9 ppm corresponding to the carbene carbon atom in the imidazolidine ring. The large coupling constant is in line with the direct bonding between the Ag and carbene atoms in the NHC-silver complex. The two doublets can be explained by the isotope shift of the silver atom: i.e., there is a small chemical shift difference ($\delta(C^{-107}Ag) - \delta(C^{-109}Ag) = 0.14$ ppm) between the carbon atoms connecting to ¹⁰⁷Ag or ¹⁰⁹Ag. In addition four additional vicinal C-Ag couplings were detected in the DEPTQ spectrum: two for the imidazolidine ring (³ $J_{CH,Ag} = 8.2$ Hz

and ${}^{3}J_{CH_{2},Ag} = 7.5 \text{ Hz}$) and two on the connecting carbon atoms (${}^{3}J_{C,Ag} = 0.8 \text{ Hz}$ and ${}^{3}J_{CH(CH_{3}),Ag} = 2.1 \text{ Hz}$). Unexpectedly, an additional $J_{C,Ag} = 1.4 \text{ Hz}$ coupling was observed on one of the methyls of the isopropyl groups. This phenomenon cannot be explained by scalar coupling, since six chemical bonds separate these atoms, but rather by a throughspace coupling, which suggests a very stable conformation of the benzene ring stabilized by the two ortho-positioned isopropyl groups.

In a study of the NMR spectra of the gold complex **22g** two sets of signals were observed in a 2:1 ratio, despite the fact that this molecule has only one chiral carbon atom. Analogously to the results of Dorta, who isolated and characterized chiral NHC-Pd complexes starting from symmetrical ligands,¹⁶ this indicates the hindered rotation between the asymmetrically substituted benzene ring and the imidazolidine ring, generating axial chirality in the molecule and resulting in a diastereomeric mixture. In order to prove this, we registered a series of temperature-dependent ¹H NMR spectra in CD₃CN. By elevation of the temperature, the two signal sets collapsed into one and we were able to determine the coalescence temperature of this exchange process ($T_{coalescence} = 353$ K, Figure 2). On consideration of the initial signal split of the CH

Figure 2. Temperature-dependent ¹H NMR spectra of 22g (aliphatic section).

signals at T = 273 K (31.5 Hz), an approximate 17.8 kcal/mol free activation enthalpy can be calculated for the hindered rotation.¹⁷

We observed the same behavior in the case of **22h**, where the two sets of signals appeared in the NMR spectra in a 3:1 ratio. We failed to determine the coalescence temperature of this hindered rotation, since at the highest available temperature with our cryo NMR probehead (T = 353 K) the two signal sets still did not collapse into one, suggesting a much higher free activation enthalpy for the hindered rotation of this molecule. This observation is in line with the increased steric bulk of the *tert*-butyl substituent in comparison to isopropyl.

For the diastereomeric mixture of **22h** it was possible to determine the axial chirality of the two components. By selectively irradiating the two *tert*-butyl groups in a gradient-selective 1D ROESY NMR experiment, we could unequivocally prove that the major signal set belongs to the diasteroisomer where the two *tert*-butyl groups are on the opposite side of the plane of the imidazolidine ring, whereas in the minor diastereoisomer the two *tert*-butyl groups are on the same side of the plane. In both compounds the *tert*-butyl group on the imidazolidine ring shows steric proximity with the

isopropyl moiety on the same side of the plane. In case of the minor signal set, the *tert*-butyl group on the benzene ring interacted with the same isopropyl group, whereas the major component showed correlation with the isopropyl which is on the opposite side of the plane (Figure 3).

Figure 3. Relevant NOE interactions in the diastereomers of 22h, 22i, and 23g.

By analogy we could anticipate the appearance of axial chirality through hindered rotation in case of the silver and gold complexes **20i**, **21g**, **22i**, and **23g**. Of these complexes **22i** and **23g** were investigated in detail. The NMR spectra suggested the presence of a single diastereoisomer in both cases. In the selective 1D ROE NMR experiment the *tert*-butyl moiety had strong interaction with the NCH in the ring, proving that in both molecules the two *tert*-butyl groups are located on the opposite side of the plane of the imidazolidine ring (Figure 3). To corroborate the axial chirality of these

molecules determined by NMR spectroscopy, we also determined the X-ray structures of some complexes, including **22i**.

Crystals suitable for X-ray structure determination were grown of the NHC-gold complexes **22i** and **23a**,c,d,e. In case of **23a** there is also a solvent molecule (dichloromethane) in the lattice. The determination of the absolute configuration of the complexes was based on anomalous X-ray scattering and was unambiguous. The Flack parameters¹⁸ in all cases are in the range of 0.003–0.07, and the refinement did not prove the presence of the other enantiomer.

The X-ray structure of **22i** is in complete agreement with the NMR measurements (Figure 4). The bulky *tert*-butyl substituents on the imidazolidine ring and on the benzene ring are on the opposite sides of the carbene ring's plane, and the chirality at the C4 position is also unambiguous. For the diastereomeric complexes **23c**,**d** the X-ray structures also define the chirality at the benzylic position. For complexes **22i** and **23a**,**e** the observed arrangement of substituents in the benzylic position is in line with the chirality of the used reagents.

The obtained X-ray structures resemble those of the known NHC-gold(I) complexes. The C4–C5 distances also support the C–C bond by lengths of 1.50-1.54 Å. The coordination around the Au(I) is highly planar with the C–Au–Cl angle being close to 180° . The Au–Cl distances are 2.27-2.28 Å, while the Au–C distances are 1.976-2.03 Å. Further details of the X-ray diffraction measurements can be found in the Tables S1 and S2 in the Supporting Information.

CONCLUSIONS

In summary, we developed a scalable synthetic route to a new class of C_1 -symmetrical chiral NHC precursors. The common feature of these dihydroimidazolium salts is the presence of a bulky *tert*-butyl substituent in the C4 position in a homochiral form and a center of chirality in the substituent attached to the NHC core at N1. All NHC precursors bore an aromatic substituent on N3 and were prepared as a single enantiomer

Figure 4. X-ray structures of complexes 22i and 23a,c,d,e in two different representations. The solvent molecule of 23a is omitted for clarity.

using stereoselective transformations. The prepared carbene precursors were converted to the corresponding NHC-silver and NHC-gold complexes. The structures of the complexes were characterized extensively in solution by NMR spectroscopy. Several complexes were also crystallized and their solidstate structures determined by X-ray crystallography. Both the solution and solid-state structures revealed that the complex formation resulted in the hindered rotation of the aromatic substituent. In certain complexes this also led to the emergence of axial chirality, with different degrees of stereoselectivity. Testing of the utility of the prepared chiral NHC-silver and NHC-gold complexes in asymmetric transformations is in progress in our laboratory.

EXPERIMENTAL SECTION

All reagents obtained from commercial sources were used without further purification. Anhydrous solvents were obtained from commercial sources and used without further drying. The reactions were monitored using LCMS and GCMS instruments. Analytical LC-MS: Agilent HP1200 LC with Agilent 6140 quadrupole MS, operating in positive or negative ion electrospray ionization mode. The molecular weight scan range was m/z 100–1350. Parallel UV detection was done at 210 and 254 nm. Samples were supplied as 1 mM solutions in MeCN or in THF/water (1/1) with 5 μ L loop injection. LCMS analyses were performed on two instruments, one of which was operated with basic and the other with acidic eluents. Basic LCMS: Gemini-NX, 3 μ m, C18, 50 mm \times 3.00 mm i.d. column at 23 $^{\circ}\text{C}\text{, flow rate of 1 mL min}^{-1}$ using 5 mM aqueous $\text{NH}_{4}\text{HCO}_{3}$ solution and MeCN as eluents. Acidic LCMS: ZORBAX Eclipse XDB-C18, 1.8 μ m, 50 mm × 4.6 mm i.d. column at 40 °C, flow rate of 1 mL min⁻¹ using water and MeCN as eluents, both containing 0.02 v/v% formic acid. Combination gas chromatography and low-resolution mass spectrometry were performed on an Agilent 6850 gas chromatograph and Agilent 5975C mass spectrometer using a 15 m × 0.25 mm column with 0.25 μ m HP-5MS coating and helium as the carrier gas. Ion source: EI⁺, 70 eV, 230 °C, quadrupole 150 °C, interface 300 °C. Flash chromatography was performed on a ISCO CombiFlash Rf 200i instrument with prepacked silica gel cartridges (RediSepRf Gold High Performance). Chiral separations were performed on a KNAUER Smartline Preparative HPLC system with a (R,R) WHELKO O-1 50 mm \times 500 mm, 10 μ m column running at a flow rate of 50 mL min⁻ with UV diode array detection (210-285 nm). Chiral purity was determined on an Agilent 1100 HPLC system with a WHELKO O-1, 250 mm \times 4.6 mm, 10 μ m column running at a flow rate of 1 mL min⁻¹ with UV diode array detection (210-285 nm).¹H NMR and proton-decoupled ¹³C NMR measurements were performed on a Bruker Avance III 500 MHz spectrometer and a Bruker Avance III 400 MHz spectrometer, using DMSO-d₆ or CDCl₃ as solvent. ¹H and $^{13}\mathrm{C}$ NMR data are in the form of δ values, given in parts per million (ppm), using the residual peak of the solvent as an internal standard (DMSO-*d*₆, 2.50 ppm (¹H)/39.5 ppm (¹³C); CDCl₃, 7.26 ppm (¹H)/ 77.0 ppm (¹³C)). Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), sp (septet), m (multiplet), br s (broad singlet), dd (doublet of doublets), td (triplet of doublets), and qd (quartet of doublets). In some cases two sets of signals appear in the spectra due to hindered rotation. HRMS measurements were determined on a Shimadzu IT-TOF, ion source temperature 200 °C, ESI \pm , ionization voltage (+,-)4.5 kV. The mass resolution was a minimum of 10000. Melting points were determined by an OptiMelt melting view apparatus at ramp rates of 2 °C min⁻¹ in sealed glass capillaries and are uncorrected. All products had an LC purity above 95% that was corroborated by their ¹H NMR spectra unless specifically mentioned otherwise.

Ethyl 2-(2,6-Diisopropylphenyl)iminoacetate (2). A 52 mL portion of 2,6-diisopropylaniline (250 mmol) was added to 51 mL of 1 (250 mmol) dissolved in 1000 mL DIPE, and 0.5 mL of formic acid was also added. The resulting mixture was stirred at room temperature for 6 h, at which point complete conversion was

observed by GC-MS. The crude product was purified via column chromatography using heptane and EtOAc as eluents. **2** was collected as a yellow oil (58.5 g, 224 mmol, 89.5%). ¹H NMR (400 MHz, DMSO- d_6): δ 7.76 (s, CH, 1 H), 7.21–7.07 (m, Ar-H, 3 H), 4.34 (q, J = 7.0 Hz, CH₂, 2 H), 2.73 (sp, J = 6.9 Hz, CH, 2 H), 1.32 (t, J = 7.0 Hz, CH₃, 3 H), 1.09 (d, J = 6.9 Hz, CH₃, 12 H). ¹³C NMR (100 MHz, DMSO- d_6): δ 162.3, 155.8, 146.6, 135.9, 125.1, 123.0, 61.6, 27.3, 23.3, 14.0. HRMS: calcd for C₁₆H₂₃NO₂ [M]⁺ 261.1729, found 261.1714.

2-(2,6-Diisopropylanilino)-3,3-dimethylbutanoic Acid (3). A solution of 40 g of 2 (153 mmol) in 765 mL of THF was cooled to -78 °C under an inert atmosphere, and then 140 mL of tBuMgCl (230 mmol) was added dropwise over 90 min. The resulting mixture was stirred at -78 °C for 60 min, at which point complete conversion was observed by GC-MS. The reaction mixture was quenched by the addition of saturated aqueous NH4Cl solution, was warmed to room temperature, and then was extracted with EtOAc. The combined organic layers were dried over MgSO4, and the volatiles were removed under reduced pressure. The crude product was purified via column chromatography using heptane and EtOAc as eluents. 3 was collected as a dark yellow oil (42.6 g, 133 mmol, 87.1%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, J = 7.1 Hz, Ar-H, 2 H), 6.93 (dd, J = 8.1, 7.1Hz, Ar-H, 1 H), 3.87 (m, NH, 1 H), 3.86 (m, CH, 1 H), 3.52 (d, J = 12.6 Hz, CH, 1 H), 3.32 (sp, J = 6.9 Hz, CH, 2 H), 1.15 (d, J = 6.8 Hz, CH_{3} , 12 H), 1.10 (s, CH_{3} , 9 H), 0.93 (t, J = 7.1 Hz, CH_{3} , 3 H), 1.09 (d, J = 6.9 Hz, CH₃, 12 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 172.9, 140.6, 140.4, 123.4, 123.0, 70.2, 59.6, 34.0, 26.7, 26.2, 24.2, 24.0, 13.9. HRMS: calcd for $C_{20}H_{34}NO_2 \ [M + H]^+$ 320.2584, found 320.2582.

2-(2,6-Diisopropylanilino)-3,3-dimethylbutanol (4a). A 10.8 g portion of LiAlH₄ (284 mmol) was suspended in 284 mL of THF at 0 °C, and 30.2 g of 3 (94.5 mmol) was added in small portions. Then the reaction mixture was warmed to 60 °C and stirred at that temperature for 45 min, at which point complete conversion was observed by LC-MS. The reaction mixture was cooled to 0 °C, and 10.8 mL of water, 21.6 mL of 2 N NaOH, and 21.6 mL of water were added slowly to the mixture. MTBE was added to the mixture at the previous temperature, and this mixture was stirred for 10 min. The mixture was filtered and washed with MTBE. The crude product was purified via column chromatography using heptane and EtOAc as eluents. 4a was collected as a colorless oil (12.0 g, 43.3 mmol, 49.4%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, J = 7.6 Hz, Ar-H, 2 H), 6.89 (t, J = 7.6 Hz, Ar-H, 1 H), 4.40 (t, J = 4.2 Hz, OH, 1 H), 3.40/ 3.28 (m, CH₂, 2 H), 3.39 (d, J = 12.7 Hz, NH, 1 H), 3.36 (sp, J = 6.7 Hz, CH, 2 H), 2.73 (dm, J = 11.9 Hz, CH, 1 H), 1.16 (d, J = 6.7 Hz, CH_{32} 6 H), 1.12 (d, J = 6.7 Hz, CH_{32} 6 H), 1.09 (s, CH_{32} 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 142.1, 140.9, 123.2, 122.0, 67.5, 59.5, 34.8, 27.7, 26.6, 24.1, 23.9. HRMS: calcd for $C_{18}H_{32}NO [M + H]^+$ 278.2478, found 278.2323.

(2*R*)-2-(2,6-Diisopropylanilino)-3,3-dimethylbutanol (4b). By chiral HPLC analysis 4b was a single enantiomer and was eluted first from the racemate 4a on the (R,R) WHELK O-1 column using 2-PrOH and heptane (0.5/99.5) as eluents. 4b was collected as a colorless oil (5.0 g, 18.0 mmol, 50.0%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, *J* = 7.6 Hz, Ar-H, 2 H), 6.89 (t, *J* = 7.6 Hz, Ar-H, 1 H), 4.39 (t, *J* = 4.2 Hz, OH, 1 H), 3.40/3.28 (m, CH₂, 2 H), 3.39 (d, *J* = 12.7 Hz, NH, 1 H), 3.36 (sp, *J* = 6.7 Hz, CH, 2 H), 2.73 (dm, *J* = 11.9 Hz, CH, 1 H), 1.15 (d, *J* = 6.7 Hz, CH₃, 6 H), 1.13 (d, *J* = 6.7 Hz, CH₃, 6 H), 1.09 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 142.1, 140.9, 123.2, 122, 67.4, 59.5, 34.8, 27.6, 26.6, 24.1, 23.9. HRMS: calcd for C₁₈H₃₂N [M + H]⁺ 278.2478, found 278.2479.

(25)-2-(2,6-Diisopropylanilino)-3,3-dimethylbutanol (4c). By chiral HPLC analysis 4c was a single enantiomer and was eluted second from the racemate 4a on the (R,R) WHELK O-1 column using 2-PrOH and heptane (0.5/99.5) as eluents. 4c was collected as a colorless oil (5.0 g, 18.0 mmol, 50.0%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, J = 7.6 Hz, Ar-H, 2 H), 6.89 (t, J = 7.6 Hz, Ar-H, 1 H), 4.39 (t, J = 4.2 Hz, OH, 1 H), 3.40/3.28 (m, CH₂, 2 H), 3.39 (d, J = 12.6 Hz, NH, 1 H), 1.15 (d, J = 6.7 Hz, CH₃, 6 H), 1.13 (d, J = 6.7

Hz, CH₃, 6 H), 1.09 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_{δ}): δ 142.1, 140.9, 123.2, 122, 67.4, 59.5, 34.8, 27.6, 26.6, 24.1, 23.9. HRMS: calcd for C₁₈H₃₂N [M + H]⁺ 278.2478, found 278.2470.

2-(2-tert-Butylanilino)-3,3-dimethylbutanol (4d). This compound was prepared following the synthetic procedure described for 4a starting from 15.7 g of **19e** (39.1 mmol). **4d** was collected as a colorless oil (8.09 g, 32.4 mmol, 83.0%). By chiral HPLC analysis **4d** was a single enantiomer and eluted second from the racemate on the (R,R) WHELK O-1 column using 2-PrOH and heptane (1/99) as eluents. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.10 (dd, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.98 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.70 (dm, *J* = 7.7 Hz, Ar-H, 1 H), 6.49 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 4.65 (t, *J* = 4.5 Hz, OH, 1 H), 4.27 (d, *J* = 9.3 Hz, NH, 1 H), 3.60/3.57 (m+m, CH₂, 2 H), 3.28 (m, CH, 1 H), 1.39 (s, CH₃, 9 H) 1.01 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 146.4, 132.0, 126.8, 125.9, 115.3, 111.0, 60.9, 59.9, 35.0, 33.7, 29.7, 27.5. HRMS: calcd for C₁₆H₂₈NO [M + H]⁺ 250.2165, found 250.2162.

2-(2-*tert***-Butylanilino)-3,3-dimethylbutanol (4e).** This compound was prepared following the synthetic procedure described for 4a starting from 6.22 g of 19f (15.5 mmol). 4e was collected as a colorless oil (3.43 g, 13.7 mmol, 88.7%). By chiral HPLC analysis 4e was a single enantiomer and eluted first from the racemate on the (R,R) WHELK O-1 column using 2-PrOH and heptane (1/99) as eluents. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.10 (dd, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.98 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.70 (dm, *J* = 7.7 Hz, Ar-H, 1 H), 6.49 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 4.65 (t, *J* = 4.5 Hz, OH, 1 H), 4.26 (d, *J* = 9.3 Hz, NH, 1 H), 3.60/3.57 (m+m, CH₂, 2 H), 3.28 (m, CH, 1 H), 1.39 (s, CH₃, 9 H) 1.01 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 146.4, 132.0, 126.8, 125.9, 115.3, 111.0, 60.9, 59.9, 35.0, 33.7, 29.7, 27.5. HRMS: calcd for C₁₆H₂₈NO [M + H]⁺ 250.2165, found 250.2160.

2-(2,6-Diisopropylanilino)-3,3-dimethylbutanal (5a). A 6.34 g portion of 4a (22.9 mmol) was dissolved in 549 mL of DCM and then cooled to 0 °C, and 10.7 g of Dess-Martin periodine (25.1 mmol) was added in small portions. Then 453 μ L of water (25.1 mmol) was also added and this mixture was stirred for 1.5 h, at which point complete conversion was observed by LC-MS. The reaction mixture was quenched with pentane and then filtered through a pad of Celite. The solvent was removed under vacuum, and then more pentane was added and the mixture filtered again. This method was repeated twice, and 5a was collected as a yellow solid (6.29 g, 22.8 mmol, 99.9%). Mp: 35-40 °C. ¹H NMR (500 MHz, DMSO-d₆): δ 9.64 (d, J = 5.1 Hz, CH, 1 H), 7.02 (m, Ar-H, 2 H), 6.97 (dd, J = 8.7, 6.3 Hz, Ar-H, 1 H), 4.02 (d, J = 10.9 Hz, NH, 1 H), 3.33 (sp, J = 6.8 Hz, CH, 2 H), 3.06 (dd, J = 10.9 Hz, J = 5.1 Hz, CH, 1 H), 1.17 (d, J = 6.8 Hz, CH₃, 6 H), 1.12 (d, J = 6.8 Hz, CH₃, 6 H), 1.12 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 203.9, 142.2, 139.9, 123.9, 123.6, 75.7, 33.9, 27.0, 26.5, 24.2, 24.1. HRMS: calcd for C₁₈H₃₀NO $[M + H]^+$ 276.2322, found 276.2323.

(2*R*)-2-(2,6-Diisopropylanilino)-3,3-dimethylbutanal (5b). This compound was prepared following the synthetic procedure described for 5a starting from 4.20 g of 4b (15.1 mmol). 5b was collected as a yellow solid (4.12 mg, 15.0 mmol, 98.8%). Mp: 65–75 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.64 (d, *J* = 5.1 Hz, CH, 1 H), 7.02 (m, Ar-H, 2 H), 6.97 (dd, *J* = 8.7, 6.3 Hz, Ar-H, 1 H), 4.02 (d, *J* = 11.0 Hz, NH, 1 H), 3.33 (sp, *J* = 6.8 Hz, CH, 2 H), 3.07 (dd, *J* = 11.0 Hz, *J* = 5.1 Hz, CH, 1 H), 1.16 (d, *J* = 6.8 Hz, CH₃, 6 H), 1.12 (d, *J* = 6.8 Hz, CH₃, 6 H), 1.11 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 203.9, 142.2, 139.9, 123.9, 123.6, 75.7, 33.9, 27.0, 26.5, 24.2, 24.1. HRMS: calcd for C₁₈H₃₀NO [M + H]⁺ 276.2322, found 276.2325.

(25)-2-(2,6-Diisopropylanilino)-3,3-dimethylbutanal (5c). This compound was prepared following the synthetic procedure described for 5a starting from 3.40 g of 4c (12.3 mmol). 5c was collected as a yellow solid (3.36 g, 12.2 mmol, 99.5%). Mp: 70–80 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.64 (d, J = 5.1 Hz, CH, 1 H), 7.02 (m, Ar-H, 2 H), 6.97 (dd, J = 8.7, 6.2 Hz, Ar-H, 1 H), 4.03 (d, J = 10.6 Hz, NH, 1 H), 3.33 (sp, J = 6.8 Hz, CH, 2 H), 3.07 (dd, J = 10.6 Hz, J = 5.1 Hz, CH, 1 H), 1.17 (d, J = 6.8 Hz, CH₃, 6 H), 1.12 (d, J = 6.8 Hz, CH₃, 6 H), 1.12 (s, CH₃, 9 H). ¹³C NMR (125 MHz,

DMSO- d_6): δ 203.9, 142.2, 139.9, 123.9, 123.6, 75.7, 33.9, 27.0, 26.5, 24.2, 24.1. HRMS: calcd for C₁₈H₃₀NO [M + H]⁺ 276.2322, found 276.2320.

2-(2-*tert***-Butylanilino)-3,3-dimethylbutanal (5d).** This compound was prepared following the synthetic procedure described for **5a** by starting from 2.97 g of **4e** (11.9 mmol). **5d** (racemic, 2.35 g) was collected as a yellow solid and used without further purification for the synthesis of **8i** and **13g**. ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.83 (d, J = 1.8 Hz, CH, 1 H), 7.16 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.98 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.60 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.58 (d, J = 7.7 Hz, Ar-H, 1 H), 4.51 (d, J = 8.2 Hz, NH, 1 H), 4.17 (dd, J = 8.2, 1.8 Hz, CH, 1 H), 1.44 (s, CH₃, 9 H), 1.08 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 205.2, 145.1, 132.9, 126.8, 126.1, 117.1, 111.4, 68.5, 35.3, 33.8, 29.7, 26.8. HRMS: calcd for C₁₆H₂₆NO [M + H]⁺ 248.2009, found 248.2005.

(2S)-N-(2,6-Diisopropylphenyl)-3,3-dimethyl-N'-[(1S)-1phenylethyl]butane-1,2-diamine (8a). A 1.3 mL portion of (1S)-1-phenylethanamine (10.5 mmol) was dissolved in 48 mL of EtOH under an inert atmosphere, and then 2.62 g of 5c (9.51 mmol) was added in one portion and 55 μ L of acetic acid (0.95 mmol) was also added. The mixture was stirred at 60 °C. The mixture in the first reaction step was stirred for 1 h, until all of the 5c had reacted, ass observed by GC-MS. When the starting material was reacted, the mixture was cooled to room temperature and 1.44 g of NaBH₄ (38.1 mmol) was added carefully. The mixture in the second reaction step was stirred for 4 h at room temperature and observed by LC-MS. The reaction mixture was quenched with the addition of saturated aqueous NH₄Cl solution, and then it was extracted with EtOAc. The combined organic layers were dried over MgSO4. The volatiles were removed under reduced pressure, and the residue was purified via column chromatography using heptane and EtOAc as eluents. 8a was collected as a yellow oil (3.08 mg, 8.09 mmol, 85.0%). ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6): \delta 7.26-7.04 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text{ (d, } J = 7.5 \text{ (m, Ar-H, 5 H)}, 7.03 \text$ Hz, Ar-H, 2 H), 6.93 (t, J = 7.5 Hz, Ar-H, 1 H), 3.32 (sp, J = 6.7 Hz, CH, 2 H), 3.32 (q, J = 6.6 Hz, CH, 1 H), 3.25 (d, J = 11.4 Hz, NH, 1 H), 2.96 (m, CH, 1 H), 2.48/2.32 (m+m, CH₂, 2 H), 1.20 (br s, NH, 1 H), 1.17 (d, J = 6.7 Hz, CH₃, 6 H), 1.12 (d, J = 6.7 Hz, CH₃, 6 H), 0.96 (d, J = 6.6 Hz, CH₃, 3 H), 0.94 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 146.0, 142.3, 140.5, 128.0, 126.4, 126.2, 123.5, 122.1, 67.3, 57.6, 48.8, 35.1, 27.1, 27.0, 24.6, 24.1, 23.9. HRMS: calcd for $C_{26}H_{41}N_2$ [M + H]⁺ 381.3264, found 381.3254.

(2*S*)-*N*-(2,6-Diisopropylphenyl)-3,3-dimethyl-*N*'-[(1*R*)-1phenylethyl]butane-1,2-diamine (8b). This compound was prepared following the synthetic procedure described for 8a starting from 1.33 mL of (1*R*)-1-phenylethanamine (10.5 mmol) and 2.62 g of 5c (9.51 mmol). The reaction time for the first step was 2.5 h and for the second step was 4 h. 8b was collected as a yellow oil (2.78 g, 7.30 mmol, 76.8%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.23–7.04 (m, Ar-H, 5 H) 6.69 (d, *J* = 7.5 Hz, Ar-H, 2 H), 6.89 (t, *J* = 7.5 Hz, Ar-H, 1 H), 3.44 (q, *J* = 6.5 Hz, CH, 1 H), 3.35 (m, NH, 1 H), 3.35 (m, CH, 2 H), 3.01 (m, CH, 1 H), 2.37/2.34 (m+m, CH₂, 2 H), 1.32 (br s, NH, 1 H), 1.16 (d, *J* = 6.8 Hz, CH₃, 6 H), 1.12 (d, *J* = 6.8 Hz, CH₃, 6 H), 1.01 (d, *J* = 6.5 Hz, CH, 3 H), 0.94 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 145.9, 142.6, 139.9, 128.1, 126.4, 126.2, 123.4, 121.8, 66.0, 57.2, 48.4, 35.2, 27.2, 27.0, 24.4, 24.0, 23.9. HRMS: calcd for C₂₆H₄₁N₂ [M + H]⁺ 381.3264, found 381.3250.

(25)-*N*-(2,6-Diisopropylphenyl)-3,3-dimethyl-*N*'-[(15)-1-(1-naphthyl)ethyl]butane-1,2-diamine (8c). This compound was prepared following the synthetic procedure described for 8a starting from 1.38 mL of (1*S*)-1-(1-naphthyl)ethanamine (8.59 mmol) and 2.15 g of 5c (7.81 mmol). The reaction time for the first step was 1.5 h and for the second step was 2 h. 8c was collected as a yellow oil (2.83 g, 6.58 mmol, 84.3%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.18–7.25 (m, Ar-H, 7 H), 7.00 (d, *J* = 7.6 Hz, Ar-H, 2 H), 6.89 (t, *J* = 7.6 Hz, Ar-H, 1 H), 4.32 (q, *J* = 6.8 Hz, CH, 1 H), 3.39 (br d, NH, 1 H), 3.37 (sp, *J* = 6.8 Hz, CH, 2 H), 3.07 (m, CH, 1 H), 2.53 (m, CH₂, 2 H), 1.56 (br s, NH, 1 H), 1.16 (d, *J* = 6.7 Hz, CH₃, 6 H), 1.16 (d, *J* = 6.4 Hz, CH₃, 3 H), 1.11 (d, *J* = 6.7 Hz, CH₃, 6 H), 0.93 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 142.6, 141.3, 139.9, 133.4, 130.7, 128.7, 126.6, 125.7, 125.6, 125.2, 123.4, 122.8, 122.4,

121.8, 66.5, 52.9, 48.5, 27.2, 27.0, 24.0, 23.9, 23.6. HRMS: calcd for $C_{30}H_{42}N_2~[M\,+\,H]^+$ 431.3420, found 431.3418.

(2S)-N-(2,6-Diisopropylphenyl)-3,3-dimethyl-N'-[(1R)-1-(1naphthyl)ethyl]butane-1,2-diamine (8d). This compound was prepared following the synthetic procedure described for 8a starting from 1.28 mL of (1R)-1-(1-naphthyl)ethanamine (7.99 mmol) and 2.00 g of 5c (7.26 mmol). The reaction time for the first step was 1 h and for the second step was 4 h. 8d was collected as a yellow oil (2.25 g, 5.22 mmol, 71.9%).¹H NMR (500 MHz, DMSO-d₆): δ 8.18-7.37 (m, Ar-H, 7 H), 7.01 (d, J = 7.6 Hz, Ar-H, 2 H), 6.89 (t, J = 7.6 Hz, Ar-H, 1 H), 4.20 (q, J = 6.8 Hz, CH, 1 H), 3.39 (sp, J = 6.8 Hz, CH, 2 H), 3.34 (d, J = 11.7 Hz, NH, 1 H), 3.09 (m, CH, 1 H), 2.62/2.46 (m +dd, J = 11.7, 6.9 Hz, CH₂, 2 H), 1.17 (d, J = 6.8 Hz, CH₃, 6 H), 1.14 $(d, J = 6.8 \text{ Hz}, \text{CH}_3, 6 \text{ H}), 1.10 (d, J = 6.8 \text{ Hz}, \text{CH}_3, 3 \text{ H}), 0.91 (s, J = 6.8 \text{ Hz}, 10 \text{ Hz}, 10 \text{ Hz}), 0.91 (s, J = 6.8 \text{ Hz}, 10 \text{ Hz}), 0.91 (s, J = 6.8 \text{ Hz}, 10 \text{ Hz}), 0.91 (s, J = 6.8 \text{ Hz}), 0.91 (s,$ CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 142.5, 141.2, 140.1, 133.5, 130.7, 128.6, 126.7, 125.6, 125.5, 125.2, 123.4, 123.0, 122.5, 121.9, 67.4, 54.0, 49.6, 27.1, 27.0, 24.1, 23.9, 23.8. HRMS: calcd for $C_{30}H_{42}N_2 [M + H]^+$ 431.3420, found 431.3427.

(2*S*)-*N*-(2,6-Diisopropylphenyl)-3,3-dimethyl-*N*'-[(1*S*)-1,2,2trimethylpropyl]butane-1,2-diamine (8e). This compound was prepared following the synthetic procedure described for 8a starting from 1.07 mL of (2*S*)-3,3-dimethylbutan-2-amine (7.99 mmol) and 2.00 g of 5c (7.26 mmol). The reaction time for the first step was 2 h and for the second step was 4 h. 8e was collected as a yellow oil (1.95 g, 5.41 mmol, 74.5%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.00 (d, *J* = 7.7 Hz, Ar-H, 2 H), 6.86 (t, *J* = 7.7 Hz, Ar-H, 1 H), 3.35 (sp, *J* = 6.7 Hz, CH, 2 H), 3.29 (d, *J* = 11.7 Hz, NH, 1 H), 3.06 (m, CH, 1 H), 2.74/2.51 (dd+m, *J* = 11.7, 7.5 Hz, CH₂, 2 H), 1.90 (br., CH, 1 H), 1.18 (d, *J* = 6.7 Hz, CH₃, 12 H), 1.00 (s, CH₃, 9 H), 0.67 (d, *J* = 6.5 Hz, CH₃, 3 H), 0.60 (s, CH₃, 9 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 142.7, 139.6, 123.4, 121.7, 67.3, 61.4, 51.1, 34.9, 34.2, 27.2, 27.1, 26.1, 24.0, 23.8, 14.2. HRMS: calcd for C₂₄H₄₄N₂ [M + H]⁺ 361.3577, found 361.3583.

(2S)-N-(2,6-Diisopropylphenyl)-3,3-dimethyl-N'-[(1R)-1,2,2trimethylpropyl]butane-1,2-diamine (8f). This compound was prepared following the synthetic procedure described for 8a starting from 1.12 mL of (2R)-3,3-dimethylbutan-2-amine (8.39 mmol) and 2.10 g of 5c (7.63 mmol). The reaction time for the first step was 2 h and for the second step was 4 h. 8f was collected as a yellow oil (1.84 g, 5.09 mmol, 66.7%). A yellow oil was obtained. ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, J = 7.7 Hz, Ar-H, 2 H), 6.86 (t, J = 7.7Hz, Ar-H, 1 H), 3.32 (sp, J = 6.8 Hz, CH, 2 H), 3.29 (d, J = 8.2 Hz, NH, 1 H), 3.01 (m, CH, 1 H), 2.84/2.28 (m+dd, J = 11.6, 6.2 Hz, CH₂, 2 H), 1.90 (q, J = 6.3 Hz, CH, 1 H), 1.18 (d, J = 6.8 Hz, CH₃, 6 H), 1.17 (d, J = 6.8 Hz, CH₃, 6 H), 1.01 (s, CH₃, 9 H), 0.79 (br s, NH, 1 H), 0.68 (d, J = 6.3 Hz, CH₃, 3 H), 0.58 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 142.2, 139.8, 123.5, 121.8, 67.2, 61.9, 49.6, 35.2, 33.8, 27.1, 26.1, 24.0, 14.2. HRMS: calcd for C₂₄H₄₄N₂ [M + H]⁺ 361.3577, found 361.3588.

(2S)-N-(2,6-Diisopropylphenyl)-N'-(2-isopropylphenyl)-3,3dimethylbutane-1,2-diamine (8g). This compound was prepared following the synthetic procedure described for 8a starting from 1.13 mL of 2-isopropylaniline (7.99 mmol) and 2.10 g of 5c (7.63 mmol). The reaction time for the first step was 7 h and for the second step was 30 min with 827 mg of LiAlH₄ (21.8 mmol) as the reductive agent. 8g was collected as a yellow oil (2.26 g, 5.74 mmol, 79.0%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.02 (d, J = 7.6 Hz, Ar-H, 2 H), 6.93 (dm, J = 7.4 Hz, Ar-H, 1 H), 6.92 (t, J = 7.6 Hz, Ar-H, 1 H), 6.90 (td, *J* = 7.4, 1.1 Hz, Ar-H, 1 H), 6.52 (td, *J* = 7.4, 1.1 Hz, Ar-H, 1 H), 6.34 (dd, J = 7.4, 1.1 Hz, Ar-H, 1 H), 4.12 (d, J = 6.7 Hz, NH, 1 H), 3.50 (d, J = 11.1 Hz, NH, 1 H), 3.49/2.98 (m+m, CH₂, 2 H), 3.30 (sp, J = 6.8 Hz, CH, 2 H), 3.22 (m, CH, 1 H), 2.04 (m, J = 6.8 Hz, CH, 1 H), $1.10/1.06 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH_3, 12 H), 1.06 (s, CH_3, 9)$ H), 0.95/0.94 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH_3 , 6 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 144.6, 142.5, 140.0, 131.6, 126.3, 124.3, 123.7, 122.0, 116.2, 109.3, 65.2, 45.6, 35.6, 27.1, 27.0, 25.7, 24.1, 24.0, 22.2, 22.1. HRMS: calcd for $C_{27}H_{43}N_2$ [M + H]⁺ 395.3421, found 395.3436

(25)-N'-(2-tert-Butylphenyl)-N-(2,6-diisopropylphenyl)-3,3dimethylbutane-1,2-diamine (8h). This compound was prepared following the synthetic procedure described for **8a** starting from 1.25 mL of 2-*tert*-butylaniline (7.99 mmol) and 2.00 g of **5c** (7.26 mmol). The reaction time for the first step was 16 h and for the second step was 3 h at 60 °C with 827 mg of LiAlH₄ (21.8 mmol) as the reductive agent. **8h** was collected as a yellow oil (2.15 g, 5.26 mmol, 72.4%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.08 (dd, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 6.98 (td, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 6.55 (td, *J* = 7.7, 1.2 Hz, Ar-H, 2 H), 6.83 (t, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 6.55 (td, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 6.51 (dd, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 3.76 (d, *J* = 11.6 Hz, NH, 1 H), 3.46/3.04 (m+m, CH₂, 2 H), 3.38 (m, CH, 1 H), 3.30 (sp, *J* = 6.7 Hz, CH, 2 H), 1.25 (s, CH₃, 9 H), 1.11 (d, *J* = 6.7 Hz, CH₃, 12 H), 0.93 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 146.7, 143.0, 138.8, 132.9, 126.8, 125.6, 123.6, 121.3, 116.3, 111.5, 65.1, 44.9, 36.5, 33.8, 31.3, 29.4, 27.3, 27.1, 24.4. HRMS: calcd for C₂₇H₄₃N₂ [M + H]⁺ 409.3577, found 409.3567.

(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1-phenylethyl]-4,5-dihydroimidazolium Chloride (9a). A 2.50 g portion of 8a (6.49 mmol) was dissolved in 33 mL of HC(OEt)₃ (194 mmol), and 382 mg of NH₄Cl (7.14 mmol) was added in one portion. The mixture was heated to reflux temperature and was stirred for 75 min, at which point complete conversion was observed by HPLC-MS. The volatiles were removed under reduced pressure, and the residue was purified via column chromatography using DCM and 1.2% methanolic ammonia as eluents. The crude product was recrystallized from DCM-Et₂O. 9a was collected as a white solid (1.27 g, 2.97 mmol, 45.8%). Mp: 213-215 °C. ¹H NMR (500 MHz, DMSO d_6): δ 9.05 (s, CH, 1 H), 7.52–7.40 (m, Ar-H, 5 H), 7.49 (t, J = 7.7 Hz, Ar-H, 1 H), 7.39 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.38 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 5.05 (q, J = 7.0 Hz, CH, 1 H), 4.44 (dd, J = 12.3, 9.2 Hz, CH, 1 H), 4.13/3.94 (t+dd, J = 12.3 Hz, J = 12.3, 9.2 Hz, CH₂, 2 H), 3.20 (sp, J = 6.8 Hz, CH, 1 H), 2.90 (sp, J = 6.8 Hz, CH, 1 H), 1.72 (d, J = 7.0 Hz, CH₃, 3 H), 1.31 (d, J = 6.8 Hz, CH₃, 3 H), 1.29 (d, J = 6.8 Hz, CH₃, 3 H), 1.23 (d, J = 6.8 Hz, CH₃, 3 H), 1.18 (d, J = 6.8 Hz, CH₃, 3 H), 0.73 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 158.5, 145.5, 145.2, 138.5, 132.1, 130.4, 129.2, 128.8, 126.5, 125.5, 125.3, 73.8, 57.6, 49.4, 34.9, 28.3, 28, 25.8, 25.5, 25.2, 23.2, 22.6, 19.1. HRMS: calcd for $C_{27}H_{39}N_2$ [M - Cl⁻] 391.3108, found 391.3113.

(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1-phenylethyl]-4,5-dihydroimidazolium Chloride (9b). This compound was prepared following the synthetic procedure described for 9a starting from 2.78 g of 8b (7.30 mmol). 9b was collected as a white solid (1.12 g, 2.62 mmol, 35.9%). Mp: 164–166 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.12 (s, CH, 1 H), 7.55–7.41 (m, Ar-H, 5 H), 7.47 (t, J = 7.8 Hz, Ar-H, 1 H), 7.38 (dd, J = 7.8, 1.5 Hz, Ar-H, 1 H), 7.35 (dd, J = 7.8, 1.5 Hz, Ar-H, 1 H), 5.27 (q, J = 7.0 Hz, CH, 1 H), 4.37 (dd, J = 12.4, 8.8 Hz, CH, 1 H), 4.07/3.94 (t+dd, J = 12.4 Hz, J = 12.4, 8.8 Hz, CH₂, 2 H), 3.23 (sp, J = 6.7 Hz, CH, 1 H), 2.83 (sp, J = 6.7 Hz, CH, 1 H), 1.76 (d, J = 7.0 Hz, CH₃, 3 H), 1.30 (d, J = 6.7 Hz, CH₃, 3 H), 1.29 (d, J = 6.7 Hz, CH₃, 3 H), 1.23 (d, J = 6.7 Hz, CH₃, 3 H), 1.11 (d, J = 6.7 Hz, CH₃, 3 H), 0.76 (s, CH₃, 9 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.3, 145.5, 145.3, 137.7, 132.1, 130.3, 129.1, 128.8, 126.9, 125.4, 125.3, 74.1, 56.9, 47.8, 35.1, 28.3, 28.0, 26.0, 25.4, 25.2, 23.2, 22.6, 17.7. HRMS: calcd for C₂₇H₃₉N₂ [M Cl⁻]⁺ 391.3108, found 391.2852.

(45)-4-*tert*-Butyl-3-(2,6-diisopropylphenyl)-1-[(15)-1-(1-naphthyl)ethyl]-4,5-dihydroimidazolium Chloride (9c). This compound was prepared following the synthetic procedure described for 9a starting from 2.84 g of 8c (6.580 mmol). 9c was collected as a white solid (2.03 mg, 4.26 mmol, 64.7%). Mp: 272–274 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 8.87 (s, CH, 1 H), 8.21–7.58 (m, Ar-H, 6 H), 7.79 (d, *J* = 7.0 Hz, Ar-H, 1 H), 7.43 (t, *J* = 7.8 Hz, Ar-H, 1 H), 7.30 (d, *J* = 7.8 Hz, Ar-H, 2 H), 6.03 (q, *J* = 6.8 Hz, CH, 1 H), 4.37 (dd, *J* = 12.5, 8.5 Hz, CH, 1 H), 4.19/3.97 (dd+t, *J* = 12.5, 8.5 Hz, *J* = 12.5 Hz, CH₂, 2 H), 2.95 (sp, *J* = 6.8 Hz, CH, 1 H), 2.71 (sp, *J* = 6.8 Hz, CH₃, 3 H), 1.20 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.02 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.02 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.02 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.02 (d, *J* = 6.8 Hz, CH₃, 3 H), 0.91 (d, *J* = 6.8 Hz, CH₃, 3 H), 0.77 (s, CH₃, 9 H), ¹³C NMR (125 MHz, DMSO- d_6): δ 159.0, 145.3, 145.0, 133.7, 131.9, 131.6, 130.4, 130.2, 129.8, 129.2, 127.1, 126.3, 125.5, 125.4, 125.2, 122.6)

73.8, 53.2, 48.0, 35.1, 28.1, 28.0, 25.5, 25.2, 23.2, 22.5, 17.9. HRMS: calcd for $C_{31}H_{41}N_2 \ [M-Cl^-]^+$ 441.3264, found 441.3253.

(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1-(1naphthyl)ethyl]-4,5-dihydroimidazolium Chloride (9d). This compound was prepared following the synthetic procedure described for 9a starting from 2.25 g of 8d (5.22 mmol). 9d was collected as a white solid (1.90 g, 3.98 mmol, 76.1%). Mp: 261-263 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 10.40 (s, CH, 1 H), 8.72 (d, J = 8.5 Hz, Ar-H, 1 H), 8.00–7.32 (m, Ar-H, 6 H) 7.35 (t, J = 7.8 Hz, Ar-H, 1 H), 7.19/ 7.17 (dd+dd, J = 7.8, 1.5 Hz, J = 7.8, 1.5 Hz, Ar-H, 2 H), 4.21 (m, CH, 1 H), 4.20/3.25 (m+dd, J = 8.7, 4.0 Hz, CH₂, 2 H), 3.00 (sp, J = 6.8 Hz, CH, 1 H), 2.89 (sp, J = 6.8 Hz, CH, 1 H), 2.02 (d, J = 6.8 Hz, CH₃, 3 H), 1.45 (d, J = 6.8 Hz, CH₃, 3 H), 1.34 (d, J = 6.8 Hz, CH₃, 3 H), 1.27 (d, J = 6.8 Hz, CH₂, 3 H), 1.18 (d, J = 6.8 Hz, CH₃, 3 H), 0.36 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 160.3, 145.6, 145.3, 134.3, 132.3, 131.8, 131.3, 130.5, 130.3, 129.2, 127.7, 126.6, 125.7, 125.6, 124.9, 124.6, 124.0, 73.5, 53.4, 46.6, 35.5, 29.5, 28.6, 26.9, 25.8, 25.5, 23.8, 23.0, 17.1. HRMS: calcd for C₃₁H₄₁N₂ [M -Cl⁻]⁺ 441.3264, found 441.3265.

(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2,2-trimethylpropyl]-4,5-dihydroimidazolium Chloride (9e). This compound was prepared following the synthetic procedure described for 9a starting from 1.95 g of 8e (5.41 mmol). 9e was collected as a white solid (1.80 g, 4.42 mmol, 81.8% Yield). Mp: 130-148 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.00 (s, CH, 1 H), 7.49 (t, J = 7.7 Hz, Ar-H, 1 H), 7.38 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.37 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 4.55 (dd, J = 12.0, 10.2 Hz, CH, 1 H), 4.48/4.02 (t+dd, J = 12.0 Hz, J = 12.0, 10.2 Hz, CH₂, 2 H), 3.77 (q, J = 7.1 Hz, CH, 1 H), 3.18 (sp, J = 6.8 Hz, CH, 1 H), 2.98 (sp, J = 6.8 Hz, CH, 1 H), 1.37 (d, J = 7.1 Hz, CH₃, 3 H), 1.34 (d, J = 6.8 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.19 (d, J = 6.8 Hz, CH₃, 3 H), 1.13 $(d, J = 6.8 \text{ Hz}, \text{CH}_3, 3 \text{ H}), 0.99 (s, \text{CH}_3, 9 \text{ H}), 0.82 (s, \text{CH}_3, 9 \text{ H}).$ ¹³C NMR (125 MHz, DMSO-d₆): δ 162.9, 160.5, 145.8, 145.5, 131.8, 130.5, 125.5, 125.2, 73.9, 62.9, 50.8, 35.0, 34.6, 28.2, 28.2, 26.4, 25.9, 25.5, 25.4, 23.0, 22.5, 13.3. HRMS: calcd for $C_{25}H_{43}N_2$ [M - Cl⁻] 371.3426, found 371.3423.

(4S)-4-*tert*-Butyl-3-(2,6-diisopropylphenyl)-1-[(1*R*)-1,2,2-trimethylpropyl]-4,5-dihydroimidazolium Chloride (9f). This compound was prepared following the synthetic procedure described for 9a starting from 1.84 g of 8f (5.09 mmol). 9f was collected as a white solid (845 mg, 2.08 mmol, 40.8%). Mp: 259–261 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 8.95 (s, CH, 1 H), 7.47 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.37 (dm, *J* = 7.7 Hz, Ar-H, 2 H), 4.45/4.07 (m+m, CH₂, 2 H), 4.45 (m, CH, 1 H), 3.80 (q, *J* = 7.0 Hz, CH, 1 H), 3.26 (sp, *J* = 6.8 Hz, CH, 1 H), 2.97 (sp, *J* = 6.8 Hz, CH, 1 H), 1.37 (d, *J* = 7.0 Hz, CH₃, 3 H), 1.35 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.29 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.21 (d, *J* = 6.8 Hz, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO d_6): δ 160.4, 145.8, 145.6, 131.9, 130.4, 125.4, 125.2, 74.1, 62.9, 49.5, 34.8, 34.6, 28.2, 27.9, 26.5, 26.0, 25.6, 25.3, 23.2, 22.5, 13.2. HRMS: calcd for C₂₅H₄₃N₂ [M - Cl⁻]⁺ 371.3426, found 371.3422.

(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-(2-isopropylphenyl)-4,5-dihydroimidazolium Chloride (9g). This compound was prepared following the synthetic procedure described for 9a starting from 2.26 g of 8g (5.73 mmol). 9g was collected as a yellowish white solid (1.94 g, 4.39 mmol, 76.7%). Mp: 60–65 $^{\circ}$ C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.27 (s, CH, 1 H), 7.67 (dd, J = 7.9, 1.2 Hz, Ar-H, 1 H), 7.60 (dd, J = 7.9, 1.2 Hz, Ar-H, 1 H), 7.57 (td, J = 7.9, 1.2 Hz, Ar-H, 1 H), 7.51 (t, J = 7.7 Hz, Ar-H, 1 H), 7.46 (td, J = 7.9, 1.2 Hz, Ar-H, 1 H), 7.41 (dm, J = 7.7 Hz, Ar-H, 1 H), 7.41 (dm, J = 7.7 Hz, Ar-H, 1 H), 4.85/4.47 (t+dd, J = 11.8 Hz, J = 11.8, 10.2 Hz, CH_{2} , 2 H), 4.72 (dd, J = 11.8, 10.2 Hz, CH, 1 H), 3.33 (sp, J = 6.8Hz, CH, 1 H), 3.15 (sp, J = 6.8 Hz, CH, 1 H), 3.06 (sp, J = 6.8 Hz, CH, 1 H), 1.42/1.16 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 6 H), 1.36/1.19 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 6 H), 1.30/1.26 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 6 H), 0.88 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 160.8, 145.6, 145.3, 144.6, 133.0, 131.4, 130.7, 127.4, 127.3, 126.9, 125.6, 125.3, 75.0, 55.1, 34.9, 28.5, 28.2, 27.8, 25.8, 25.7, 25.4, 23.7, 23.6, 23.1, 22.5. HRMS: calcd for C₂₈H₄₁N₂ [M - Cl⁻]⁺ 405.3270, found 405.3255.

(45)-4-*tert*-Butyl-1-(2-*tert*-butylphenyl)-3-(2,6-diisopropylphenyl)-4,5-dihydroimidazolium Chloride (9h). This compound was prepared following the synthetic procedure described for 9a starting from 2.10 g of 8h (5.14 mmol). 9h was collected as a yellowish white solid (1.90 mg, 4.16 mmol, 81.0%). Mp: 230–245 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.26 (s, CH, 1 H), 7.75–7.45 (m, Ar-H, 4 H), 7.53 (t, *J* = 7.9 Hz, Ar-H, 1 H), 7.40 (d, *J* = 7.9 Hz, Ar-H, 2 H), 4.88 (t, *J* = 11.3 Hz, CH, 1 H), 4.82/4.42 (t+t, *J* = 11.3 Hz, *J* = 11.3 Hz, CH₂, 2 H), 3.33 (sp, *J* = 6.7 Hz, CH, 1 H), 3.16 (sp, *J* = 6.7 Hz, CH, 1 H), 1.48 (s, CH₃, 9 H), 1.43/1.16 (d+d, *J* = 6.7 Hz, J = 6.7 Hz, CH₃, 3 H), 0.87 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 145.4, 138.0, 133.8, 130.8, 130.7, 130.1, 129.4, 128.1, 125.6, 56.8, 34.6, 32.0, 28.2, 26.0, 25.7, 25.4, 23.0. HRMS: calcd for C₂₈H₄₁N₂ [M - Cl⁻]⁺ 419.3426, found 419.3404.

(45)-4-tert-Butyl-3-(2-tert-butylphenyl)-1-[(15)-1-phenylethyl]-4,5-dihydroimidazolium Chloride (9i). This compound was prepared following the synthetic procedure described for 9a starting from 315 mg of 8i (0.893 mmol). 9i was collected as a light yellow solid (63 mg, 0.158 mmol, 17.7%). ¹H NMR (500 MHz, DMSO- d_6): δ 9.13 (s, CH, 1 H), 7.71 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.62 (dd, J =7.7, 1.4 Hz, Ar-H, 1 H), 7.48–7.40 (m, Ar-H, 5 H), 7.49 (td, J =7.7, 1.4 Hz, Ar-H, 1 H), 7.39 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 4.98 (q, J = 7.0 Hz, CH, 1 H), 4.51 (dd, J = 11.0, 8.1 Hz, CH, 1 H), 3.87 (m, CH₂, 2 H), 1.72 (d, J = 7.0 Hz, CH₃, 3 H), 1.40 (s, CH₃, 9 H), 0.71 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 157.6, 146.5, 138.4, 134.5, 131.6, 130.3, 130.1, 129.1, 128.7, 127.1, 126.8, 73.1, 57.5, 49.5, 35.4, 31.8, 25.2, 19.5. HRMS: calcd for C₂₅H₃₅N₂ [M – Cl⁻]⁺ 363.2800, found 363.2787.

(2R)-N-(2,6-Diisopropylphenyl)-N'-[(4-methoxyphenyl)methyl]-3,3-dimethylbutane-1,2-diamine (10). This compound was prepared following the synthetic procedure described for 8a starting from 3.94 mL of 4-methoxyphenyl)methanamine (30.2 mmol) and 7.55 g of 5b (27.4 mmol). The reaction time for the first step was 2 h and for the second step was 16 h. 10 was collected as a colorless oil (7.01 g, 17.7 mmol, 64.5%). A colorless oil was obtained. ¹H NMR (500 MHz, DMSO- d_6): δ 7.00 (d, J = 7.6 Hz, Ar-H, 2 H), 6.97 (m, Ar-H, 2 H), 6.89 (t, J = 7.6 Hz, Ar-H, 1 H), 6.76 (m, Ar-H, 2 H), 3.69 (s, CH₃, 3 H), 3.39 (s, CH₂, 2 H), 3.36 (sp, J = 6.8 Hz, CH, 2 H), 3.35 (m, NH, 1 H), 3.01 (m, CH, 1 H), 2.61/2.51 (dd+dm, J = 12.4, 4.2 Hz, J = 4.2 Hz, CH₂, 2 H), 1.33 (brs, NH, 1 H), 1.15 (d, J = 6.8 Hz, CH₃, 6 H), 1.13 (d, J = 6.8 Hz, CH₃, 6 H), 0.99 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 157.8, 142.5, 140.1, 132.6, 128.5, 123.4, 121.9, 113.4, 66.7, 54.9, 52.6, 50.2, 35.3, 27.3, 26.9, 24.1, 24.0. HRMS: calcd for C₂₆H₄₁N₂O [M + H]⁻ 397.3213, found 397.3217. The stereochemical integrity of the product was not investigated.

(2R)-N-(2,6-Diisopropylphenyl)-3,3-dimethylbutane-1,2-diamine (11). A 1.80 g portion of 10 (4.54 mmol) was dissolved in 23 mL of EtOH, and 483 mg of palladium (0.454 mmol) was added carefully. The reaction was carried out in an autoclave under 10 bar pressure at room temperature. After 24 h complete conversion was observed by HPLC-MS. The crude product was purified via column chromatography using DCM and 1.2% methanolic ammonia as eluents. 11 was collected as a colorless oil (1.19 g, 4.32 mmol, 95.2%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.00 (d, J = 7.6 Hz, Ar-H, 2 H), 6.87 (t, I = 7.6 Hz, Ar-H, 1 H), 3.38 (sp, I = 6.8 Hz, CH, 2 H), 3.38 (d, J = 5.0 Hz, NH, 1 H), 2.85 (m, CH, 1 H), 2.66/2.58 (dd+dd, J = 13.1, 5.0 Hz, J = 13.1 Hz, J = 5.0 Hz, CH₂, 2 H), 1.20 (br s, NH₂, 2 H), 1.16 (d, J = 6.8 Hz, CH₃, 6 H), 1.15 (d, J = 6.8 Hz, CH₃, 6 H), 0.99 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 142.7, 140.0, 123.4, 121.6, 69.3, 42.8, 35.3, 27.4, 26.9, 24.1, 24.0. HRMS: calcd for $C_{18}H_{30}N_2O [M + H]^+ 277.2638$, found 277.2641. The stereochemical integrity of the product was not investigated.

(2R)-N'-[(1S)-1-(1-Adamantyl)ethyl]-N-(2,6-diisopropylphenyl)-3,3-dimethylbutane-1,2-diamine (13a) and (2R)-N'-[(1R)-1-(1-Adamantyl)ethyl]-N-(2,6-diisopropylphenyl)-3,3-dimethylbutane-1,2-diamine (13b). These compounds were prepared following the synthetic procedure described for 8a starting from 1.03 g of 1-(1-adamantyl)ethanone (5.77 mmol) and 1.45 g of 11 (5.24 mmol). The reaction time for the first step was 3.5 h and for the second step was 2 h. **13a**,b were collected as a diastereomeric mixture (695 mg, 0.64 mmol, 30.2%). Diastereomers were separated via column chromatography using heptane and EtOAc as eluents. The earlier eluting diastereoisomer was collected as **13a** and the later eluting diastereoisomer as **13b**.

13a was collected as a colorless oil (483 mg, 1.10 mmol, 21.0%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.01 (d, J = 7.6 Hz, Ar-H, 2 H), 6.86 (t, J = 7.6 Hz, Ar-H, 1 H), 3.30 (sp, J = 6.8 Hz, CH, 2 H), 3.02 (m, CH, 1 H), 2.84/2.24 (m+m, CH₂, 2 H), 1.81–1.14 (m, CH/ CH₂, 15 H), 1.70 (q, J = 6.4 Hz, 1 H), 1.19/1.18 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 12 H), 1.01 (s, CH₃, 9 H), 0.66 (d, J = 6.4 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 142.3, 139.8, 123.5, 121.7, 67.3, 62.2, 50.1, 37.8, 37.6, 37.0, 36.8, 35.3, 35.2, 27.8, 27.8, 27.2, 27.1, 24.0, 12.9. HRMS: calcd for C₃₀H₅₁N₂ [M + H]⁺ 439.4047, found 439.4037.

13b was collected as a yellowish oil (194 mg, 0.44 mmol, 8.4%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.00 (d, *J* = 7.7 Hz, Ar-H, 2 H), 6.85 (t, *J* = 7.7 Hz, Ar-H, 1 H), 3.36 (sp, *J* = 6.8 Hz, CH, 2 H), 3.07 (m, CH, 1 H), 2.75/2.48 (m+m, CH₂, 2 H), 1.84–1.10 (m, CH/CH₂, 15 H), 1.73 (q, *J* = 6.4 Hz, CH, 1 H), 1.19/1.18 (d+d, *J* = 6.8 Hz, *J* = 6.8 Hz, CH₃, 12 H), 0.99 (s, CH₃, 9 H), 0.66 (d, *J* = 6.4 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 143.0, 130.5, 129.1, 121.5, 67.4, 61.7, 51.0, 37.9, 36.9, 27.9, 27.2, 27.1, 24.1, 20.8, 12.9. HRMS: calcd for C₃₀H₅₁N₂ [M + H]⁺ 439.4047, found 439.4047.

(2R)-N-(2,6-Diisopropylphenyl)-N'-[(1R)-1,2-diphenylethyl]-3,3-dimethylbutane-1,2-diamine (13c) and (2R)-N-(2,6-Diisopropylphenyl)-N'-[(1S)-1,2-diphenylethyl]-3,3-dimethylbutane-1,2-diamine (13d). These compounds were prepared following the synthetic procedure described for 8a starting from 1.70 g of 11 (6.15 mmol) and 1.11 mL of 1,2-diphenylethanone (6.76 mmol). The reaction time for the first step was 5 h and for the second step was 2 h. 13c,d were collected as a diastereomeric mixture (950 mg, 0.21 mmol, 33.8%). Diastereomers were separated via column chromatography using heptane and EtOAc as eluents. The earlier eluting diastereoisomer was collected as 13c and the later eluting diastereoisomer as 13d.

13c was collected as a yellow oil (507 mg, 1.11 mmol, 18.1%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.25–6.83 (m, Ar-H, 13 H), 3.43 (dd, J = 7.9, 6.0 Hz, CH, 1 H), 3.22 (sp, J = 6.7 Hz, CH, 2 H), 3.10 (d, J = 11.6 Hz, NH, 1 H), 2.81 (m, CH, 1 H), 2.62/2.56 (dd+dd, J = 13.4, 6.0 Hz, J = 13.4, 6.0 Hz, CH₂, 2 H), 2.45/2.17 (dm+dd, J = 12.6 Hz, CH₃, 6 H) 1.03 (d, J = 6.7 Hz, CH₃, 6 H), 0.82 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 144.0, 142.1, 140.4, 138.6, 129.0, 128.0, 127.9, 127.0, 126.5, 126.0, 123.4, 122.1, 67.1, 63.9, 47.7, 44.5, 27.0, 26.9, 24.0, 23.8. HRMS: calcd for C₃₂H₄₅N₂ [M + H]⁺ 457.3577, found 457.3566.

13d was collected as a yellow oil (411 mg, 0.90 mmol, 14.6%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.20–6.85 (m, Ar-H, 13 H), 3.56 (t, J = 7.0 Hz, CH, 1 H), 3.25 (sp, J = 6.8 Hz, CH, 2 H), 3.21 (d, J = 11.7 Hz, NH, 1 H), 2.91 (m, CH, 1 H), 2.65/2.56 (dd+dd, J = 13.2, 7.0 Hz, J = 13.2, 7.0 Hz, CH₂, 2 H), 2.34 (d, J = 4.4 Hz, CH₂, 2 H), 1.35 (br s, NH, 1 H), 1.14 (d, J = 6.8 Hz, CH₃, 6 H) 1.07 (d, J = 6.8 Hz, CH₃, 6 H), 0.87 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 143.3, 142.4, 140.1, 138.7, 129.2, 127.9, 126.9, 126.5, 125.9, 123.4, 121.9, 66.4, 63.9, 48.3, 44.3, 27.0, 27.0, 24.0, 23.8. HRMS: calcd for C₃₂H₄₅N₂ [M + H]⁺ 457.3577, found 457.3562.

(2*R*)-*N*-(2,6-Diisopropylphenyl)-3,3-dimethyl-*N*'-[(15)-1phenylethyl]butane-1,2-diamine (13e). This compound was prepared following the synthetic procedure described for 8a starting from 0.77 mL of (1*S*)-1-phenylethanamine (6.00 mmol) and 1.50 g of 5a (5.45 mmol). The reaction time for the first step was 2.5 h and for the second step was 4 h. 8a and 13e were collected as a diastereomeric mixture (1.75 g, 4.60 mmol, 84.4%). Diastereomers were separated via column chromatography using heptane and EtOAc as eluents. The later eluting diastereoisomer, 13e, was collected as a yellow oil (832 mg, 2.19 mmol, 40.2%). ¹H NMR (500 MHz, DMSO d_6): δ 7.25–7.04 (m, Ar-H, 5 H) 7.00 (d, *J* = 7.6 Hz, Ar-H, 2 H), 6.89 (t, *J* = 7.6 Hz, Ar-H, 1 H), 3.44 (q, *J* = 6.5 Hz, CH, 1 H), 3.35 (d, *J* = 11.4 Hz, NH, 1 H), 3.35 (sp, J = 6.8 Hz, CH, 2 H), 3.01 (m, CH, 1 H), 2.39/2.35 (m+m, CH₂, 2 H), 1.32 (br s, NH, 1 H), 1.16 (d, J = 6.8 Hz, CH₃, 6 H), 1.12 (d, J = 6.8 Hz, CH₃, 6 H), 1.00 (d, J = 6.5 Hz, CH₃, 3 H), 0.94 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 145.9, 142.6, 139.9, 128.1, 126.4, 126.2, 123.4, 121.8, 66.0, 57.2, 48.4, 35.2, 27.2, 27.0, 24.4, 24.0, 23.9. HRMS: calcd for C₂₆H₄₁N₂ [M + H]⁺ 381.3264, found 381.3257.

(2R)-N-(2,6-Diisopropylphenyl)-3,3-dimethyl-N'-[(1S)-1-(1naphthyl)ethyl]butane-1,2-diamine (13f). This compound was prepared following the synthetic procedure described for 8a starting from 0.55 mL of (1S)-1-(1-naphthyl)ethanamine (3.40 mmol) and 850 mg of 5a (3.086 mmol). The reaction time for the first step was 1 h and for the second step was 4 h. 8c and 13f were collected as a diastereomeric mixture (620 mg, 1.44 mmol, 46.6%). Diastereomers were separated via column chromatography using heptane and EtOAc as eluents. The later eluting diastereoisomer, 13f, was collected as a yellow oil (327 mg, 0.76 mmol, 24.6%). $^1\mathrm{H}$ NMR (500 MHz, DMSO d_6): δ 8.10–7.27 (m, Ar-H, 7 H), 7.01 (d, J = 7.6 Hz, Ar-H, 2 H), 6.90 (t, J = 7.6 Hz, Ar-H, 1 H), 4.20 (q, J = 6.4 Hz, CH, 1 H), 3.39 (sp, J = 6.7 Hz, CH, 2 H), 3.34 (br d, NH, 1 H), 3.08 (m, CH, 1 H), $2.61/2.46 \text{ (m+m, CH}_2, 2 \text{ H}), 1.17 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, \text{ CH}_3, 6 \text{ H}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, 1.14 \text{ (d, } J = 6.7 \text{ Hz}, 1.14 \text{ (d, } J = 6.7 \text{ Hz}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, 1.14 \text{ (d, } J = 6.7 \text{ Hz}), 1.14 \text{ (d, } J = 6.7 \text{ Hz}, 1.14 \text{ (d, } J = 6.7 \text{ Hz}), 1.1$ *J* = 6.4 Hz, CH₃, 3 H), 1.10 (d, *J* = 6.7 Hz, CH₃, 6 H), 0.92 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 142.5, 141.3, 140.1, 133.5, 130.7, 128.6, 126.7, 125.6, 125.6, 125.2, 123.5, 123.0, 122.5, 121.9, 67.4, 54.0, 49.5, 27.1, 27.0, 24.1, 24.0, 23.8. HRMS: calcd for $C_{30}H_{42}N_2 [M + H]^+$ 431.3420, found 431.3411.

(2S)-N-(2-tert-Butylphenyl)-3,3-dimethyl-N'-[(1S)-1phenylethyl]butane-1,2-diamine (8i) and (2R)-N-(2-tert-Butylphenyl)-3,3-dimethyl-N'-[(1S)-1-phenylethyl]butane-1,2-diamine (13g). These compounds were prepared following the synthetic procedure described for 8a starting from 2.35 g of crude 5d (4.75 mmol) and 0.67 mL of (1S)-1-phenylethanamine (5.22 mmol). The reaction time for the first step was 20 h and for the second step was 2 h. 8i and 13g were collected as a diastereomeric mixture (605 mg, 1.72 mmol, 38.1%). Diastereomers were separated via column chromatography using heptane and EtOAc as eluents. The earlier eluting diastereoisomer was collected as 8i and the later eluting diastereoisomer as 13g.

8i was collected as a yellow oil (317 mg, 0.90 mmol, 18.9%). ¹H NMR (400 MHz, DMSO- d_6): δ 7.33–7.14 (m, Ar-H, 5 H), 7.11 (dd, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.98 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.77 (d, *J* = 7.7 Hz, Ar-H, 1 H), 6.50 (td, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 3.89 (d, *J* = 9.0 Hz, NH, 1 H), 3.63 (q, *J* = 6.6 Hz, CH, 1 H), 3.43 (td, *J* = 8.0, 3.8 Hz, CH, 1 H), 2.66/2.45 (dd+dd, *J* = 11.8, 3.8 Hz, *J* = 11.8, 8.0 Hz, CH₂, 2 H), 1.38 (s, CH₃, 9 H), 1.15 (d, *J* = 6.6 Hz, CH₃, 3 H), 0.90 (s, CH₃, 9 H). ¹³C NMR (100 MHz, DMSO- d_6): δ 146.6, 146.0, 131.5, 128.1, 126.8, 126.5, 126.4, 126.0, 115.3, 111.1, 60.2, 58.0, 48.8, 35.3, 33.7, 29.8, 27.7, 27.1, 24.3. HRMS: calcd for C₂₄H₃₆N₂ [M + H]⁺ 353.2951, found 353.2962.

13g was collected as a yellow oil (249 mg, 0.71 mmol, 14.9%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.30–7.15 (m, Ar-H, 5 H), 7.10 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.98 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.77 (d, J = 7.7 Hz, Ar-H, 1 H), 6.48 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 4.02 (d, J = 8.9 Hz, NH, 1 H), 3.58 (q, J = 6.7 Hz, CH, 1 H), 3.47 (m, CH, 1 H), 2.61/2.38 (dd+dd, J = 12.1, 2.5 Hz, J = 12.1, 7.1 Hz, CH₂, 2 H), 1.68 (br, NH, 1 H), 1.39 (s, CH₃, 9 H), 1.14 (d, J = 6. Hz, CH₃, 3 H), 0.90 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 146.6, 145.9, 131.5, 128.2, 126.8, 126.6, 126.4, 126.0, 115.3, 110.8, 59.1, 57.8, 48.2, 35.5, 33.8, 29.8, 27.1, 24.4. HRMS: calcd for C₂₄H₃₆N₂ [M + H]⁺ 353.2951, found 353.2968.

(4*R*)-1-[(1*S*)-1-(1-Adamantyl)ethyl]-4-*tert*-butyl-3-(2,6-diisopropylphenyl)-4,5-dihydroimidazolium Chloride (14a). This compound was prepared following the synthetic procedure described for 9a starting from 800 mg of 13a (1.82 mmol). 14a was collected as a yellowish white solid (216 mg, 0.445 mmol, 24.4%). Mp: 120–140 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.82 (s, CH, 1 H), 7.47 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.36 (dm, *J* = 7.7 Hz, Ar-H, 1 H), 7.36 (dm, *J* = 7.7 Hz, Ar-H, 1 H), 4.48 (dd, *J* = 12.0, 9.6 Hz, CH, 1 H), 4.42/4.04 (t +dd, *J* = 12.0 Hz, *J* = 12.0, 9.6 Hz, CH₂, 2 H), 3.57 (q, *J* = 7.1 Hz, CH, 1 H), 3.28 (sp, *J* = 6.9 Hz, CH, 1 H), 2.99 (sp, *J* = 6.9 Hz, CH, 1

H), 2.00 (br s., CH, 3 H), 1.71/1.64 (m+m, CH₂, 6 H), 1.64/1.51 (m +m, CH₂, 6 H), 1.36 (d, J = 6.8 Hz, CH₃, 3 H), 1.33 (d, J = 7.1 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.20 (d, J = 6.7 Hz, CH₃, 3 H), 1.10 (d, J = 6.7 Hz, CH₃, 3 H), 0.81 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 162.9, 160.4, 145.8, 145.6, 132.0, 130.4, 125.5, 125.2, 74.1, 63.3, 50.1, 38.1, 36.1, 36.0, 34.7, 28.4, 27.9, 27.8, 25.9, 25.7, 25.2, 23.2, 22.5, 11.5. HRMS: calcd for C₃₁H₄₉N₂ [M - Cl⁻]⁺ 449.3896, found 449.3874.

(4R)-1-[(1R)-1-(1-Adamantyl)ethyl]-4-tert-butyl-3-(2,6-diisopropylphenyl)-4,5-dihydroimidazolium Chloride (14b). This compound was prepared following the synthetic procedure described for 9a starting from 485 mg of 13b (1.11 mmol). 14b was collected as a yellowish white solid (114 mg, 0.235 mmol, 21.3%). Mp: 173-175 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 8.89 (s, 1 H), 7.49 (t, J = 7.8Hz, Ar-H, 1 H), 7.38 (m, Ar-H, 1 H), 7.38 (m, Ar-H, 1 H), 4.56 (t, J = 11.6 Hz, CH, 1 H), 4.44/4.04 (t+t, J = 11.6 Hz, CH, J = 11.6 Hz, CH₂, 2 H), 3.51 (q, J = 7.2 Hz, CH, 1 H), 3.20 (sp, J = 6.8 Hz, CH, 1 H), 2.99 (sp, J = 6.7 Hz, CH, 1 H), 2.02 (br s, CH, 3 H), 1.72/1.61 $(m+m, CH_2, 6 H)$, 1.56 $(m, CH_2, 6 H)$, 1.35 $(d, J = 6.8 Hz, CH_3, 3 Hz)$ H), 1.33 (d, J = 7.3 Hz, CH₃, 3 H), 1.31 (d, J = 6.8 Hz, CH₃, 3 H), 1.19 (d, J = 6.8 Hz, CH₃, 3 H), 1.14 (d, J = 6.8 Hz, CH₃, 3 H), 0.83 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 162.9, 160.2, 145.8, 145.5, 131.9, 130.5, 125.5, 125.2, 73.8, 63.3, 51.8, 38.2, 37.8, 36.4, 36.2, 36.1, 34.6, 29.2, 28.7, 28.2, 28.2, 27.7, 27.5, 25.9, 25.4, 25.3, 23.1, 22.6, 21, 12.0. HRMS: calcd for C₃₁H₄₉N₂ [M - Cl⁻]⁺ 449.3896, found 449.3880.

(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1,2-diphenylethyl]-4,5-dihydroimidazolium Chloride (14c). This compound was prepared following the synthetic procedure described for 9a starting from 507 mg of 13c (1.11 mmol). 14c was collected as a white solid (518 mg, 1.03 mmol, 92.7%). Mp: 268-270 °C. ¹H NMR (500 MHz, DMSO-d₆): δ 9.31 (s, CH, 1 H), 7.60-7.28 (m, Ar-H, 10 H), 7.46 (t, J = 7.7 Hz, Ar-H, 1 H), 7.34 (dm, J = 7.7 Hz, Ar-H, 1 H), 7.34 (dm, J = 7.7 Hz, Ar-H, 1 H), 5.48 (dd, J = 11.7, 5.3 Hz, CH, 1 H), 4.21 (m, CH, 1 H), 4.21/3.86 (m+dd, J = 10.3, 5.4 Hz, CH₂, 2 H), 3.61/3.41 (dd+dd, J = 15.1, 11.7 Hz, J = 15.1, 5.3 Hz, CH₂, 2 H), 2.79 (sp, J = 6.7 Hz, CH, 1 H), 2.65 (sp, J = 6.7 Hz, CH, 1 H), 1.25 (d, J = 6.7 Hz, CH₃, 3 H), 1.20 (d, J = 6.7 Hz, CH₃, 3 H), 1.19 (d, J = 6.7 Hz, CH₃, 3 H) 1.06 (d, J = 6.7 Hz, CH₃, 3 H), 0.56 (s, CH₂, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 159.0, 145.3, 145.0, 137.3, 136.4, 131.9, 130.4, 129.1, 129.0, 128.8, 128.7, 127.0, 127.0, 125.4, 125.3, 73.7, 62.1, 50.5, 38.1, 28.3, 27.8, 26.0, 25.2, 25.0, 23.2, 22.5. HRMS: calcd for $C_{33}H_{43}N_2$ [M - Cl⁻]⁺ 467.3426, found 467.3424.

(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2-diphenylethyl]-4,5-dihydroimidazolium Chloride (14d). This compound was prepared following the synthetic procedure described for 9a starting from 411 mg of 13d (0.900 mmol). 14d was collected as a white solid (437 mg, 0.868 mmol, 96.5%). Mp: 277-279 °C. ¹H NMR (500 MHz, DMSO-d₆): δ 9.03 (s, CH, 1 H), 7.64-7.32 (m, Ar-H, 10 H), 7.42 (t, J = 7.8 Hz, Ar-H, 1 H), 7.30 (dm, J = 7.8 Hz, Ar-H, 1 H), 7.30 (dm, J = 7.8 Hz, Ar-H, 1 H), 5.71 (dd, J = 12.0, 4.4 Hz, CH, 1 H), 4.42 (dd, J = 12.6, 10.3 Hz, CH, 1 H), 4.05/3.80 (dd+t, J = 12.6, 10.3 Hz, J = 12.6 Hz, CH_2 , 2 H), 3.75/3.41 (dd+dd, J = 14.4, 12.0 Hz, J = 14.4, 4.4 Hz, CH₂, 2 H), 2.73 (sp, J = 6.8 Hz, CH, 1 H), 2.42 (sp, J = 6.8 Hz, CH, 1 H), 1.23 (d, J = 6.8 Hz, CH₃, 3 H) 1.14 $(d, J = 6.8 \text{ Hz}, \text{CH}_3, 3 \text{ H}), 1.05 (d, J = 6.8 \text{ Hz}, \text{CH}_3, 3 \text{ H}) 0.96 (d, J =$ 6.8 Hz, CH₃, 3 H), 0.61 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO d_6): δ 159.4, 145.4, 145.2, 136.7, 136.0, 131.3, 130.4, 129.2, 129.1, 128.7, 127.7, 127.0, 125.3, 125.2, 73.8, 61.8, 46.5, 34.8, 28.3, 27.6, 26.1, 25.6, 25.2, 22.7, 22.2. HRMS: calcd for $C_{33}H_{43}N_2$ [M - Cl⁻]⁺ 467.3426, found 467.3422.

(4*R*)-4-*tert*-Butyl-3-(2,6-diisopropylphenyl)-1-[(15)-1-phenylethyl]-4,5-dihydroimidazolium Chloride (14e). This compound was prepared following the synthetic procedure described for 9a starting from 832 mg of 13e (2.19 mmol). 14e was collected as a white solid (460 mg, 1.08 mmol, 49.2%). Mp: 170–172 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.05 (s, CH, 1 H), 7.52–7.40 (m, Ar-H, 5 H), 7.48 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.38 (dd, *J* = 7.7, 1.5 Hz, Ar-H, 1 H), 7.35 (dd, *J* = 7.0 Hz, CH, 1

H), 4.37 (dd, J = 12.1, 8.8 Hz, CH, 1 H), 4.07/3.93 (t+dd, J = 12.1 Hz, J = 12.1, 8.8 Hz, CH₂, 2 H), 3.23 (sp, J = 6.8 Hz, CH, 1 H), 2.83 (sp, J = 6.8 Hz, CH, 1 H), 1.76 (d, J = 7.0 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.29 (d, J = 6.8 Hz, CH₃, 3 H), 1.23 (d, J = 6.8 Hz, CH₃, 3 H), 1.11 (d, J = 6.8 Hz, CH₃, 3 H), 0.76 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 159.2, 145.5, 145.3, 137.7, 132.1, 130.3, 129.1, 128.8, 126.9, 125.4, 125.3, 74.1, 57, 47.8, 35.1, 28.3, 28, 26, 25.4, 25.2, 23.2, 22.6, 17.7. HRMS: calcd for C₂₇H₃₉N₂ [M - Cl⁻]⁺ 391.3108, found 391.3113.

(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1-(1naphthyl)ethyl]-4,5-dihydroimidazolium Chloride (14f). This compound was prepared following the synthetic procedure described for 9a starting from 327 mg of 13f (0.759 mmol). 14f was collected as a white solid (232 mg, 0.488 mmol, 64.3%). Mp: 270-272 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 9.21 (s, CH, 1 H), 8.21 (d, J = 8.2Hz, Ar-H, 1 H), 8.14–7.55 (m, Ar-H, 6 H), 7.79 (d, J = 7.0 Hz, Ar-H, 1 H), 7.48 (t, J = 7.8 Hz, Ar-H, 1 H), 7.38 (m, Ar-H, 2 H), 6.01 (q, J = 7.0 Hz, CH, 1 H), 4.42 (dd, J = 12.4, 8.7 Hz, CH, 1 H), 4.25/3.75 $(t+dd, J = 12.4 Hz, J = 12.4, 8.7 Hz, CH_2, 2 H), 3.14 (sp, J = 6.8 Hz, J)$ CH, 1 H), 2.96 (sp, J = 6.8 Hz, CH, 1 H), 1.88 (d, J = 7.0 Hz, CH₃, 3 H), 1.32 (d, J = 6.8 Hz, CH₃, 3 H), 1.26 (d, J = 6.8 Hz, CH₃, 3 H), 1.25 (d, J = 6.8 Hz, CH₃, 3 H), 1.17 (d, J = 6.8 Hz, CH₃, 3 H), 0.59 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 158.8, 145.5, 145.1, 133.8, 132.9, 132.0, 130.4, 130.2, 129.5, 129.3, 127.0, 126.3, 125.6, 125.5, 125.3, 124.4, 122.3, 73.6, 53.9, 48.9, 34.9, 28.3, 27.9, 25.8, 25.3, 23.2, 22.6, 18.6. HRMS: calcd for $C_{31}H_{41}N_2$ [M - Cl⁻]⁺ 441.3264, found 441.3253.

(4*R*)-4-*tert*-Butyl-3-(2-*tert*-butylphenyl)-1-[(15)-1-phenylethyl]-4,5-dihydroimidazolium Chloride (14g). This compound was prepared following the synthetic procedure described for 9a starting from 245 mg of 13g (0.695 mmol). 14g was collected as a light yellow solid (70 mg, 0.175 mmol, 25.3%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.14 (s, CH, 1 H), 7.71 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.60 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.54–7.39 (m, Ar-H, 5 H), 7.49 (t, *J* = 7.9 Hz, Ar-H, 1 H), 7.39 (td, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 5.14 (q, *J* = 7.0 Hz, CH, 1 H), 4.53 (dd, *J* = 12.4, 6.8 Hz, CH, 1 H), 3.88/3.75 (t+dd, *J* = 12.4 Hz, *J* = 12.4, 6.8 Hz, CH₂, 2 H), 1.74 (d, *J* = 7.0 Hz, CH₃, 3 H), 1.38 (s, CH₃, 9 H), 0.70 (s, CH₃, 9 H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 158.3, 146.5, 137.6, 134.4, 131.6, 130.3, 130.1, 128.9, 128.8, 127.2, 127.1, 73.1, 57.0, 47.6, 36.0, 35.5, 31.8, 25.2, 17.9. HRMS: calcd for C₂₅H₃₅N₂ [M - Cl⁻]⁺ 363.2800, found 363.2784.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-Oxoacetate (17a). A 78.1 g portion of 15a (500 mmol) and 166 mL of oxaldehydic acid (1500 mmol) with 25 mL of sulfuric acid (500 mmol) were stirred in 1000 mL of diisopropyl ether (DIPE) at reflux temperature for 3 days, at which point the maximum conversion (50%) was observed by GC-MS. The reaction mixture was cooled to room temperature, and it was extracted with NaCl solution. The organic layers were dried over MgSO₄ and filtered. No further purification was done; 17a was collected (53.1 g, 250 mmol, 50.0%) in diisopropyl ether solution. MS (EI, 70 eV) m/z (% relative intensity, [ion]): 55 (48), 71 (100), 81 (97), 95 (90), 109 (18), 123 (46), 138 (27), 155 (1).

(15,2*R*,55)-2-Isopropyl-5-methylcyclohexyl 2-Oxoacetate (17b). This compound was prepared following the synthetic procedure described for 17a starting from 78.1 g of 15b (500 mmol). 17b was collected (53.1 g, 250 mmol, 50.0%) in diisopropyl ether solution. MS (EI, 70 eV) m/z (% relative intensity, [ion]): 55 (48), 71 (100), 81 (97), 95 (90), 109 (18), 123 (46), 138 (27), 155 (1).

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-(2,6-Diisopropylphenyl)iminoacetate (18a). A 52 mL portion of 2,6diisopropylaniline (250 mmol) was added to 53.1 g of 17a (250 mmol) in 1000 mL of DIPE, and 0.5 mL of formic acid was also added. The resulting mixture was stirred at room temperature for 3 h, at which point complete conversion was observed by GC-MS. The solvent was completely removed under vacuum. The residue was purified via column chromatography using heptane and EtOAc as eluents. 18a was collected as a yellow oil (76.4 g, 206 mmol, 82.2%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.77 (s, CH, 1 H), 7.22–7.06 (m, Ar-H, 3 H), 4.82 (tm, J = 10.9 Hz, CH, 1 H), 2.72 (sp, J = 6.8 Hz, CH, 2 H), 2.03/1.14 (m+m, CH₂, 2 H), 1.87 (spd, J = 7.0, 2.6 Hz, CH, 1H), 1.67/1.12 (m+m, CH₂, 2 H), 1.67/0.92 (m+m, CH₂, 2 H), 1.54 (m, CH, 1 H), 1.51 (m, CH, 1 H), 1.10 (d, J = 6.8 Hz, CH₃, 6 H), 1.09 (d, J = 6.8 Hz, CH₃, 6 H), 0.92 (d, J = 6.6 Hz, CH₃, 3 H), 0.88 (d, J = 7.0 Hz, CH₃, 3 H), 0.79 (d, J = 7.0 Hz, CH₃, 3 H), 1.23, 1.75.4, 46.4, 40.3, 33.6, 30.9, 27.4, 26.5, 23.7, 23.2, 23.1, 21.9, 20.2, 16.9. HRMS: calcd for C₂₄H₃₈NO₂ [M + H]⁺ 372.2897, found 372.2883.

(15,2*R*,5*S*)-2-Isopropyl-5-methylcyclohexyl 2-(2,6-Diisopropylphenyl)iminoacetate (18b). This compound was prepared following the synthetic procedure described for 18a starting from 53.1 g of 17b (250 mmol). 18b was collected as a yellow oil (60.3 g, 162 mmol, 64.9%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.77 (s, CH, 1 H), 7.19–7.08 (m, Ar-H, 3 H), 4.82 (td, *J* = 10.8, 4.3 Hz, CH, 1 H), 2.72 (sp, *J* = 6.9 Hz, CH, 2 H), 2.03/1.14 (dm+m, *J* = 10.8 Hz, CH₂, 2 H), 1.87 (dsp, *J* = 7.0, 2.7 Hz, CH, 1 H), 1.67/1.12 (m, CH₂, 2 H), 1.67/0.92 (m, CH₂, 2 H), 1.54 (m, CH, 1 H), 1.51 (m, CH, 1 H), 1.10 (d, *J* = 6.9 Hz, CH₃, 6 H), 1.09 (d, *J* = 6.9 Hz, CH₃, 3 H), 0.79 (d, *J* = 7.0 Hz, CH₃, 3 H), ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.1, 155.9, 146.7, 135.8, 125.1, 123.0, 75.4, 46.4, 40.3, 33.6, 30.9, 27.4, 26.5, 23.2, 23.1, 21.8, 20.2, 16.9. HRMS: calcd for C₂₄H₃₈NO₂ [M + H]⁺ 372.2897, found 372.2901.

(1*R*₂25,5*R*)-2-IsopropyI-5-methylcyclohexyl (2*E*)-2-(2-tert-Butylphenyl)iminoacetate (18c). This compound was prepared following the synthetic procedure described for 18a starting from 26.5 g of 17a (125 mmol) and 16 mL of 2-tert-butylaniline (100 mmol). 18c was collected as a yellow oil (26.8 g, 78.0 mmol, 62.0%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.83 (s, CH, 1 H), 7.38 (m, Ar-H, 1 H), 7.25 (m, Ar-H, 1 H), 7.25 (m, Ar-H, 1 H), 7.02 (m, Ar-H, 1 H), 4.77 (td, *J* = 11.0, 4.4 Hz, CH, 1 H), 2.03/1.08 (m+m, CH₂, 2 H), 2.00 (spd, *J* = 7.0, 2.6 Hz, 1 H), 1.67/0.91 (m+m, CH₂, 2 H), 1.67/ 1.1 (m+m, CH₂, 2 H), 1.52 (m, CH, 1 H), 1.48 (m, CH, 1 H), 1.35 (s, CH₃, 9 H), 0.91 (d, *J* = 6.5 Hz, CH₃, 3 H), 0.88 (d, *J* = 7.0 Hz, CH₃, 3 H), 0.75 (d, *J* = 7.0 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 162.6, 149.9, 147.9, 143.5, 127.9, 127.2, 126.1, 118.9, 74.8, 46.6, 40.3, 35.2, 33.6, 30.8, 30.2, 25.7, 23.0, 21.9, 20.5, 16.3. HRMS: calcd for C₂₃H₄₄NO₂ [M + H]⁺ 344.2584, found 344.2589.

(1R,2S,5R)-2-IsopropyI-5-methylcyclohexyl (2S)-2-(2,6-Diisopropylanilino)-3,3-dimethylbutanoate (19c). A solution of 55.0 g of 18a (148 mmol) in 740 mL anhydrous THF was cooled to 0 °C under an inert atmosphere, and then 111 mL of tBuMgCl (222 mmol) was added dropwise over 30 min. The resulting mixture was stirred for 30 min, at which point complete conversion was observed by GC-MS. The reaction mixture was quenched by the addition of saturated aqueous NH₄Cl solution and then was warmed to room temperature and extracted with EtOAc. The combined organic layers were dried over MgSO4, and the volatiles were removed under reduced pressure. The crude product was purified via column chromatography using heptane and EtOAc as eluents. The product was collected as a diastereomeric mixture. This mixture was dissolved in EtOH·HCl and the solution stirred overnight at room temperature. The product (19c) was recrystallized from hexane and collected as a white solid (15.5 g, 36.1 mmol, 34.8%). Mp: 90-92 °C. ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6): \delta 6.99 \text{ (m, Ar-H, 2 H)}, 6.92 \text{ (dd, } J = 8.3, 6.8$ Hz, Ar-H, 1 H), 4.34 (td, J = 10.5, 4.7 Hz, 1 H), 3.88 (d, J = 12.8 Hz, NH, 1 H), 3.55 (d, J = 12.8 Hz, CH, 1 H), 3.31 (sp, J = 6.8 Hz, CH, 2 H), 1.73/0.84 (m+m, CH₂, 2 H), 1.54/0.74 (m+m, CH₂, 2 H), 1.43/ 0.82 (m+m, CH₂, 2 H), 1.34 (m, CH, 1 H), 1.16 (d, J = 6.8 Hz, CH₃, 6 H), 1.15 (d, J = 6.8 Hz, CH₃, 6 H), 1.10 (s, CH₃, 9 H), 0.98 (m, CH, 1 H), 0.81 (d, J = 6.7 Hz, CH₃, 3 H), 0.59 (m, CH, 1 H), 0.49 (d, J = 6.8 Hz, CH₃, 3 H), 0.13 (d, J = 6.8 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO-d₆): δ 162.1, 155.9, 146.7, 135.8, 125.1, 123.1, 75.4, 46.4, 40.3, 33.6, 30.9, 27.4, 26.5, 23.7, 23.2, 23.1, 21.8, 20.2, 16.9. HRMS: calcd for $C_{28}H_{48}NO_2$ [M + H]⁺ 430.3680, found 430.3670.

(15,2*R*,55)-2-IsopropyI-5-methylcyclohexyI (2*R*)-2-(2,6-DiisopropyIanilino)-3,3-dimethylbutanoate (19d). This compound was prepared following the synthetic procedure described for 19c starting from 55.0 g of **18b** (148 mmol). **19d** was collected as a yellow oil (55.0 g, 116 mmol, 86.5%). Mp: 86–88 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 6.98 (m, Ar-H, 2 H), 6.91 (dd, J = 8.5, 6.8 Hz, Ar-H, 1 H), 4.34 (td, J = 10.9, 4.6 Hz, 1 H), 3.87 (d, J = 12.7 Hz, NH, 1 H), 3.55 (d, J = 12.5 Hz, CH, 1 H), 3.31 (sp, J = 6.8 Hz, CH, 2 H), 1.73/ 0.84 (m+m, CH₂, 2 H), 1.53/0.74 (m+m, CH₂, 2 H), 1.42/0.82 (m +m, CH₂, 2 H), 1.33 (m, CH, 1 H), 1.18 (d, J = 6.8 Hz, CH₃, 6 H), 1.15 (d, J = 6.7 Hz, CH₃, 6 H), 1.09 (s, CH₃, 9 H), 0.97 (m, CH, 1 H), 0.81 (d, J = 6.7 Hz, CH₃, 3 H), 0.60 (m, CH, 1 H), 0.48 (d, J = 6.8 Hz, CH₃, 3 H), 0.13 (d, J = 6.8 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 172.3, 153.5, 140.2, 123.4, 122.9, 72.7, 70.1, 46.1, 40.1, 34.0, 33.5, 30.7, 26.8, 26.1, 24.5, 24.1, 23.8, 22.4, 21.9, 20.8, 15.6. HRMS: calcd for C₂₈H₄₈NO₂ [M + H]⁺ 430.3680, found 430.3675.

(1*R*,2*S*,5*R*)-2-IsopropyI-5-methylcyclohexyl 2-(2-*tert*-Butylanilino)-3,3-dimethylbutanoate (19e) and (1*R*,2*S*,5*R*)-2-IsopropyI-5-methylcyclohexyl 2-(2-*tert*-Butylanilino)-3,3-dimethylbutanoate (19f). These compounds were prepared following the synthetic procedure described for 19c starting from 26.8 g of 18c (78.0 mmol). 19e,f were collected as a diastereomer mixture (23.1 g, 57.4 mmol, 73.6%). Diastereomers (ratio 6/4) were separated via column chromatography using heptane and EtOAc as eluents.

19e was collected as a light yellow oil (15.7 g, 38.4 mmol, 83.5%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.15 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.96 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.60 (dm, J = 7.7 Hz, Ar-H, 1 H), 6.63 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.60 (dm, J = 7.7 Hz, Ar-H, 1 H), 4.52 (td, J = 10.8, 4.2 Hz, CH, 1 H), 4.37 (d, J = 10.7 Hz, NH, 1 H), 3.97 (d, J = 10.7 Hz, CH, 1 H), 1.91 (spd, J = 7.0, 2.7 Hz, CH, 1 H), 1.80/0.28 (m+m, CH₂, 2 H), 1.60/0.96 (m+m, CH₂, 2 H), 1.60/0.81 (m+m, CH₂, 2 H), 1.40 (s, CH₃, 9 H), 1.39 (m, CH, 1 H), 1.35 (m, CH, 1 H), 1.08 (s, CH₃, 9 H), 0.84 (d, J = 7.0 Hz, CH₃, 3 H), 0.82 (d, J = 6.6 Hz, CH₃, 3 H), 0.54 (d, J = 7.0 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 172.5, 145.1, 133.4, 126.7, 126.0, 117.6, 111.5, 74.3, 64.3, 46.2, 40.3, 34.0, 33.7, 33.6, 30.8, 29.7, 26.7, 25.5, 22.4, 21.9, 20.6, 15.6. HRMS: calcd for C₂₆H₄₄NO₂ [M + H]⁺ 402.3367, found 402.3372.

19f was collected as a light yellow oil (6.90 g, 16.9 mmol, 55.1%). ¹H NMR (500 MHz, DMSO- d_6): δ 7.17 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.00 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.63 (td, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.53 (dm, J = 7.7 Hz, Ar-H, 1 H), 4.50 (td, J = 10.9, 4.4 Hz, CH, 1 H), 4.35 (d, J = 10.6 Hz, NH, 1 H), 3.91 (d, J = 10.6 Hz, CH, 1 H), 1.80/0.89 (m+m, CH₂, 2 H), 1.58/0.77 (m+m, CH₂, 2 H), 1.49/0.87 (m+m, CH₂, 2 H), 1.40 (s, CH₃, 9 H), 1.39 (m, CH, 1 H), 1.13 (m, CH, 1 H), 1.09 (s, CH₃, 9 H), 1.02 (spd, J = 6.9, 2.6 Hz, CH, 1 H), 0.83 (d, J = 6.6 Hz, CH₃, 3 H), 0.52 (d, J = 6.9 Hz, CH₃, 3 H), 0.32 (d, J = 6.9 Hz, CH₃, 3 H). ¹³C NMR (125 MHz, DMSO- d_6): δ 171.9, 145.2, 133.0, 126.9, 126.0, 117.6, 111.3, 73.8, 65.4, 46.1, 40.6, 33.7, 33.5, 33.5, 30.8, 29.6, 26.9, 24.1, 21.9, 21.8, 20.8, 15.0. HRMS: calcd for C₂₆H₄₄NO₂ [M + H]⁺ 402.3367, found 402.3372.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1phenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (20a). A 500 mg portion of 9a (1.17 mmol) was dissolved in 6 mL of DCM, and 149 mg of Ag₂O (0.644 mmol) was added in one portion. The reaction mixture was stirred at room temperature in the dark for 1 h, at which point complete conversion was observed by NMR. The reaction mixture was filtered through a pad of Celite. The volatiles were removed under reduced pressure and then recrystallized from DCM/Et₂O. 20a was collected as a brownish white solid (364 mg, 0.682 mmol, 58.2%). Mp: 216-218 °C. ¹H NMR (500 MHz, $CDCl_3$): δ 7.49–7.37 (m, Ar-H, 5 H), 7.35 (t, J = 7.7 Hz, Ar-H, 1 H), 7.22 (dd, J = 7.7, 1.0 Hz, Ar-H, 1 H), 7.17 (dd, J = 7.7, 1.0 Hz, Ar-H, 1 H), 5.57 (q, J = 7.1 Hz, CH, 1 H), 4.03 (dd, J = 11.8 Hz, J = 10.3Hz, CH, 1 H), 3.75/3.16 (t+t, J = 11.8 Hz, J = 10.3 Hz, CH₂, 2 H), 3.44 (sp, J = 6.9 Hz, CH, 1 H), 2.76 (sp, J = 6.9 Hz, CH, 1 H), 1.78 (d, J = 7.1 Hz, CH₃, 3 H), 1.53 (d, J = 6.9 Hz, CH₃, 3 H), 1.36 (d, J = 6.9 Hz, CH₃, 3 H), 1.32 (d, J = 6.9 Hz, CH₃, 3 H), 1.23 (d, J = 6.9 Hz, CH₃, 3 H), 0.66 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 207.1, 146.5, 146.1, 138.2, 137.1, 129.5, 129.1, 128.5, 126.9, 125.5, 125.3, 75.7, 59.3, 46.4, 29.1, 28.3, 27.7, 26.4, 26.2, 23.8, 23.6, 17.5. HRMS: calcd for $C_{27}H_{38}AgClN_2$ [M]⁺ 532.1774, found 532.1769.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1-phenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (20b).

This complex was prepared following the synthetic procedure described for **20a** starting from 500 mg of **9b** (1.17 mmol). **20b** was collected as a brownish white solid (410 mg, 0.768 mmol, 65.6%). Mp: 200–225 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.35 (m, Ar-H, 5 H), 7.34 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.21 (dd, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 7.14 (dd, *J* = 7.7, 1.2 Hz, Ar-H, 1 H), 5.60 (q, *J* = 7.1 Hz, CH, 1 H), 3.91 (dd, *J* = 11.8, 10.2 Hz, CH, 1 H), 3.50/3.34 (m+t, *J* = 11.8 Hz, CH₂, 2 H), 3.47 (sp, *J* = 6.8 Hz, CH, 1 H), 2.64 (sp, *J* = 6.9 Hz, CH, 1 H), 1.22 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.26 (d, *J* = 6.9 Hz, CH₃, 3 H), 1.22 (d, *J* = 6.9 Hz, CH₃, 3 H), 0.77 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 208.1, 146.6, 146.0, 138.3, 137.2, 129.5, 129.1, 128.6, 127.0, 125.6, 125.2, 76.1, 59.3, 46.1, 29.1, 28.2, 27.8, 26.5, 26.2, 23.7, 23.5, 17.1. HRMS: calcd for C₂₇H₃₈AgClN₂ [M]⁺ 532.1774, found 532.1769.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1-(1naphthyl)ethyl]imidazolidin-2-ylidene]silver(l) Chloride (20c). This complex was prepared following the synthetic procedure described for 20a starting from 1.50 g of 9c (3.14 mmol). 20c was collected as an off-white solid (1.37 g, 2.34 mmol, 74.5%). Mp: 199-201 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.32–7.49 (m, Ar-H, 7 H), 7.35 (t, J = 6.8 Hz, Ar-H, 1 H), 7.21 (dd, J = 7.7, 1.0 Hz, Ar-H, 1 H), 7.15 (dd, J = 7.7, 1.0 Hz, Ar-H, 1 H), 6.16 (q, J = 6.8 Hz, CH, 1 H), 3.96 (dd, J = 11.9, 10.4 Hz, CH, 1 H), 3.66/2.71 (t+t, J = 11.9 Hz, J = 10.4 Hz, CH₂, 2 H), 3.46 (sp, J = 6.7 Hz, CH, 1 H), 2.75 (sp, J = 6.9 Hz, CH, 1 H), 1.96 (d, J = 6.9 Hz, CH₃, 3 H), 1.61 (d, J = 6.9 Hz, CH₃, 3 H), 1.34 (d, J = 7.0 Hz, CH₃, 3 H), 1.27 (d, J = 6.9 Hz, CH₃, 3 H), 1.20 (d, J = 6.7 Hz, CH₃, 3 H), 0.40 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 208.2, 146.5, 146.1, 137.0, 134.1, 133.2, 131.4, 129.9, 129.5, 129.3, 126.8, 126.4, 125.5, 125.2, 124.6, 123.6, 75.4, 56.0, 47.1, 29.1, 28.1, 27.7, 26.3, 26.2, 23.7, 23.6, 18.6. HRMS: calcd for C₃₁H₄₀AgClN₂ [M]⁺ 582.1931, found 582.1925

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1-(1naphthyl)ethyl]imidazolidin-2-ylidene]silver(l) Chloride (20d). This complex was prepared following the synthetic procedure described for 20a starting from 1.00 g of 9d (2.10 mmol). 20d was collected as an off-white solid (1.01 mg, 1.73 mmol, 82.7%). Mp: 230–252 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.29–7.50 (m, Ar-H, 7 H), 7.36 (t, J = 7.7 Hz, Ar-H, 1 H), 7.23 (dd, J = 7.7, 1.1 Hz, Ar-H, 1 H), 7.15 (dd, J = 7.7, 1.0 Hz, Ar-H, 1 H), 6.19 (q, J = 6.8 Hz, CH, 1 H), 3.78 (t, J = 11.2 Hz, CH, 1 H), 3.48 (sp, J = 6.8 Hz, CH, 1 H), 3.40/2.87 (t+t, J = 11.2 Hz, J = 11.2 Hz, CH_2 , 2 H), 2.59 (sp, J = 6.8Hz, CH, 1 H), 1.94 (d, J = 6.9 Hz, CH₃, 3 H), 1.55 (d, J = 6.8 Hz, CH₃, 3 H), 1.34 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.27 (d, *J* = 6.7 Hz, CH₃, 3 H), 1.15 (d, J = 6.8 Hz, CH₃, 3 H), 0.72 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 210.2, 146.6, 146.1, 137.1, 134.1, 132.8, 131.8, 129.9, 129.5, 129.2, 127.3, 126.5, 125.5, 125.3, 125.2, 124.8, 123.4, 76.0, 56.0, 46.5, 28.8, 28.2, 27.8, 26.5, 26.4, 23.7, 23.6, 19.0. HRMS: calcd for $C_{31}H_{40}AgClN_2$ [M]⁺ 582.1931 found 582.1925.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2,2trimethylpropyl]imidazolidin-2-ylidene]silver(I) Chloride (20e). This complex was prepared following the synthetic procedure described for 20a starting from 900 mg of 9e (2.21 mmol). 20e was collected as a brownish white solid (677 mg, 1.32 mmol, 59.6%). Mp: 198–216 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.32 (t, J = 7.7 Hz, Ar-H, 1 H), 7.18 (dd, J = 7.7, 1.3 Hz, Ar-H, 1 H), 7.13 (dd, J = 7.7, 1.3 Hz, Ar-H, 1 H), 4.15 (q, J = 7.0 Hz, CH, 1 H), 4.07 (dd, J = 11.9, 10.7 Hz, CH, 1 H), 3.88/3.63 (t+t, J = 11.9 Hz, J = 10.7 Hz, CH₂, 2 H), 3.41 (sp, J = 6.7 Hz, CH, 1 H), 2.69 (sp, J = 6.8 Hz, CH, 1 H), 1.43 $(d, J = 6.7 \text{ Hz}, \text{CH}_3, 3 \text{ H}), 1.34 (d, J = 7.0 \text{ Hz}, \text{CH}_3, 3 \text{ H}), 1.33 (d, J =$ 6.8 Hz, CH₃, 3 H), 1.30 (d, J = 6.7 Hz, CH₃, 3 H), 1.18 (d, J = 6.8 Hz, CH₃, 3 H), 1.06 (s, CH₃, 9 H), 0.81 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 201.5, 146.8, 146.0, 137.2, 129.4, 125.4, 125.3, 76.3, 66.2, 48.5, 35.5, 34.9, 29.1, 28.2, 28.0, 27.4, 26.8, 26.2, 23.8, 23.5, 14.0. HRMS: calcd for C₂₅H₄₂AgClN₂ [M]⁺ 512.2087, found 512.2082.

[(45)-4-*tert*-Butyl-3-(2,6-diisopropylphenyl)-1-[(1*R*)-1,2,2trimethylpropyl]imidazolidin-2-ylidene]silver(I) Chloride (20f). This complex was prepared following the synthetic procedure described for 20a starting from 800 mg of 9f (1.97 mmol). 20f was collected as a white solid (804 mg, 1.57 mmol, 79.6%). Mp: 185–187 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.32 (t, *J* = 7.8 Hz, Ar-H, 1 H), 7.18 (dd, *J* = 7.8, 1.3 Hz, Ar-H, 1 H), 7.13 (dd, *J* = 7.8, 1.3 Hz, Ar-H, 1 H), 4.18 (q, *J* = 7.0 Hz, CH, 1 H), 4.02 (t, *J* = 11.3 Hz, CH, 1 H), 3.79/3.61 (t+t, *J* = 11.3 Hz, *J* = 11.3 Hz, CH, 2 H), 3.40 (sp, *J* = 6.9 Hz, CH, 1 H), 2.78 (sp, *J* = 6.8 Hz, CH, 1 H), 1.45 (d, *J* = 6.9 Hz, CH₃, 3 H), 1.34 (d, *J* = 7.0 Hz, CH₃, 3 H), 1.32 (d, *J* = 6.9 Hz, CH₃, 3 H), 1.29 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.16 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.07 (s, CH₃, 9 H), 0.79 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 201.5, 146.6, 146.4, 137.0, 129.4, 125.5, 125.2, 75.8, 66.0, 48.1, 35.2, 34.7, 29.0, 28.1, 28.0, 27.7, 26.7, 26.2, 23.7, 23.5, 13.7. HRMS: calcd for C₂₅H₄₂AgClN₂ [M]⁺ 512.2087, found 512.2082.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-(2isopropylphenyl)imidazolidin-2-ylidene]silver(l) Chloride (20g). This complex was prepared following the synthetic procedure described for 20a starting from 500 mg of 9g (1.14 mmol). 20g was collected as a white solid (374 mg, 0.683 mmol, 60.2%). Mp: 200-209 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.20 (m, Ar-H, 4 H), 7.36 (t, J = 7.7 Hz, Ar-H, 1 H), 7.22 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.18 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 4.25 (br m, CH, 1 H), 4.13/ 3.92 (br m+t, J = 11.2 Hz, CH₂, 2 H), 3.51 (sp, J = 6.8 Hz, CH, 1 H), 3.18 (br m, CH, 1 H), 2.93 (sp, J = 6.8 Hz, CH, 1 H), 1.46 (d, J = 6.8 Hz, CH₃, 3 H), 1.42 (d, J = 6.8 Hz, CH₃, 3 H), 1.36 (d, J = 6.8 Hz, CH_3 , 3 H), 1.33 (br d, J = 6.8 Hz, CH_3 , 6 H), 1.24 (d, J = 6.8 Hz, CH₃, 3 H), 0.88 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 208.0, 146.5, 145.9, 138.0, 130.0, 129.6, 128.0, 127.6, 125.6, 125.3, 56.3, 29.4, 28.4, 26.7, 26.2, 23.8, 23.6. HRMS: calcd for C₂₈H₄₀AgClN₂ [M]⁺ 546.1931, found 546.1955.

[(4S)-4-tert-Butyl-1-(2-tert-butylphenyl)-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]silver(I) Chloride (20h). This complex was prepared following the synthetic procedure described for 20a starting from 200 mg of 9h (0.440 mmol). 20h was collected as a yellow solid (215 mg, 0.383 mmol, 87.1%). Mp: 122-124 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.60–7.01 (m, Ar-H, 4 H), 7.37/7.36 (t, J = 7.7 Hz, Ar-H, 1 H), 7.23/7.21 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.19/7.18 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.08/7.06 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 4.44–3.69 (m, CH, CH₂, 3 H), 3.51/3.49 (sp, J = 6.8 Hz, CH, 1 H), 2.98/2.94 (sp, J = 6.8 Hz, CH, 1 H), 1.53/ 1.53 (s, CH₃, 9 H), 1.46/1.43 (d, J = 6.8 Hz, CH₃, 3 H), 1.40/1.40 (d, I = 6.8 Hz, CH₃, 3 H), 1.36/1.34 (d, I = 6.8 Hz, CH₃, 3 H), 1.20/1.20 (d, J = 6.8 Hz, CH₃, 3 H), 0.87/0.85 (s, CH₃, 9 H). ¹³C NMR (125) MHz, CDCl₃): δ 214.6, 147.0, 146.6, 146.4, 145.9, 145.6, 140.0, 131.5, 131.2, 129.7, 129.6, 129.6, 129.5, 129.3, 128.3, 128.2, 125.6, 125.3, 125.4, 125.3, 76.4, 76.3, 58.1, 58.0, 34.4, 34.3, 32.9, 32.6, 29.8, 29.5, 29.3, 28.4, 27.6, 27.2, 27.0, 26.4, 26.3, 23.9, 23.7, 23.7, 23.3. HRMS: calcd for C₂₉H₄₂AgClN₂ [M]⁺ 560.2087, found 560.2247.

[(4S)-4-tert-Butyl-3-(2-tert-butylphenyl)-1-[(1S)-1phenylethyl]imidazolidin-2-ylidene]silver(l) Chloride (20i). This complex was prepared following the synthetic procedure described for 20a starting from 60 mg of 9i (0.150 mmol). 20i was collected as a yellowish white solid (64 mg, 0.127 mmol, 84.1%). ¹H NMR (500 MHz, CDCl₃): δ 7.50 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.45–7.33 (m, Ar-H, 5 H), 7.37 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.30 (td, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.31 (td, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 5.51 (q, *J* = 7.1 Hz, CH, 1 H), 4.25 (dd, *J* = 11.9, 6.0 Hz, CH, 1 H), 3.75/3.15 (t+dd, *J* = 11.9 Hz, *J* = 11.9, 6.0 Hz, CH₂, 2 H), 1.70 (d, *J* = 7.1 Hz, CDCl₃): δ 204.9, 146.1, 140.0, 138.2, 133.0, 130.2, 129.0, 128.9, 128.6, 127.3, 127.3, 74.3, 74.3, 59.3, 46.7, 46.6, 36.4, 35.6, 32.5, 26, 17.3. HRMS: calcd for C₂₅H₃₄AgClN₂ [M]⁺ 504.1461 found 504.1472.

[(4*R*)-1-[(1*S*)-1-(1-Adamantyl)ethyl]-4-*tert*-butyl-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]silver(l) Chloride (21a). This complex was prepared following the synthetic procedure described for 20a starting from 216 mg of 14a (0.445 mmol). 21a was collected as a pinkish solid (99 mg, 0.167 mmol, 37.6%). Mp: 223– 234 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.32 (t, *J* = 7.8 Hz, Ar-H, 1 H), 7.18 (dd, *J* = 7.8, 1.6 Hz, Ar-H, 1 H), 7.12 (dd, *J* = 7.8, 1.6 Hz, Ar-H, 1 H), 4.02 (t, *J* = 11.4 Hz, CH, 1 H), 3.98 (br., CH, 1 H), 3.78/ 3.61 (t+t, *J* = 11.4 Hz, *J* = 11.4 Hz, CH₂, 2 H), 3.42 (sp. *J* = 6.8 Hz, CH, 1 H), 2.82 (sp, J = 6.8 Hz, CH, 1 H), 2.04 (br., CH, 3 H), 1.75/ 1.66 (brd+brd, CH₂, 6 H), 1.67 (br., CH₂, 6 H), 1.44 (d, J = 6.8 Hz, CH₃, 3 H), 1.35 (d, J = 6.8 Hz, CH₃, 3 H), 1.29 (d, J = 6.8 Hz, CH₃, 3 H), 1.29 (brd, CH₃, 3 H), 1.17 (d, J = 6.8 Hz, CH₃, 3 H), 0.79 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 210.9, 146.7, 146.5, 129.4, 125.5, 125.2, 75.8, 66.5, 40.1, 36.9, 34.6, 29.1, 28.5, 28.1, 27.7, 26.8, 26.2, 23.7, 23.5. HRMS: calcd for C₃₁H₄₈AgClN₂ [M]⁺ 590.2557, found 509.2880.

[(4R)-1-[(1R)-1-(1-Adamantyl)ethyl]-4-tert-butyl-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]silver(l) Chloride (21b). This complex was prepared following the synthetic procedure described for 20a starting from 114 mg of 14b (0.235 mmol). 21b was collected as a brown solid (118 mg, 0.199 mmol, 84.8%). Mp: 110–120 °C. ¹H NMR (500 MHz, $CDCl_3$): δ 7.32 (t, J = 7.8 Hz, Ar-H, 1 H), 7.18 (dd, J = 7.8, 1.6 Hz, Ar-H, 1 H), 7.13 (dd, J = 7.8, 1.6 Hz, Ar-H, 1 H), 4.05 (dd, J = 11.9, 10.5 Hz, CH, 1 H), 3.95 (br., CH, 1 H), 3.89/3.66 (t+t, I = 11.9 Hz, I = 10.5 Hz, CH₂, 2 H), 3.43 (sp, I= 6.8 Hz, CH, 1 H), 2.68 (sp, J = 6.8 Hz, CH, 1 H), 2.06 (br., CH, 3 H), 1.75/1.66 (brd+brd., CH₂, 6 H), 1.69/1.62 (br d+br d., CH₂, 6 H), 1.44 (d, J = 6.8 Hz, CH₃, 3 H), 1.33 (d, J = 6.9 Hz, CH₃, 3 H), 1.31 (d, J = 6.8 Hz, CH₃, 3 H), 1.31 (d, J = 6.8 Hz, CH₃, 3 H), 1.18 (d, J = 6.8 Hz, CH₃, 3 H), 0.82 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 210.7, 146.8, 146.0, 137.4, 129.4, 125.4, 125.2, 76.3, 66.9, 49.2, 40.1, 36.9, 32.0, 29.1, 28.5, 28.4, 28.4, 28.2, 26.9, 26.2, 23.8, 23.5, 22.8, 14.3. HRMS: calcd for C₃₁H₄₈AgClN₂ [M]⁺ 590.2557, found 509, 3245.

[(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1,2diphenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (21c). This complex was prepared following the synthetic procedure described for 20a starting from 200 mg of 14c (0.440 mmol). 21c was collected as a white solid (215 mg, 0.383 mmol, 87.1%). Mp: 200-218 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.53-7.25 (m, Ar-H, 10 H), 7.26 (t, J = 7.7 Hz, Ar-H, 1 H), 7.12 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.03 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 5.75 (dd, J = 11.8, 4.6 Hz, CH, 1 H), 3.83 (dd, J = 11.7, 10.3 Hz, CH, 1 H), 3.72/3.17 (t+t, J = 11.7 Hz, J = 10.3 Hz, CH₂, 2 H), 3.52/3.40 (dd+dd, J = 14.3, 4.6 Hz, J = 14.3, 11.8 Hz, CH₂, 2 H), 3.30 (sp, J = 6.8 Hz, CH, 1 H), 2.15 (sp, J = 6.8 Hz, CH, 1 H), 1.44 (d, J = 6.9 Hz, CH₃, 3 H), 1.25 (d, J = 6.7 Hz, CH₃, 3 H), 1.18 (d, J = 6.9 Hz, CH₃, 3 H), 0.85 (d, J = 6.7 Hz, CH₃, 3 H), 0.56 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 209.9, 146.4, 146.1, 137.6, 136.7, 129.3, 129.2, 129.0, 128.8, 127.5, 127.1, 125.3, 125.2, 75.2, 64.8, 46.9, 36.6, 34.7, 28.7, 28.2, 26.6, 26.4, 23.8, 23.5. HRMS: calcd for C₃₃H₄₂AgClN₂ [M]⁺ 608.2087, found 608.2330.

[(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2diphenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (21d). This complex was prepared following the synthetic procedure described for 20a starting from 143 mg of 14d (0.284 mmol). 21d was collected as an off-white solid (94 mg, 0.154 mmol, 54.2%). Mp: 220-231 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.29 (m, Ar-H, 10 H), 7.26 (t, J = 7.7 Hz, Ar-H, 1 H), 7.09 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.06 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 5.78 (dd, J = 12.1, 4.1 Hz, CH, 1 H), 3.90 (t, J = 11.5 Hz, CH, 1 H), 3.51/3.34 (dd+dd, J = 14.3, 4.1 Hz, J = 14.3, 12.1 Hz, CH₂, 2 H), 3.45/3.30 (t+t, J = 11.5 Hz, J = 10.5 Hz, J = 1011.5 Hz, CH₂, 2 H), 2.73 (sp, J = 6.8 Hz, CH, 1 H), 2.59 (sp, J = 6.8 Hz, CH, 1 H), 1.23 (d, J = 6.8 Hz, CH₃, 3 H), 1.18 (d, J = 6.8 Hz, CH₃, 3 H), 1.17 (d, J = 6.8 Hz, CH₃, 3 H), 1.16 (d, J = 6.8 Hz, CH₃, 3 H), 0.65 (s, CH₃, 3 H). ¹³C NMR (125 MHz, CDCl₃): δ 209.4, 146.7, 145.9, 137.6, 136.5, 129.6, 129.4, 129.3, 129.2, 128.8, 127.4, 127.3, 125.4, 125.0, 76.0, 65.1, 46.2, 36.1, 29.0, 27.8, 27.6, 26.9, 26.2, 23.5, 23.5. HRMS: calcd for $C_{33}H_{42}AgClN_2$ [M]⁺ 608.2087, found 608.2404.

[(4*R*)-4-*tert*-Butyl-3-(2,6-diisopropylphenyl)-1-[(15)-1-phenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (21e). This complex was prepared following the synthetic procedure described for 20a starting from 300 mg 14e (0.702 mmol). 21e was collected as an off-white solid (250 mg, 0.468 mmol, 66.8%). Mp: 220–222 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.49–7.37 (m, Ar-H, 5 H), 7.35 (t, *J* = 7.8 Hz, Ar-H, 1 H), 7.22 (dd, *J* = 7.8, 1.1 Hz, Ar-H, 1 H), 7.15 (dd, *J* = 7.8, 1.1 Hz, Ar-H, 1 H), 5.62 (q, *J* = 7.1 Hz, CH, 1

H), 3.92 (dd, J = 11.9 Hz, J = 9.9 Hz, CH, 1 H), 3.52/3.36 (m+t, J = 11.9 Hz, CH₂, 2 H), 3.48 (sp, J = 6.8 Hz, CH, 1 H), 2.66 (sp, J = 6.8 Hz, CH, 1 H), 1.76 (d, J = 7.1 Hz, CH₃, 3 H), 1.52 (d, J = 6.8 Hz, CH₃, 3 H), 1.33 (d, J = 6.8 Hz, CH₃, 3 H), 1.28 (d, J = 6.8 Hz, CH₃, 3 H), 1.23 (d, J = 6.8 Hz, CH₃, 3 H), 0.79 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 207.1, 146.6, 146.0, 138.3, 137.2, 129.5, 129.1, 128.6, 127.0, 125.6, 125.2, 76.2, 59.3, 46.1, 29.1, 28.2, 27.8, 26.5, 26.2, 23.7, 23.5, 17.1. HRMS: calcd for C₂₇H₃₈AgClN₂ [M]⁺ 532.1774, found 532.1769.

[(4*R*)-4-tert-Butyl-3-(2-tert-butylphenyl)-1-[(15)-1-phenylethyl]imidazolidin-2-ylidene]silver(I) Chloride (21g). This complex was prepared following the synthetic procedure described for 20a starting from 70 mg of 14g (0.175 mmol). 21g was collected as a yellowish white solid (60 mg, 0.119 mmol, 67.6%). ¹H NMR (500 MHz, CDCl₃): δ 7.50 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.42–7.32 (m, Ar-H, 5 H), 7.39 (dd, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.30 (td, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.30 (td, *J* = 7.9, 1.5 Hz, Ar-H, 1 H), 7.331 (m+t, *J* = 11.9 Hz, CH₂, 2 H), 1.73 (d, *J* = 7.1 Hz, CH₃, 3 H), 1.37 (s, CH₃, 9 H), 0.73 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 206.7, 146.1, 140.0, 138.1, 132.9, 130.1, 129.0, 128.9, 128.5, 127.4, 127.1, 74.2, 74.1, 59.2, 46.6, 46.6, 36.4, 35.9, 32.5, 26.1, 17.2. HRMS: calcd for C₂₅H₃₄AgClN₂ [M]⁺ 504.1461 found 504.1473.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1phenylethyl]imidazolidin-2-ylidene]gold(l) Chloride (22a). A 260 mg portion of 20a (0.487 mmol) was dissolved in 2.5 mL of DCM, and 143 mg of Me₂SAuCl (0.487 mmol) was added in one portion. The reaction mixture was stirred at room temperature in the dark for 30 min, at which point complete conversion was observed by NMR. The reaction mixture was filtered through a pad of Celite. The volatiles were removed under reduced pressure, and the residue was then recrystallized from DCM/Et₂O. 22a was collected as a purplish solid (259 mg, 0.416 mmol, 85.4%). Mp: 262–264 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.34 (m, Ar-H, 5 H), 7.34 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.19 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.14 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.10 (q, J = 7.0 Hz, CH, 1 H), 3.93 (dd, J = 11.7 Hz, J = 10.5 Hz, CH, 1 H), 3.71/3.08 (t+t, J = 11.7 Hz, J = 10.5 Hz, CH₂, 2 H), 3.40 (sp, J = 6.8 Hz, CH, 1 H), 2.71 (sp, J = 6.8 Hz, CH, 1 H), 1.75 (d, J = 7.0 Hz, CH₃, 3 H), 1.60 (d, J = 6.8 Hz, CH₃, 3 H), 1.34 (d, J = 6.8 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.29 (d, J = 6.8 Hz, CH₃, 3 H), 0.64 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 196.6, 147.0, 146.0, 137.9, 136.7, 129.5, 129.0, 128.5, 127.1, 125.4, 125.2, 75.3, 58.2, 45.5, 34.8, 29.2, 28.4, 27.3, 26.3, 26.1, 23.9, 23.7, 16.6. HRMS: calcd for C₂₇H₃₈AuClN₂ [M]⁺ 622.2389, found 622.2393.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1phenylethyl]imidazolidin-2-ylidene]gold(I) Chloride (22b). This complex was prepared following the synthetic procedure described for 22a starting from 260 mg of 20b (0.487 mmol). 22b was collected as a brownish white solid (250 mg, 0.401 mmol, 82.4%). Mp: 238–240 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.36 (m, Ar-H, 5 H), 7.34 (t, J = 7.7 Hz, Ar-H, 1 H), 7.20 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.13 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.15 (q, J = 7.1 Hz, CH, 1 H), 3.81 (dd, J = 11.8, 10.3 Hz, CH, 1 H), 3.48/3.30 (t+t, J = 10.3 Hz, J = 11.8 Hz, CH₂, 2 H), 3.46 (sp, J = 6.8 Hz, CH, 1 H), 2.60 (sp, J = 6.8 Hz, CH, 1 H), 1.73 (d, J = 7.1 Hz, CH₃, 3 H), 1.58 (d, J = 6.8 Hz, CH₃, 3 H), 1.32 (d, J = 6.8 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH_{3} , 3 H), 1.25 (d, I = 6.8 Hz, CH_{3} , 3 H), 0.78 (s, CH_{3} , 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 196.4, 147.0, 145.9, 138.2, 137.0, 129.5, 129.0, 128.5, 127.1, 125.5, 125.2, 75.7, 58.0, 45.4, 34.9, 29.2, 28.4, 27.3, 26.5, 26.0, 23.8, 23.6, 16.2. HRMS: calcd for C₂₇H₃₈AuClN₂ [M]⁺ 622.2389, found 622.2399.

[(45)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(15)-1-(1-naphthyl)ethyl]imidazolidin-2-ylidene]gold(l) Chloride (22c). This complex was prepared following the synthetic procedure described for 22a starting from 260 mg of 20c (0.445 mmol). 22c was collected as an off-white solid solid (152 mg, 0.226 mmol, 50.7%). Mp: 246–250 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.50–7.48 (m, Ar-H, 7 H), 7.35 (t, J = 7.8 Hz, Ar-H, 1 H), 7.20 (dd, J = 7.8,

1.5 Hz, Ar-H, 1 H), 7.14 (dd, *J* = 7.8, 1.5 Hz, Ar-H, 1 H), 6.62 (q, *J* = 6.8 Hz, CH, 1 H), 3.85 (dd, *J* = 11.9, 10.2 Hz, CH, 1 H), 3.53/2.48 (t +dd, *J* = 11.9 Hz, *J* = 11.9, 10.2 Hz, CH₂, 2 H), 3.42 (sp, *J* = 6.8 Hz, CH, 1 H), 2.73 (sp, *J* = 6.8 Hz, CH, 1 H), 1.94 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.71 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.33 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.32 (d, *J* = 6.8 Hz, CH₃, 3 H), 1.25 (d, *J* = 6.8 Hz, CH₃, 3 H), 0.35 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 197.3, 147.0, 146.0, 136.6, 134.0, 133.1, 131.7, 129.8, 129.5, 129.1, 126.9, 126.5, 125.4, 125.1, 125.0, 124.6, 124.0, 74.9, 55.3, 46.1, 29.3, 28.3, 27.3, 26.1, 26.1, 23.8, 23.7, 17.7. HRMS: calcd for C₃₁H₄₀AuClN₂ [M]⁺ 672.2546, found 672.3098.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1-(1naphthyl)ethyl]imidazolidin-2-ylidene]gold(l) Chloride (22d). This complex was prepared following the synthetic procedure described for 22a starting from 50 mg of 20d (0.942 mmol). 22d was collected as an off-white solid (592 mg, 0.880 mmol, 93.4%). Mp: 296–298 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.47–7.49 (m, Ar-H, 7 H), 7.35 (t, J = 7.7 Hz, Ar-H, 1 H), 7.21 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.12 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 6.62 (q, J = 6.8 Hz, CH, 1 H), 3.67 (t, J = 11.3 Hz, CH, 1 H), 3.46 (sp, J = 6.7 Hz, CH, 1 H), 3.33/2.78 (t+t, J = 11.3 Hz, 11.3 Hz, CH₂, 2 H), 2.55 (sp, J = 6.8 Hz, CH, 1 H), 1.92 (d, J = 6.8 Hz, CH₃, 3 H), 1.61 (d, J = 6.7 Hz, CH₃, 3 H), 1.35 (d, J = 6.8 Hz, CH₃, 3 H), 1.32 (d, J = 6.8 Hz, CH₃, 3 H), 1.11 (d, J = 6.7 Hz, CH₃, 3 H), 0.70 (s, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 197.4, 147.1, 146.0, 134.1, 132.9, 132.0, 127.3, 126.6, 125.4, 125.2, 125.1, 124.9, 123.8, 75.4, 55.2, 45.8, 28.8, 28.4, 27.3, 26.5, 26.3, 23.8, 23.7, 18.0. HRMS: calcd for C₃₁H₄₀AuClN₂ [M]⁺ 672.2546, found 672.2554.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2,2trimethylpropyl]imidazolidin-2-ylidene]gold(I) Chloride (22e). This complex was prepared following the synthetic procedure described for 22a starting from 400 mg of 20e (0.7784 mmol). 22e was collected as a purplish white solid (427 mg, 0.708 mmol, 91.0%). Mp: 232–234 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.33 (t, J = 7.7 Hz, Ar-H, 1 H), 7.17 (dd, J = 7.7 Hz, J = 1.5 Hz, Ar-H, 1 H), 7.12 (dd, J = 7.7 Hz, J = 1.5 Hz, Ar-H, 1 H), 4.73 (q, J = 7.1 Hz, CH, 1 H), 3.99 (dd, J = 11.9, 10.8 Hz, CH, 1 H), 3.86/3.61 (t+t, J = 11.9 Hz, J = 10.8 Hz, CH₂, 2 H), 3.38 (sp, J = 6.8 Hz, CH, 1 H), 2.65 (sp, J = 6.8 Hz, CH, 1 H), 1.53 (d, J = 6.8 Hz, CH₃, 3 H), 1.33 (d, J = 6.8 Hz, CH₃, 3 H), 1.33 (d, J = 7.1 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.26 (d, J = 6.8 Hz, CH₃, 3 H), 1.08 (s, CH₃, 9 H), 0.81 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 198.5, 147.2, 145.8, 136.9, 129.4, 125.3, 125.2, 75.9, 64.7, 47.8, 35.3, 29.2, 28.4, 28.0, 27.0, 26.7, 26.0, 23.9, 23.6, 13.5. HRMS: calcd for $C_{25}H_{42}AuClN_2$ [M] 602.2702, found 602.2697.

[(4S)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1,2,2trimethylpropyl]imidazolidin-2-ylidene]gold(l) Chloride (22f). This complex was prepared following the synthetic procedure described for 22a starting from 430 mg of 20f (0.837 mmol). 22f was collected as an off-white white solid (395 mg, 0.655 mmol, 78.3%). Mp: 230–232 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.33 (t, J = 7.7 Hz, Ar-H, 1 H), 7.18 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.12 (dd, *J* = 7.7 Hz, *J* = 1.5 Hz, Ar-H, 1 H), 4.75 (q, *J* = 7.0 Hz, CH, 1 H), 3.95 (t, J = 11.3 Hz, CH, 1 H), 3.78/3.59 (t+t, J = 11.3 Hz, J = 11.3 Hz,CH₂, 2 H), 3.40 (sp, J = 6.7 Hz, CH, 1 H), 2.75 (sp, J = 6.8 Hz, CH, 1 H), 1.53 (d, J = 6.8 Hz, CH₃, 3 H), 1.34 (d, J = 6.8 Hz, CH₃, 3 H), 1.31 (d, J = 7.0 Hz, CH₃, 3 H), 1.29 (d, J = 6.7 Hz, CH₃, 3 H), 1.23 (d, J = 6.7 Hz, CH₃, 3 H), 1.09 (s, CH₃, 9 H), 0.80 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 198.5, 147.1, 146.3, 136.7, 129.5, 125.4, 125.1, 75.3, 64.6, 47.6, 35.1, 29.1, 28.3, 28.0, 27.2, 26.6, 25.9, 23.8, 23.6, 13.2. HRMS: calcd for $C_{25}H_{42}AuClN_2\ [M]^+$ 602.2702 found 602.2696

[(45)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-(2isopropylphenyl)imidazolidin-2-ylidene]gold(I) Chloride (22g). This complex was prepared following the synthetic procedure described for 22a starting from 364 mg of 20g (0.664 mmol). 22g was collected as a white solid (250 mg, 0.393 mmol, 59.1%). Mp: 211– 213 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.14 (m, Ar-H, 7 H), 4.23/4.17 (m, CH, 1 H), 4.17/3.89 + 4.08/3.89 (m+m, CH₂, 2 H), 3.58–2.84 (sp, J = 6.8 Hz, CH, 3 H), 1.61–1.26 (d, J = 6.8 Hz, CH₃,18 H), 0.88/0.87 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 198.8, 147.0, 146.0, 145.8, 145.7, 137.5, 136.5, 130.0, 129.9, 129.7, 129.6, 128.2, 128.0, 127.5, 127.4, 127.4, 125.6, 125.4, 125.3, 125.2, 76.1, 75.8, 56.1, 56.0, 34.8, 29.6, 29.4, 28.6, 28.5, 28.5, 28.4, 27.2, 27.0, 26.6, 24.5, 24.4, 24.1, 23.9, 23.7, 23.6. HRMS: calcd for C₂₈H₄₀AuClN₂ [M]⁺ 636.2546 found 636.2806.

[(4S)-4-tert-Butyl-1-(2-tert-butylphenyl)-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]gold(l) Chloride (22h). This complex was prepared following the synthetic procedure described for 22a starting from 215 mg of 20h (0.383 mmol). 22h was collected as a yellowish white solid (35 mg, 0.054 mmol, 14.1%). Mp: 104–125 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.60–7.08 (m, Ar-H, 7 H), 4.20 (m, CH, 1 H), 4.20/3.73 (m+m, CH₂, 2 H), 3.48 (sp, J = 6.8 Hz, CH, 1 H), 2.96 (sp, J = 6.8 Hz, CH, 1 H), 1.55 (s, CH₃, 9 H), 1.55/1.36 (d+d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 6 H), 1.39/1.27 (d +d, J = 6.8 Hz, J = 6.8 Hz, CH₃, 6 H), 0.87/0.85 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 201.0, 147.1, 146.9, 145.7, 139.4, 136.1, 131.3, 129.7, 129.5, 129.4, 128.1, 125.5, 125.2, 75.6, 57.9, 34.3, 32.9, 32.6, 29.7, 29.3, 28.5, 27.2, 26.9, 26.2, 23.8, 23.8. HRMS: calcd for C₂₉H₄₂AuClN₂ [M]⁺ 650.2702 found 650.2679.

[(45)-4-tert-Butyl-3-(2-tert-butylphenyl)-1-[(15)-1phenylethyl]imidazolidin-2-ylidene]gold(l) Chloride (22i). This complex was prepared following the synthetic procedure described for 22a starting from 60 mg of 20i (0.119 mmol). 22i was collected as a yellowish white solid (28 mg, 0.047 mmol, 39.7%). Mp: 238–240 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.51–7.32 (m, Ar-H, 5 H), 7.50 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.47 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.30 (td, J = 7.0 Hz, Ar-H, 1 H), 7.47 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 6.07 (q, J = 7.0 Hz, CH, 1 H), 4.25 (dd, J = 11.8, 6.1 Hz, CH, 1 H), 7.3/3.09 (t+dd, J = 11.8 Hz, J = 11.8, 6.1 Hz, CH₂, 2 H), 1.69 (d, J =7.0 Hz, CH₃, 3 H), 1.45 (s, CH₃, 9 H), 0.53 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 193.8, 146.2, 139, 137.9, 133.9, 130.1, 128.9, 128.6, 127.4, 126.9, 73.7, 58.1, 45.7, 36.5, 35.5, 32.5, 25.9, 16.4. HRMS: calcd for C₂₅H₃₄AuClN₂ [M]⁺ 594.2076 found 594.2113.

[(4R)-1-[(1S)-1-(1-Adamantyl)ethyl]-4-tert-butyl-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]gold(l) Chloride (23a). This complex was prepared following the synthetic procedure described for 22a starting from 90 mg of 21a (0.152 mmol). 23a was collected as an off-white solid (55 mg, 0.081 mmol, 53.1%). Mp: 260–262 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.33 (t, J = 7.7 Hz, Ar-H, 1 H), 7.18 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.12 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 4.55 (q, J = 7.1 Hz, CH, 1 H), 3.95 (t, J = 11.5 Hz, CH, 1 H), 3.77/3.58 (t+t, J = 11.5 Hz, J = 11.5 Hz, CH₂, 2 H), 3.42 (sp, J = 6.8 Hz, CH, 1 H), 2.80 (sp, J = 6.8 Hz, CH, 1 H), 2.05 (br t, CH, 3 H), 1.77/1.66 (br d+br d., CH₂, 6 H), 1.75/1.66 (br d+br d, CH_{2} , 6 H), 1.53 (d, J = 6.8 Hz, CH_{3} , 3 H), 1.34 (d, J = 6.8 Hz, CH_{3} , 3 H), 1.29 (d, J = 6.8 Hz, CH₃, 3 H), 1.27 (d, J = 7.1 Hz, CH₃, 3 H), 1.24 (d, J = 6.8 Hz, CH₃, 3 H), 0.80 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 198.5, 147.1, 146.3, 136.7, 129.5, 125.4, 125.1, 75.2, 65.1, 48.6, 40.1, 37.0, 34.4, 29.2, 28.6, 28.3, 27.1, 26.7, 26.0, 23.8, 23.6, 11.8. HRMS: calcd for $C_{31}H_{48}AuClN_2$ [M]⁺ 680.3172, found 680.3844

[(4R)-1-[(1R)-1-(1-Adamantyl)ethyl]-4-tert-butyl-3-(2,6diisopropylphenyl)imidazolidin-2-ylidene]gold(l) Chloride (23b). This complex was prepared following the synthetic procedure described for 22a starting from 110 mg of 21b (0.186 mmol). 23b was collected as a purple solid (84 mg, 0.123 mmol, 66.4%). Mp: 103–118 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.32 (t, J = 7.7 Hz, Ar-H, 1 H), 7.17 (dd, *J* = 7.7, 1.5 Hz, Ar-H, 1 H), 7.12 (dd, *J* = 7.7, 1.5 Hz, Ar-H, 1 H), 4.56 (q, J = 6.9 Hz, CH, 1 H), 3.98 (dd, J = 11.8, 10.6 Hz, CH, 1 H), 3.87/3.36 (t+t, J = 11.8 Hz, J = 10.6 Hz, CH₂, 2 H), 3.42 (sp, J = 6.8 Hz, CH, 1 H), 2.67 (sp, J = 6.9 Hz, CH, 1 H), 2.12-1.98 (m, CH, 3 H), 1.85–1.21 (m, CH₂, 12 H), 1.53 (d, J = 6.8 Hz, $CH_{32} 3 H$, 1.32 (d, J = 6.9 Hz, $CH_{32} 3 H$), 1.31 (d, J = 6.9 Hz, $CH_{32} 3 H$) H), 1.28 (br d, CH_{3} , 3 H), 1.25 (d, J = 6.8 Hz, CH_{3} , 3 H), 0.84 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 198.4, 147.2, 145.8, 137.1, 129.4, 125.3, 125.2, 76.0, 65.5, 48.6, 40.0, 36.9, 31.7, 30.7, 29.2, 28.6, 27.0, 26.8, 26.0, 23.9, 23.6, 22.8, 14.3, 12.1. HRMS: calcd for C31H48AuClN2 [M]+ 680.3172, found 680.3184.

[(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1R)-1,2diphenylethyl]imidazolidin-2-ylidene]gold(l) Chloride (23c). This complex was prepared following the synthetic procedure described for **22a** starting from 37 mg of **21c** (0.061 mmol). **23c** was collected as a purple solid (40 mg, 0.057 mmol, 94.3%). Mp: 239–241 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.63–7.27 (m, Ar-H, 10 H), 7.27 (t, *J* = 7.7 Hz, Ar-H, 1 H), 7.12 (dd, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 7.02 (dd, *J* = 7.7, 1.4 Hz, Ar-H, 1 H), 6.34 (dd, *J* = 11.8, 4.9 Hz, CH, 1 H), 3.69/3.15 (m+m, CH₂, 2 H), 3.69 (m, CH, 1 H), 3.54/3.39 (dd+dd, *J* = 14.5, 4.9 Hz, *J* = 14.5, 11.8 Hz, CH₂, 2 H), 3.28 (sp, *J* = 6.8 Hz, CH, 1 H), 1.24 (d, *J* = 6.8 Hz, CH, 1 H), 1.53 (d, *J* = 6.8 Hz, CH₃, 3 H), 0.90 (d, *J* = 6.8 Hz, CH₃, 3 H), 0.59 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 197.4, 146.9, 146.2, 137.3, 136.4, 136.2, 129.4, 129.2, 129.1, 129.1, 128.7, 127.3, 127.2, 125.2, 125.1, 75.0, 63.0, 45.9, 36.1, 34.4, 28.7, 28.3, 27.3, 26.4, 23.8, 23.6. HRMS: calcd for C₃₃H₄₂AuClN₂ [M]⁺ 698.2702 found 698.3581.

[(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1,2diphenylethyl]imidazolidin-2-ylidene]gold(l) Chloride (23d). This complex was prepared following the synthetic procedure described for 22a starting from 83 mg of 21d (0.136 mmol). 23d was collected as a purple solid (75 mg, 0.107 mmol, 78.8%). Mp: 230-232 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.60-7.28 (m, Ar-H, 10 H), 7.28 (t, J = 7.7 Hz, Ar-H, 1 H), 7.09 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 7.06 (dd, J = 7.7, 1.5 Hz, Ar-H, 1 H), 6.40 (dd, J = 11.9, 4.7 Hz, CH, 1 H), 3.82 (t, J = 11.9 Hz, CH, 1 H), 3.56/3.34 (dd+dd, J = 14.4, 4.7 Hz, J = 14.4, 11.9 Hz, CH₂, 2 H), 3.41/3.33 (t+m, J = 11.9 Hz, CH₂, 2 H), 2.76 (sp, J = 6.8 Hz, CH, 1 H), 2.56 (sp, J = 6.8 Hz, CH, 1 H), 1.33 (d, I = 6.8 Hz, CH₃, 3 H), 1.26 (d, I = 6.8 Hz, CH₃, 3 H), 1.22 (d, J = 6.8 Hz, CH₃, 3 H), 1.16 (d, J = 6.8 Hz, CH₃, 3 H), 0.61 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 197.4, 147.1, 145.8, 137.6, 136.2, 136.0, 129.8, 129.5, 129.2, 128.9, 128.7, 127.3, 127.3, 125.2, 125.0, 75.4, 62.7, 45.6, 35.7, 34.3, 29.1, 27.8, 27.3, 26.7, 26.0, 23.7, 23.6. HRMS: calcd for C33H42AuClN2 [M]+ 698.2702 found 698.2736.

[(4R)-4-tert-Butyl-3-(2,6-diisopropylphenyl)-1-[(1S)-1phenylethyl]imidazolidin-2-ylidene]gold(I) Chloride (23e). This complex was prepared following the synthetic procedure described for 22a starting from 200 mg of 21e (0.395 mmol). 23e was collected as a yellowish white solid (210 mg, 0.337 mmol, 85.7%). Mp: 245–247 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.36 (m, Ar-H, 5 H), 7.34 (t, J = 7.7 Hz, Ar-H, 1 H), 7.20 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 7.13 (dd, J = 7.7, 1.4 Hz, Ar-H, 1 H), 6.14 (q, J = 7.0 Hz, CH, 1 H), 3.81 (dd, J = 11.8, 10.3 Hz, CH, 1 H), 3.48/3.30 (t+t, J = 10.3 Hz, J = 11.8 Hz, CH₂, 2 H), 3.46 (sp, J = 6.8 Hz, CH, 1 H), 2.60 (sp, J = 6.8 Hz, CH, 1 H), 1.73 (d, J = 7.0 Hz, CH₃, 3 H), 1.58 (d, J = 6.8 Hz, CH₃, 3 H), 1.32 (d, J = 6.8 Hz, CH₃, 3 H), 1.30 (d, J = 6.8 Hz, CH₃, 3 H), 1.25 (d, J = 6.8 Hz, CH₃, 3 H), 0.78 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 196.4, 147.0, 145.9, 138.2, 137.0, 129.5, 129.0, 128.5, 127.1, 125.5, 125.2, 75.7, 58.0, 45.4, 34.9, 29.2, 28.4, 27.3, 26.5, 26.0, 23.8, 23.6, 16.2. HRMS: calcd for C₂₇H₃₈AuClN₂ [M]⁺ 622.2389, found 622.2390.

[(4*R*)-4-*tert*-Butyl-3-(2-*tert*-butylphenyl)-1-[(15)-1-phenylethyl]imidazolidin-2-ylidene]gold(I) Chloride (23g). This complex was prepared following the synthetic procedure described for 22a starting from 60 mg of 21g (0.119 mmol). 23g was collected as a brownish white solid (62 mg, 0.104 mmol, 87.9%). Mp: 191–198 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.31 (m, Ar-H, 5 H), 7.50 (dd, *J* = 7.8, 1.5 Hz, Ar-H, 1 H), 7.48 (dd, *J* = 7.8, 1.5 Hz, Ar-H, 1 H), 7.21 (td, *J* = 7.8, 1.5 Hz, Ar-H, 1 H), 7.30 (td, *J* = 7.1 Hz, CH, 1 H), 4.10 (dd, *J* = 11.9, 6.0 Hz, CH, 1 H), 3.43/3.26 (dd+t, *J* = 11.9, 6.0 Hz, *J* = 11.9 Hz, CH₂, 2 H), 1.72 (d, *J* = 7.1 Hz, CH₃, 3 H), 1.38 (s, CH₃, 9 H), 0.74 (s, CH₃, 9 H). ¹³C NMR (125 MHz, CDCl₃): δ 193.8, 146.2, 139, 137.9, 133.9, 130.1, 128.9, 128.5, 127.3, 127, 73.5, 58, 45.7, 36.4, 35.8, 32.5, 26.1, 16.4. HRMS: calcd for C₂₅H₃₄AuClN₂ [M]⁺ 594.2076 found 594.2081.

ASSOCIATED CONTENT

Supporting Information

(PDF) The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.0c00530.

Additional experimental data and NMR spectra of all compounds (PDF)

Accession Codes

CCDC 2011206–2011210 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Attila Paczal – Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary; Email: attila.paczal@servier.com Andras Kotschy – Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary; © orcid.org/0000-0002-7675-3864; Email: andras.kotschy@servier.com

Authors

- Zita Szabo Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
- Matyas Timari Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
- **Rudolf Kassai** Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
- Bianka Szokol Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
- Attila C. Benyei Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; © orcid.org/0000-0002-0617-6264
- Tamás Gáti Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.0c00530

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research has been implemented in the framework of project no. FIEK_16-1-2016-0005 "Development of molecular biomarker research and service center", with support provided from the National Research, Development and Innovation Fund of Hungary, financed under the FIEK_16 funding scheme. The research was also supported by the EU and cofinanced by the European Regional Development Fund under the projects GINOP-2.3.2-15-2016-00008 and GINOP-2.3.3-15-2016-00004.

REFERENCES

(1) (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene. *J. Am. Chem. Soc.* **1991**, *113*, 361–363. (b) Arduengo, A. J. Looking for stable carbenes: The difficulty in starting anew. Acc. Chem. Res. **1999**, 32, 913–921.

(2) For selected reviews of NHC ligands, see: (a) Herrmann, W. A. N-Heterocyclic carbenes: a new concept in organometallic catalysis. *Angew. Chem., Int. Ed.* **2002**, *41*, 1290–1309. (b) Perry, M. C.; Burgess, K. Chiral N-heterocyclic carbene-transition metal complexes

in asymmetric catalysis. Tetrahedron: Asymmetry 2003, 14, 951-961. (c) Crudden, C. M.; Allen, D. P. Stability and reactivity of Nheterocyclic carbene complexes. Coord. Chem. Rev. 2004, 248. 2247-2273. (d) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chiral N-heterocyclic carbenes as stereodirecting ligands inasymmetric catalysis. Chem. Soc. Rev. 2004, 33, 619-636. (e) Díez-Gonzalez, S.; Marion, N.; Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 2009, 109, 3612-3676. (f) N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools; Díez-Gonzalez, S., Ed.; RSC Publishing: 2011. (g) Wang, F.; Liu, L.; Wang, W.; Li, S.; Shi, M. Chiral NHC-metal-based asymmetric catalysis. Coord. Chem. Rev. 2012, 256, 804-853. (h) N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis: Nolan, S. P., Ed.; Wiley-VCH: 2014. (i) Zhang, D.; Zi, G. N-Heterocyclic carbene (NHC) complexes of group 4 transition metals. Chem. Soc. Rev. 2015, 44, 1898-1921. (j) Charra, V.; de Fremont, P.; Braunstein, P. Multidentate N-heterocyclic carbene complexes of the 3d metals: synthesis, structure, reactivity and catalysis. Coord. Chem. Rev. 2017, 341, 53-176. (k) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510, 485-496.

(3) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. *Chem. Rev.* 2015, *115*, 9307–9387.

(4) Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. *Chem. Soc. Rev.* **2010**, *39*, 1903–1912.

(5) (a) Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. The medicinal applications of imidazolium carbene2metal complexes. *Chem. Rev.* 2009, 109, 3859–3884.
(b) *N-Heterocyclic Carbenes*; Nolan, S. P., Ed.; Wiley-VCH: 2014.
(c) Hickey, J. L.; et al. Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc. 2008, 130, 12570–12571.

(6) For recent reviews see: (a) Janssen-Müller, D.; Schlepphorst, C.; Glorius, F. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. *Chem. Soc. Rev.* 2017, 46, 4845–4854. (b) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. N-Heterocyclic carbenes in asymmetric hydrogenation. *ACS Catal.* 2016, 6, 5978–5988. (c) Paradiso, V.; Costabile, C.; Grisi, F. Ruthenium-based olefin metathesis catalysts with monodentate unsymmetrical NHC ligands. *Beilstein J. Org. Chem.* 2018, 14, 3122–3149.

(7) For a recent review see: Czerwiński, P. J.; Michalak, M. Synthetic Approaches to Chiral Non-C2-symmetric N-Heterocyclic Carbene Precursors. *Synthesis* **2019**, *51*, 1689–1714.

(8) (a) Fürstner, A.; Alcarazo, M.; Cesar, V.; Lehmann, C. W. Convenient, scalable and flexible method for the preparation of imidazolium salts with previously inaccessible substitution patterns. *Chem. Commun.* **2006**, 2176–2178. (b) Hirano, K.; Urban, S.; Wang, C.; Glorius, F. A Modular Synthesis of Highly Substituted Imidazolium Salts. *Org. Lett.* **2009**, *11*, 1019–1022. (c) Sheehan, J. C.; Hara, T. Asymmetric thiazolium salt catalysis of the benzoin condensation. *J. Org. Chem.* **1974**, *39*, 1196–1199. (d) Enders, D.; Gielen, H.; Breuer, K. Immobilized Triazolium Salts As Precursors To Chiral Carbenes - Rhodium-Catalyzed Asymmetric Hydrosilylation As A First Test Reaction. *Mol. Online* **1998**, *2*, 105–109. (e) Bao, Y.; Kumagai, N.; Shibasaki, M. Design and synthesis of a bis-(hydroxyphenyl)diamide bearing a pendant thiazolium unit; application to the catalytic asymmetric intramolecular Stetter reaction. *Tetrahedron: Asymmetry* **2014**, *25*, 1401–1408.

(9) Bonnet, L. G.; Douthwaite, R. E.; Kariuki, B. M. Synthesis of new chiral N-heterocyclic carbene-imine ligands and their application to an asymmetric allylic alkylation reaction. *Organometallics* **2003**, *22*, 4187–4189.

(10) (a) Rix, D.; Labat, S.; Toupet, L.; Crévisy, C.; Mauduit, M. Design of Chiral Hydroxyalkyl- and Hydroxyarylazolinium Salts as

New Chelating Diaminocarbene Ligand Precursors Devoted to Asymmetric Copper-Catalyzed Conjugate Addition. *Eur. J. Inorg. Chem.* **2009**, 2009, 1989–1999. (b) Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Lühl, A.; Blechert, S. Highly Active Chiral Ruthenium-Based Metathesis Catalysts through a Monosubstitution in the N-Heterocyclic Carbene. *Angew. Chem., Int. Ed.* **2010**, 49, 3972–3975. (c) Latham, C. M.; Blake, A. J.; Lewis, W.; Lawrence, M.; Woodward, S. Short Synthesis of Chiral 4-Substituted (S)-Imidazolinium Salts Bearing Sulfonates and Their Use in γ -Selective Reactions of Allylic Halides with Grignard Reagents. *Eur. J. Org. Chem.* **2012**, 2012, 699– 707.

(11) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Enantioselective Ruthenium-Catalyzed Ring-Closing Metathesis. *Org. Lett.* **2001**, *3*, 3225–3228.

(12) (a) Fournier, P.-A.; Collins, S. K. A Highly Active Chiral Ruthenium-Based Catalyst for Enantioselective Olefin Metathesis. *Organometallics* 2007, 26, 2945–2949. (b) Savoie, J.; Stenne, B.; Collins, S. K. Improved Chiral Olefin Metathesis Catalysts: Increasing the Thermal and Solution Stability via Modification of a C1-Symmetrical N-Heterocyclic Carbene Ligand. *Adv. Synth. Catal.* 2009, 351, 1826–1832. (c) Paradiso, V.; Bertolasi, V.; Grisi, F. Novel Olefin Metathesis Ruthenium Catalysts Bearing Backbone-Substituted Unsymmetrical NHC Ligands. *Organometallics* 2014, 33, 5932–5935. (d) Paradiso, V.; Bertolasi, V.; Costabile, C.; Caruso, T.; Dąbrowski, M.; Grela, K.; Grisi, F. Expanding the Family of Hoveyda–Grubbs Catalysts Containing Unsymmetrical NHC Ligands. *Organometallics* 2017, 36, 3692–3708.

(13) (a) Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Lühl, A.; Blechert, S. Highly Active Chiral Ruthenium-Based Metathesis Catalysts through a Monosubstitution in the N-Heterocyclic Carbene. *Angew. Chem., Int. Ed.* **2010**, *49*, 3972–3975. (b) Kannenberg, A.; Rost, D.; Eibauer, S.; Tiede, S.; Blechert, S. A Novel Ligand for the Enantioselective Ruthenium-Catalyzed Olefin Metathesis. *Angew. Chem., Int. Ed.* **2011**, *50*, 3299–3302.

(14) Kong, L.; Morvan, J.; Pichon, D.; Jean, M.; Albalat, M.; Vives, T.; Colombel-Rouen, S.; Giorgi, M.; Crévisy, C.; Nuel, D.; Nava, P.; Humbel, S.; Vanthuyne, N.; Mauduit, M.; Clavier, H. From Prochiral N-Heterocyclic Carbenes (NHC) to Optically Pure Copper Complexes: New Opportunities in Asymmetric Catalysis. *J. Am. Chem. Soc.* **2020**, *142*, 93–98.

(15) Paczal, A.; Benyei, A. C.; Kotschy, A. Modular Synthesis of Heterocyclic Carbene Precursors. *J. Org. Chem.* **2006**, 71, 5969–5979. (16) Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.; Dorta, R. Identification and Characterization of a New Family of Catalytically Highly Active Imidazolin-2-ylidenes. *J. Am. Chem. Soc.* **2008**, *130*, 6848–6858.

(17) Berger, S.; Braun, S. 200 and More NMR Experiments; Wiley-VCH: Weinheim, 2004. 149–151.

(18) Bernardinelli, G.; Flack, H. D. Least-squares absolute-structure refinement. Practical experience and ancillary calculations. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **1985**, *41*, 500–511.