Synthesis of the First Stable Palladium Allenylidene Complexes

Florian Kessler, Normen Szesni, Kaija Põhako, Bernhard Weibert, and Helmut Fischer*

Fachbereich Chemie, Universität Konstanz, Fach 727, 78457 Konstanz, Germany

Received September 1, 2008

Oxidative addition of $BrC \equiv CC(=O)NR_2$ to $[Pd(PPh_3)_4]$ affords the *trans*-alkynylbromopalladium complexes *trans*-[Br(PPh_3)_2Pd-C \equiv CC(=O)NR_2] (NR_2 = NMe_2 (**2a**), N(CH_2)_4) (**2b**)). Subsequent reaction of **2a**,**b** with P'Pr_3 in excess gives *trans*-[Br(P'Pr_3)_2Pd-C \equiv CC(=O)NR_2] (**5a**,**b**). The analogous reaction of **2b** with P(C₆H₄OMe-4)_3 gives *trans*-[Br(P{C₆H₄OMe-4}_3)_2Pd-C \equiv CC(=O)NR_2] (**7b**), and that of **2a** with trifluoroacetate gives *trans*-[(F₃CCOO)(PPh_3)_2Pd-C \equiv CC(=O)NMe_2] (**9a**). Methylation of **2a**,**b**, **7b**, and **9a** with either MeOTf or [Me₃O]BF₄ and ethylation of **2a**,**b** with [Et₃O]BF₄ yield the first cationic allenylidene complexes of palladium, *trans*-[R*(PR'_3)_2Pd-C \equiv CC(OMe)NR_2]^+X^- (R* = Br, CF_3COO; R' = Ph, C₆H₄OMe-4, ^{*i*}Pr; X = OTf, BF₄).

Introduction

The synthesis of the first allenylidene complexes, $L_n M = C = C = C(R^1)R^2$, was reported in 1976 simultaneously by Fischer et al. $(M = Cr, W)^1$ and Berke (M = Mn).² Fischer's synthesis involved Lewis acid induced ethanol abstraction from ethoxycarbene complexes [(CO)₅M=C(OEt)(CH=C-(NMe₂)Ph)]. Berke obtained the manganese allenylidene complex $[Cp(CO)_2Mn=C=C=C(^{t}Bu)_2]$ on treatment of the methyl propiolate complex $[Cp(CO)_2Mn(HC \equiv CCOOMe)]$ with an excess of 'BuLi, presumably via an alkynyl complex as an intermediate. Since then a large number of allenylidene complexes of many transition metals have been prepared, including complexes of titanium, chromium, tungsten, manganese, rhenium, iron, ruthenium, osmium, rhodium, and iridium.³ Most syntheses now use propargylic alcohols, $HC \equiv CC(R)(R')OH$, as sources of the allenylidene C3 fragment. Coordination of the propargylic alcohol to the transition metal is followed by its rearrangement into a hydroxyvinylidene ligand. On subsequent elimination of water, allenylidene ligands are formed. This strategy was originally introduced by Selegue.⁴ Some of these complexes have been used as catalyst precursors:⁵ for instance, in ring-closing metathesis,⁶ in ring-opening metathesis,⁷ in the dehydrogenative dimerization of tin hydrides,⁸ and in selective transetherification of substituted vinyl ethers.⁹

Allenylidene complexes of palladium have been unknown until now, and consequently their catalytic activity has not been studied. This is surprising, especially when considering the broad range of applications of palladium complexes in organic synthesis and catalysis.¹⁰ Many commonly used catalysts for CC coupling reactions such as, for example, the Mizoroki–Heck reaction or the Suzuki coupling reaction are based on palladium complexes.

We now report on the synthesis and the spectroscopic properties of the first palladium allenylidene complexes from readily available N,N-dimethylpropiolamides as the C₃ source.

Results and Discussion

Initially, we envisioned the transmetalation of allenylidene ligands from chromium to palladium, since N-heterocyclic carbene ligands such as pyrazolin-3-ylidene and pyrazolidin-

^{*} To whom correspondence should be addressed. E-mail: helmut. fischer@uni-konstanz.de. Fax: +7531-883136.

Fischer, E. O.; Kalder, H. J.; Frank, A.; Köhler, F. H.; Huttner, G. Angew. Chem. 1976, 88, 683; Angew. Chem., Int. Ed. Engl. 1976, 15, 623.
Berke, H. Angew. Chem. 1976, 88, 684; Angew. Chem., Int. Ed. Engl. 1976, 15, 624.

⁽³⁾ For reviews see: (a) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59. (b) Bruce, M. I. Chem. Rev. 1991, 91, 197. (c) Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa, E. Adv. Organomet. Chem. 1995, 37, 39. (d) Werner, H. J. Chem. Soc., Chem. Commun. 1997, 903. (e) Bruce, M. I. Chem. Rev. 1998, 98, 2797. (f) Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 1998, 178-180, 409. (g) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571. (h) Winter, R. F.; Zális, S. Coord. Chem. Rev. 2004, 248, 1565. (i) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 2004, 248, 1585. (j) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Coord. Chem. Rev. 2004, 248, 1627. (k) Cadierno, V.; Crochet, P.; Gimeno, J. In Metal Vinylidenes and Allenylidenes in Catalysis; Bruneau, C., Dixneuf, P. H., Eds.; Wiley-VCH: Weinheim, Germany, 2008; p 61 ff.

⁽⁴⁾ Selegue, J. P. Organometallics 1982, 1, 217.

⁽⁵⁾ For recent reviews see: (a) Castarlenas, R.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. *J. Mol. Catal. A* **2004**, *213*, 31. (b) Bruneau, C.; Dixneuf, P. H. *Angew. Chem.* **2006**, *118*, 2232; *Angew. Chem., Int. Ed.* **2006**, *45*, 2176.

^{(6) (}a) Fürstner, A.; Picquet, M.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1998, 1315. (b) Picquet, M.; Touchard, D.; Bruneau, C.; Dixneuf, P. H. New J. Chem. 1999, 23, 141. (c) Osipov, S. N.; Artyushin, O. I.; Kolomiets, A. F.; Bruneau, C.; Picquet, M.; Dixneuf, P. H. Eur. J. Org. Chem. 2001, 3891. (d) Picquet, M.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1998, 2249. (e) Sémeril, D.; Le Nôtre, J.; Bruneau, C.; Dixneuf, P. H.; Kolomiets, A. F.; Osipov, S. N. New J. Chem. 2001, 25, 16. (f) Schanz, H.-J.; Jafarpour, L.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5187. (g) Jafarpour, L.; Huang, J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 3760. (h) Le Gendre, P.; Picquet, M.; Richard, P.; Moise, C. J. Organomet. Chem. 2002, 643-644, 231. (i) Fürstner, A.; Müller, T. J. Am. Chem. Soc. 1999, 121, 7814. (j) Fürstner, A.; Thiel, O. R. J. Org. Chem. 2000, 65, 1738. (k) Özdemir, I.; Cetinkaya, E.; Cetinkaya, B.; Cicek, M.; Sémeril, D.; Bruneau, C.; Dixneuf, P. H. Eur. J. Inorg. Chem. 2004, 418. (1) Akiyama, R.; Kobayashi, S. Angew. Chem. 2002, 114, 2714; Angew. Chem., Int. Ed. 2002, 41, 2602.

^{(7) (}a) Saoud, M.; Romerosa, A.; Peruzzini, M. Organometallics **2000**, *19*, 4005. (b) Castarlenas, R.; Sémeril, D.; Noels, A. F.; Demonceau, A.; Dixneuf, P. H. J. Organomet. Chem. **2002**, *663*, 235. (c) Alaoui Abdallaoui, I.; Sémeril, D.; Dixneuf, P. H. J. Mol. Catal. A **2002**, *182–183*, 577.

⁽⁸⁾ Maddock, S. M.; Finn, M. G. Angew. Chem. 2001, 113, 2196; Angew. Chem., Int. Ed. 2001, 40, 2138.

⁽⁹⁾ Saoud, M.; Romerosa, A.; Manas Carpio, S.; Gonsalvi, L.; Peruzzini, M. *Eur. J. Inorg. Chem.* **2003**, 1614.

⁽¹⁰⁾ See e.g.: (a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985. (b) de Meijere, A., Diederich, F. Eds. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, Germany, 2004. (c) Tsuji, J. Palladium Reagents and Catalysis; Wiley: Chichester, U.K., 2004.

3-ylidene proved readily transferable from pentacarbonylchromium complexes to gold, palladium, and platinum in high yield.¹¹ The analogous transmetalation of several allenylidene ligands from chromium to tungsten likewise proceeded quickly in yields ranging from 83 to 97%.¹² However, all attempts to transfer allenylidene ligands from chromium to palladium met with failure. Therefore, the strategy had to be changed and an approach starting from alkynyl complexes was investigated.

Recently, we developed an easy to perform one-pot synthesis for π -donor-substituted allenylidene pentacarbonyl complexes of chromium and tungsten. Sequential reaction of the solvent complexes [(CO)₅M(THF)] (M = Cr, W) with appropriate deprotonated alkynes as the C₃ source and [R₃O]BF₄ as the alkylating agent afforded the corresponding amino- and alkoxyallenylidene complexes in very good yields.¹³ Modification of this route turned out to also be applicable to the preparation of palladium allenylidene complexes.

Terminal halogenoalkynes are known to react with zerovalent palladium complexes by oxidative addition, affording stable palladium(II) alkynyl complexes.¹⁴ Thus, treatment of a suspension of [Pd(PPh₃)₄] in CH₂Cl₂ at ambient temperature with $BrC \equiv CC (= O)NMe_2$ (1a) afforded the neutral alkynyl complex 2a (Scheme 1). Bromoalkyne 1a was obtained by reaction of propynoic acid dimethylamide with N-bromosuccinimide (NBS). Pure alkynyl complex 2a was isolated, after repeated crystallization from mixtures of CH₂Cl₂ and Et₂O, as a colorless solid in 85% yield. The subsequent alkylation of 2a at -50 °C with a slight excess of MeOTf proceeded smoothly and afforded the cationic palladium allenylidene complex 3a-OTf as a light yellow solid in 91% yield after crystallization from pentane-CH₂Cl₂ mixtures (Scheme 1). The corresponding BF₄ salt, 3a-BF4, was obtained when [Me3O]BF4 instead of MeOTf was used as the alkylation agent. The complexes 2b, 3b-OTf, 3b-BF₄, 4a-BF₄, and 4b-BF₄ were synthesized accordingly.

Modification of the properties of the allenylidene complex can be achieved by variation of the terminal substituents of the allenylidene ligand and the coligands at palladium. The variation of the terminal substituents was achieved by starting from alkyne **1b** instead of **1a** and employing $[Et_3O]BF_4$ as the alkylation agent; otherwise the same reaction sequence was followed (Scheme 1).

The metal-bound C_{α} atom and the terminal C_{γ} atom in allenylidene complexes are electrophilic centers (see resonance forms II and III in Scheme 4).³ Therefore, nucleophilic additions to these centers might compete with substitution of halides for the bromide ligand or of phosphines for the PPh₃ ligands. To avoid such side reactions at the allenylidene ligand, the alkynyl complexes **2a,b** were chosen as the starting compounds for the modification of the coligand set in allenylidene complexes.

Treatment of a solution of **2a**,**b** in CH₂Cl₂ with 2.2 equiv of the more nucleophilic phosphines P'Pr₃ and P(C₆H₄OMe-4)₃ led to quantitative exchange of both PPh₃ ligands. Complexes **5a**,**b** and **7b** were obtained as colorless or pale yellow solids after several recrystallization cycles from Et₂O in 70–74% yield. These alkynyl complexes were subsequently converted into cationic allenylidene complexes by alkylation with MeOTf. The resulting allenylidene complexes were then isolated in 98% (**6a**-OTf), 97% (**6b**-OTf), and 91% yield (**8b**-OTf) (Scheme 2).

When $Ag^+[CF_3COO]^-$ was added to a solution of **2a** in CH_2Cl_2 , AgBr instantaneously precipitated and the trifluoroac-

⁽¹¹⁾ Kessler, F.; Szesni, N.; Maass, C.; Hohberger, C.; Weibert, B.; Fischer, H. J. Organomet. Chem. **2007**, 692, 3005.

⁽¹²⁾ Szesni, N.; Drexler, M.; Fischer, H. Organometallics 2006, 25, 3989.

^{(13) (}a) Fischer, H.; Szesni, N.; Roth, G.; Burzlaff, N.; Weibert, B. J. Organomet. Chem. 2003, 683, 301. (b) Fischer, H.; Szesni, N. Coord. Chem. Rev. 2004, 248, 1659.

^{(14) (}a) Burgess, J.; Howden, M. E.; Kemmitt, R. D. W.; Sridhara, N. S. J. Chem. Soc., Dalton Trans. 1978, 1577. (b) Klein, H. F.; Zettel, B. D. Chem. Ber. 1995, 128, 343. (c) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzai, I. A. J. Am. Chem. Soc. 1998, 120, 9205. (d) Weigelt, M.; Becher, D.; Poetsch, E.; Bruhn, C.; Steinborn, D. Z. Anorg. Alg. Chem. 1999, 625, 1542. (e) Osakada, K.; Hamada, M.; Yamamoto, T. Organometallics 2000, 19, 458.

etato complex **9a** was isolated as a colorless solid in 96% yield. Alkylation of **9a** with MeOTf or $[Me_3O]BF_4$ finally afforded the allenylidene complexes **10a**-OTf and **10a**-BF₄ in 90% and 86% yields, respectively (Scheme 3).

All new alkynyl and allenylidene complexes were characterized by spectroscopic means and by elemental analysis. The structures of **5b** and **10a**-BF₄ were additionally established by X-ray diffraction studies.

From the observation of only one singlet in the ³¹P NMR spectra it followed that the two phosphine ligands are mutually trans. There was no indication of the presence of a cis isomer. Two singlets for the two N-bound methyl groups in the NMR spectra of all alkynyl complexes indicated a rather high barrier to rotation around the C(sp²)-N bond. From the coalescence of the two signals of complex 2a in C₂D₂Cl₄ at 115 °C an energy barrier of $\Delta G^{\dagger} = 76.1 \pm 0.4$ kJ/mol was calculated. The barrier is slightly lower than that in free propiolamides (RC=CC- $(=O)NMe_2$, R = H, Me, Ph: 79.6-82.1 kcal/mol),¹⁵ indicating minor back-donation from palladium to the alkynyl ligand and almost negligible interaction of the metal with the C(=O)NMe₂ fragment. The resonances of the alkynyl ligand in the ¹³C NMR spectra compared well with those of known palladium alkynyl complexes.^{14d} As expected, increasing the electron density at palladium in the series 9a, 2a, 7b led to a shift of the ¹³C resonance of the metal-bound alkynyl C_{α} atom to lower field. The resonances of C_{β} and C_{γ} were unaffected by varying the substitution pattern of the metal center.

The formation of the cationic allenylidene complexes by alkylation of the alkynyl complexes was accompanied by a pronounced shift of the C_{α} resonance to lower field by about 45 ppm, a shift of the C_{β} resonance to higher field ($\Delta \delta \approx 11$ ppm) and a shift of the $\nu(CC)$ vibration to lower energy by $10-15 \text{ cm}^{-1}$. The resonances of the C_y atom and the N-CH₃ groups were again almost unaffected by the alkylation. Similar trends have been observed on alkylation of alkynylpentacarbonylchromate complexes to give neutral allenylidene complexes.¹² The extent of these shifts and the observation of two resonances for the dimethylamino substituent in the ¹H and ¹³C NMR spectra demonstrate the importance of the zwitterionic resonance forms II and III for the overall bond description of these cationic allenylidene complexes (Scheme 4).¹² As in 2a, 5a, 7b, and 9a, both phosphine ligands are mutually trans, as indicated by the presence of only one signal for both phosphorus nuclei in the ³¹P NMR spectra.

A comparison of the spectroscopic data of these cationic palladium allenylidene complexes with those of the related neutral complexes [(CO)₅M=C=C=C(NMe₂)OMe] (M = Cr, W) reveals that in cationic palladium allenylidene complexes the alkynyl character (see III in Scheme 4) is significantly more pronounced than in the corresponding group 6 complexes, as evidenced by the ν (CC) vibration at higher energy by about 70–90 cm⁻¹.

The solid-state structures of the alkynyl complex **5b** (Figure 1) and of the cationic allenylidene complex $10a-BF_4$ (Figure 2)

Figure 1. Structure of the alkynyl complex **5b** in the crystal (ellipsoids drawn at the 50% probability level; hydrogen atoms omitted for clarity). Important distances (Å) and angles (deg): Pd(1)-C(1) = 1.947(3), Pd(1)-Br(1) = 2.4629(8), Pd(1)-P(1) = 2.3581(9), Pd(1)-P(2) = 2.3500(9), C(1)-C(2) = 1.209(5), C(2)-C(3) = 1.454(4), C(3)-O(1) = 1.244(4), C(3)-N(1) = 1.331(4), N(1)-C(4) = 1.466(5); C(1)-Pd(1)-Br(1) = 176.41(9), Pd(1)-C(1)-C(2) = 175.6(3), C(1)-C(2)-C(3) = 168.1(3), C(2)-C(3)-O(1) = 120.5(3), C(2)-C(3)-N(1) = 117.5(3).

Figure 2. Structure of the cation of complex **10a**-BF₄ in the crystal (ellipsoids drawn at the 50% probability level; hydrogen atoms, two molecules of methylene chloride, and the anion BF₄⁻ omitted for clarity). Important distances (Å) and angles (deg): Pd(1)–C(1) = 1.925(3), Pd(1)–O(1) = 2.067(2), Pd(1)–P(1) = 2.3338(9), Pd(1)–P(2) = 2.3303(9), C(1)–C(2) = 1.217(4), C(2)–C(3) = 1.420(4), C(3)–N(1) = 1.296(4), C(3)–O(3) = 1.330(4), O(3)–C(4) = 1.446(4), O(1)–C(7) = 1.267(3), O(2)–C(7) = 1.223(4); C(1)–Pd(1)–O(1) = 178.69(9), Pd(1)–C(1)–C(2) = 176.7(2), C(1)–C(2)–C(3) = 172.6(3), C(2)–C(3)–N(1) = 123.0(3), C(2)–C(3)–O(3) = 120.8(3), N(1)–C(3)–O(3) = 116.2(3).

were determined by X-ray diffraction studies. The complex **10a**-BF₄ crystallizes from dichloromethane with two molecules of CH₂Cl₂; the BF₄⁻ anion is slightly disordered. In both complexes the palladium atom engages in square-planar coordination. In **5b** the plane formed by the atoms C(3), O(1), and N(1) and the coordination plane of palladium are almost coplanar (torsion angle O(1)-C(3)-Pd(1)-P(1) = 12.0°). In contrast, the allenylidene plane (formed by the atoms C(3), N(1), and O(3)) and the trifluoracetate plane in **10a**-BF₄ are perpendicular (89.6 and 87.9°, respectively) to the coordination plane of palladium. In both complexes the Pd-C₃ chain is slightly bent: Pd-C(1)-C(2) = 175.6(3)° (**5b**) and 176.7(2)° (**10a**-BF₄), C(1)-C(2)-C(3) = 168.1(3)° (**5b**) and 172.6(3)° (**10a**-BF₄). However, a modest

^{(15) (}a) Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry; VCH: Deerfield Beach, FL, 1985. (b) Jackman, L. M., Cotton, F. A., Eds. Dynamic Nuclear Magnetic Resonance Spectroscopy; Academic Press: New York, 1975.

deviation from linearity of the MC₃ fragment in allenylidene complexes is often observed.³

The Pd-C bond (1.925(3) Å) in the allenylidene complex 10a-BF₄ is close to the shorter limit of observed Pd-C bond lengths and is shorter than the Pd-C bond in the related cationic N-heterocyclic carbene (NHC) complexes trans-[L(PR₃)₂Pd-(NHC)]⁺ (1.97–2.01 Å)¹⁶ or in the neutral alkynyl complexes *trans*-[L(PR₃)₂Pd-C=CR] (1.947(3) Å in **5b**; range usually observed 1.95–2.07 Å^{14d,17}). Similarly to other neutral π -donorsubstituted allenylidene complexes of chromium and tungsten^{11-13,18} the C(1)-C(2) bond is very short (1.217(4) Å) and only slightly longer than in the alkynyl complex 5b (1.209(5) Å). Conversely, the C(2)–C(3) bond in **10a**-BF₄ (1.420(4) Å) is rather long and is even longer than that in [(CO)₅Cr=C= C=C(O-adamantyl)NMe₂] $(1.366(7) \text{ Å})^{18}$ but, as expected, is shorter than in **5b** (1.454(4) Å). The terminal bonds of the chain, C(3)-O(3) and C(3)-N(3), however, compare well with those in related complexes.

In summary, the first isolable palladium allenylidene complexes are accessible by a straightforward two-step synthesis from readily available bromoalkynes. The new complexes are remarkably stable. For instance, after heating for 14 h at 160 °C the intensity of the ν (CC) vibration in the IR spectra of **3a**-OTf only decreased to a minor degree, thus confirming the stability of the new allenylidene complexes. They exhibit all characteristic features of π -donor-substituted allenylidene complexes.

Experimental Section

All reactions were performed under a nitrogen atmosphere by using standard Schlenk techniques. Solvents were dried by distillation from CaH₂ (CH₂Cl₂), LiAlH₄ (pentane), and sodium (Et₂O). The yields refer to analytically pure compounds and are not optimized. ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were recorded on a Jeol JNX 400, a Varian Inova 400, or a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts are reported relative to the residual solvent peaks or tetramethylsilane (¹H, ¹³C) and 100% H₃PO₄ (³¹P). Other instrumentation: IR, Biorad FTS 60; MS, Finnigan MAT 312; elemental analysis, Heraeus Elementar Vario EL. *N*,*N*-Dimethylpropiolamide¹⁹ and [Pd(PPh₃)₄]²⁰ were synthesized according to literature procedures. All other reagents were used as obtained from commercial suppliers.

1-Bromo-*N*,*N***-dimethylpropiolamide (1a).** A solution of 0.97 g (10 mmol) of *N*,*N*-dimethylpropiolamide in 40 mL of acetone was treated at ambient temperature with 2.16 g (12 mmol) of NBS and 150 mg (0.9 mmol) of AgNO₃. After 60 min the reaction mixture was poured onto 200 mL of ice water. The aqueous phase was extracted three times with 30 mL portions of ethyl acetate. The combined organic extracts were dried over MgSO₄. The solid was then filtered off and the solvent removed in vacuo. The crude product was filtered over a short plug of silica using CH₂Cl₂/acetone

(5:1) as the eluant. Removal of the solvent gave 1.36 g (7.9 mmol; 79%) of **1** as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 2.88 (s, 3H, NCH₃), 3.12 (s, 3H, NCH₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ 34.0 (NCH₃), 38.0 (NCH₃), 55.2 (C=CBr), 73.4 (C=CBr), 153.0 (*C*(O)NMe₂). IR (CH₂Cl₂): ν (C=C) 2198 cm⁻¹. EI-MS (70 eV): *m*/*z* (%) 176 (48) [M⁺], 161 (100) [(M – CH₃)⁺]. Anal. Calcd for C₅H₆BrNO (176.01): C, 34.12; H, 3.44; N, 7.96. Found: C, 34.09; H, 3.51; N, 8.05.

1-Bromo-*N*,*N***-tetramethylenepropiolamide (1b).** The synthesis of **1b** was carried out analogously to **1a**. The crude product was purified by column chromatography using CH₂Cl₂ as solvent. Yield: 1.72 g (8.51 mmol; 85%) of **1b** as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 1.90 (m, 4H, CH₂CH₂), 3.44 (t, *J* = 7.0 Hz, 2H, NCH₂), 3.61 (t, *J* = 7.0 Hz, 2H, NCH₂). ¹³C NMR (100 MHz, CDCl₃): δ 24.6 (CH₂), 25.3 (CH₂), 45.4 (NCH₂), 48.0 (NCH₂), 53.8 (C≡CBr), 74.6 (C≡CBr), 177.4 (C(O)NC₄H₈). IR (CH₂Cl₂): ν (CCC) 2196 cm⁻¹. EI-MS (70 eV): *m*/*z* (%) 202 (79) [M⁺], 146 (22) [(M - C₄H₈)⁺], 132 (100) [(M - NC₄H₈)⁺], 122 (29) [(M - Br)⁺], 99 (100) [(M - Br - C≡C)⁺]. Anal. Calcd for C₇H₈BrNO (202.05): C, 41.61; H, 3.99; N, 6.93. Found: C, 42.46; H, 4.37; N, 8.21.

trans-Bromobis(triphenylphosphine)(3-dimethylamino-3-oxy-1propynyl)palladium(II) (2a). A suspension of 1.16 g (1 mmol) of $[Pd(PPh_3)_4]$ in 30 mL of CH_2Cl_2 was treated with 0.26 g (1.5 mmol) of **1a** at ambient temperature. The mixture was stirred for 30 min, upon which it becomes a clear yellow solution. Then, 100 mL of dry Et₂O was added. The light yellow precipitate was filtered off and washed repeatedly with Et₂O (3 \times 30 mL) and pentane (2 \times 50 mL). Repeated crystallization of the crude product from $CH_2Cl_2/$ Et₂O gave 0.69 g (0.85 mmol; 85%) of pure **2a** as an off-white powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.19 (s, 3H, NCH₃), 2.49 (s, 3H, NCH₃), 7.38-7.47 (m, 18H, ArH), 7.68-7.73 (m, 12H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 33.2 (NCH₃), 37.6 (NCH₃), 104.1 (t, ${}^{2}J_{PC} = 10.8$ Hz, Pd $-C \equiv C$), 107.7 (Pd $-C \equiv C$), 128.4 (t, ${}^{3}J_{PC} = 4.8$ Hz, m-C), 130.9 (p-C), 131.4 (t, ${}^{1}J_{PC} = 25.0$ Hz, i-C), 135.3 (t, ${}^{2}J_{PC} = 6.7$ Hz, o-C), 154.4 (C(O)NMe₂). ${}^{31}P$ NMR (162 MHz, CD₂Cl₂): δ 24.7. IR (CH₂Cl₂): ν (C=C) 2109 cm⁻¹; ν (CO) 1609 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 240 (4.489), 305 (4.314). FAB-MS: m/z (%) 725 (28) [(M - Br)⁺]. Anal. Calcd for C₄₁H₃₆BrNOP₂Pd · CH₂Cl₂ (807.01): C, 56.56; H, 4.29; N, 1.57. Found: C, 57.09; H, 4.60; N, 1.55.

trans-Bromobis(triphenylphosphine)(3-N,N-tetramethyleneamino-3-oxy-1-propynyl)palladium(II) (2b). A suspension of 1.16 g (1 mmol) of [Pd(PPh₃)₄] in 30 mL of dry CH₂Cl₂ was treated with 0.30 g (1.5 mmol) of 1b at ambient temperature. The mixture was stirred for a further 30 min, upon which it became a clear yellow solution. The solvent was removed in vacuo, and the crude product was purified by column chromatography using petroleum ether/ CH₂Cl₂/acetone mixtures. Yield: 0.71 g (0.85 mmol; 85%) of 2b as a pale yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 1.37 (m, 2H, CH₂), 1.56 (m, 2H, CH₂), 2.26 (t, J = 7.0 Hz, 2H, NCH₂), 3.03 (t, J = 7.0 Hz, 2H, NCH₂), 7.34-7.40 (m, 18 H, ArH), 7.67-7.72 (m, 12 H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 24.6 (CH_2) 25.0 (CH_2) , 44.2 (NCH_2) , 46.9 (NCH_2) , 105.0 $(t, {}^{3}J_{PC} = 5.8)$ Hz, Pd-C=C), 107.1 (t, ${}^{2}J_{PC} = 13.4$ Hz, Pd-C=C), 128.0 (t, ${}^{3}J_{PC}$ = 4.8 Hz, *m*-C), 130.4 (*p*-C), 130.9 (t, ${}^{1}J_{PC}$ = 24.9 Hz, *i*-C), 135,0 (t, ${}^{2}J_{PC} = 6.7$ Hz, o-C), 152.9 (C(O)NC₄H₈). ${}^{31}P$ NMR (162 MHz, CDCl₃): δ 21.7. IR (CH₂Cl₂): ν(CCC) 2115 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 302 (4.373). FAB-MS: m/z (%) 834 (7) $[M^+]$, 751 (8) $[(M - Br - 2H)^+]$, 489 (16) $[(M - Br - 2H - 2H)^+]$ PPh_3^+], 367 (41) [(M - Br - 2H - PPh_3 - C_7H_8NO)^+]. Anal. Calcd for C₄₃H₃₈BrNOP₂Pd (833.04): C, 62.00; H, 4.60; N, 1.68. Found: C, 61.86; H, 4.63; N, 1.57.

trans-Bromobis(triphenylphosphine)(3-dimethylamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (3a-OTf). A solution of 0.5 g (0.62 mmol) of 2a in 30 mL of CH_2Cl_2 was treated dropwise with 0.07 mL (0.62 mmol) of MeOTf at -50

⁽¹⁶⁾ See e.g.: (a) Fürstner, A.; Seidel, G.; Kremzow, D.; Lehmann, C. W. Organometallics 2003, 22, 907. (b) Schneider, S. K.; Roembke, P.; Julius, G. R.; Raubenheimer, H. G.; Herrmann, W. A. Adv. Synth. Catal. 2006, 348, 1862. (c) Schuster, O.; Raubenheimer, H. G. Inorg. Chem. 2006, 45, 7997.

^{(17) (}a) Behrens, U.; Hoffmann, K. J. Organomet. Chem. 1977, 129, 273. (b) van der Voort, E.; Spek, A. L.; de Graaf, W. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43, 2311. (c) Osakada, K.; Sakata, R.; Yamamoto, T. Organometallics 1997, 16, 5354. (d) Kim, Y.-J.; Lee, S.-H.; Lee, S.-H.; Jeon, S.-I.; Lim, M. S.; Lee, S. W. Inorg. Chim. Acta 2005, 358, 650.

⁽¹⁸⁾ Szesni, N.; Weibert, B.; Fischer, H. Inorg. Chim. Acta 2006, 359, 617.

⁽¹⁹⁾ Crow, W. D.; Leonard, N. J. J. Org. Chem. 1965, 30, 2660.

⁽²⁰⁾ Tellier, F.; Sauvetre, R.; Normant, J. F. J. Organomet. Chem. 1985, 292, 19.

°C. After 10 min at -50 °C, the solution was warmed to ambient temperature. The progress of the reaction was followed by IR spectroscopy. When all of the starting material was consumed, the solvent was removed in vacuo. The remaining residue was washed twice with 30 mL of Et₂O and recrystallized from mixtures of CH₂Cl₂ and pentane. Pure **3a**-OTf (0.55 g, 0.56 mmol; 91%) was obtained as a light yellow powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 3.23 (s, 3H, NCH₃), 3.40 (s, 3H, NCH₃), 3.74 (s, 3H, OCH₃), 7.03-7.11 (m, 18H, ArH), 7.21-7.25 (m, 12H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 35.1 (NCH₃), 40.3 (NCH₃), 61.7 (OCH₃), 96.1 (C_{β}), 120.9 (q, ¹J_{CF} = 316.4 Hz, CF₃), 128.9 (t, ³J_{PC} = 5.8 Hz, *m*-C), 129.9 (t, ¹J_{PC} = 25.3 Hz, *i*-C), 132.2 (*p*-C), 135.4 (t, ${}^{2}J_{PC} = 6.0$ Hz, o-C), 150.9 (t, ${}^{3}J_{PC} = 5.5$ Hz, C_a), 154.1 (C_y). ${}^{31}P$ NMR (162 MHz, CD₂Cl₂): δ 24.5. IR (THF): ν (CCC) 2099 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} , nm (log ϵ) 236 (4.563), 298 (4.361). FAB-MS: m/z (%) 821 (56) [(M - CF₃SO₃)⁺], 560 (48) [(M - CF₃SO₃) - PPh₃)⁺]. Anal. Calcd for C₄₃H₃₉BrF₃NO₄P₂PdS (971.11): C, 53.18; H, 4.05; N, 1.44. Found: C, 53.49; H, 4.46; N, 1.34.

trans-Bromobis(triphenylphosphine)(3-dimethylamino-3-methoxy-1,2-propadienylidene)palladium(II) Tetrafluoroborate (3a-BF₄). The synthesis of 3a-BF₄ from 1.0 g (1.24 mmol) of 2a and 0.25 g (1.70 mmol, 1.4 equiv) of [Me₃O]BF₄ in 60 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Yield: 0.70 g (0.77 mmol; 62%) of **3a**-BF₄ as a yellow powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.69 (s, 3 H, NCH₃), 2.91 (s, 3 H, NCH₃), 3.31 (s, 3 H, OCH₃), 7.45–7.56 (m, 18 H, ArH), 7.66–7.71 (m, 12 H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 37.7 (NCH₃), 41.7 (NCH₃), 61.3 (OCH₃), 128.8 (t, ${}^{3}J_{PC} = 5.6$ Hz, m-C), 130.2 (t, ${}^{1}J_{PC} = 25.7$ Hz, *i*-C), 131.8 (*p*-C), 135.1 (t, ${}^{2}J_{PC} = 6.4$ Hz, *o*-C); C_{α}, C_{β}, C_{γ} not observed. ${}^{31}P$ NMR (162 MHz, CD₂Cl₂): δ 24.7. IR (CH₂Cl₂): ν (CCC) 2098 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 298 (4.368). FAB-MS: m/z(%) 822 (72) $[(M - BF_4)^+]$, 560 (37) $[(M - BF_4 - PPh_3)^+]$. Anal. Calcd for C₄₂H₃₉BBrF₄NOP₂Pd • 0.5CH₂Cl₂ (908.85): C, 53.66; H, 4.24; N, 1.47. Found: C, 53.83; H, 4.51; N, 1.49.

trans-Bromobis(triphenylphosphine)(3-N.N-tetramethyleneamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (3b-OTf). The synthesis of 3b-OTf from 0.32 g (0.38 mmol) of 2b and 0.04 mL (0.38 mmol) of MeOTf in 20 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Yield: 0.82 g (0.82 mmol; 97%) of **3b**-OTf as a yellow powder. ¹H NMR (400 MHz, CD_2Cl_2): δ 1.70 (m, 2 H, CH₂), 1.87 (m, 2 H, CH₂), 2.68(t, J = 7.0 Hz, 2 H, NCH₂), 3.27 (s, 3 H, OCH₃), 3.34 (t, J = 7.0 Hz, 2 H, NCH₂), 7.42-7.50 (m, 18 H, ArH), 7.63-7.67 (m, 12 H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 24.2 (CH₂), 24.4 (CH₂), 48.9 (NCH₂), 51.4 (NCH₂), 60.4 (OCH₃), 93.8 (C_{β}), 128.5 (t, ³J_{PC} = 5.6 Hz, *m*-C), 129.8 (t, ${}^{1}J_{PC} = 25.9$ Hz, *i*-C), 131.4 (*p*-C), 134.7 (t, $^{2}J_{PC} = 6.2$ Hz, o-C), 147.8 (C_a), 150.9 (C_y). ³¹P NMR (162 MHz, CDCl₃): δ 24.9. IR (CH₂Cl₂): ν(CCC) 2100 cm⁻¹; ν(CO) 1612 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 296 (4.437). FAB-MS: m/z (%) 847 (32) [(M - OTf)⁺], 586 (20) [(M - OTf - PPh₃)⁺], 505 (11) $[(M - OTf - PPh_3 - Br)^+]$, 323 (59) $[(M - OTf - 2)^+]$ PPh_3)⁺]. Anal. Calcd for C₄₅H₄₁BrF₃NO₄P₂PdS (997.15): C, 54.20; H, 4.14; N, 1.40. Found: C, 54.16; H, 4.19; N, 1.36.

trans-Bromobis(triphenylphosphine)(3-*N*,*N*-tetramethyleneamino-3-methoxy-1,2-propadienylidene)palladium(II) Tetrafluoroborate (3b-BF₄). The synthesis of 3b-BF₄ from 0.48 g (0.58 mmol) of 2b and 0.10 g (0.69 mmol, 1.2 equiv) of [Me₃O]BF₄ in 30 mL of CH₂Cl₂ was carried out analogously to **3a**-OTf. Yield: 0.52 g (0.56 mmol; 97%) of **3b**-BF₄ as a yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 1.69 (m, 2 H, CH₂), 1.86 (m, 2 H, CH₂), 2.67 (t, *J* = 7.0 Hz, 2 H, NCH₂), 3.24 (s, 3 H, OCH₃), 3.34 (t, *J* = 7.0 Hz, 2 H, NCH₂), 7.37-7.51 (m, 18 H, ArH), 7.63-7.70 (m, 12 H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 24.5 (CH₂), 24.7 (CH₂), 49.2 (NCH₂), 51.7 (NCH₂), 60.7 (OCH₃), 94.3 (C_β), 128.8 (t, ³*J*_{PC} = 5.3 Hz, *m*-C), 130.1 (t, ¹*J*_{PC} = 26.0 Hz, *i*-C), 131.7 (*p*-C), 135.1 (t, ²*J*_{PC} = 6.2 Hz, *o*-C), 151.2 (C_α), 154.1 (C_γ). ³¹P NMR (162 MHz, CD₂Cl₂): δ 25.0. IR (CH₂Cl₂): ν (CCC) 2101 cm⁻¹; ν (CO) 1609 cm⁻¹. UV–vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 300 (4.376). FAB-MS: *m*/*z* (%) 847 (19) [(M – BF₄)⁺], 586 (16) [(M – BF₄ – PPh₃)⁺], 505 (9) [(M – BF₄ – PPh₃ – Br)⁺], 324 (40) [(M – BF₄ – 2 PPh₃)⁺]. Anal. Calcd for C₄₄H₄₁BBrF₄NOP₂Pd•0.5CH₂Cl₂ (934.89): C, 54.69; H, 4.33; N, 1.43. Found: C, 54.52; H, 4.51; N, 1.35.

trans-Bromobis(triphenylphosphine)(3-dimethylamino-3-ethoxy-1,2-propadienylidene)palladium(II) Tetrafluoroborate (4a-BF₄). The synthesis of 4a-BF₄ from 91 mg (0.11 mmol) of 2a and 21 mg (0.11 mmol) of [Et₃O]BF₄ in 5 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Yield: 77 mg (0.08 mmol; 76%) of 4a-BF₄ as a yellow powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.01 (t, J = 7.0 Hz, 2 H, CH₃), 2.69 (s, 3 H, NCH₃), 2.90 (s, 3 H, NCH₃), 3.54 (q, J = 7.0 Hz, 2 H, CH₂), 7.45–7.56 (m, 18 H, ArH), 7.67-7.72 (m, 12 H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 14.3 (OCH₂CH₃), 37.5 (NCH₃), 41.4 (NCH₃), 71.9 (OCH₂CH₃), 93.1 $(t, {}^{3}J_{PC} = 4.8 \text{ Hz}, C_{\beta}), 128.8 (t, {}^{3}J_{PC} = 5.8 \text{ Hz}, m\text{-C}), 130.1 (t, {}^{1}J_{PC})$ = 25.9 Hz, *i*-C), 131.7 (*p*-C), 135.0 (t, ${}^{2}J_{PC}$ = 5.8 Hz, *o*-C), 149.3 $(t, {}^{2}J_{PC} = 12.5 \text{ Hz}, C_{\alpha}), 152.9 (C_{\gamma}). {}^{31}P \text{ NMR} (162 \text{ MHz}, CD_{2}Cl_{2}):$ δ 24.8. IR (CH₂Cl₂): ν (CCC) 2099 cm⁻¹. UV-vis (CH₂Cl₂): λ _{max} (nm) (log ϵ) 300 (4.335). FAB-MS: m/z (%) 834 (44) [(M - BF₄)⁺], 573 (18) $[(M - BF_4 - PPh_3)^+]$. Anal. Calcd for C43H41BBrF4NOP2Pd (922.88): C, 55.96; H, 4.48; N, 1.52. Found: C, 56.02; H, 4.50; N, 1.44.

trans-Bromobis(triphenylphosphine)(3-N,N-tetramethyleneamino-3-ethoxy-1,2-propadienylidene)palladium(II) Tetrafluoroborate (4b-BF₄). The synthesis of 4b-BF₄ from 0.81 g (0.97 mmol) of 2b and 0.18 g (0.97 mmol) of [Et₃O]BF₄ in 30 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Yield: 0.92 g (0.96 mmol; 99%) of **4b**-BF₄ as a yellow powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 0.95 (t, J = 7.0 Hz, 3 H, OCH₂CH₃), 1.86 (m, 2 H, CH₂), 2.67 (t, J =7.0 Hz, 2 H, NCH₂), 3.31 (t, J = 7.0 Hz, 2 H, NCH₂), 3.48 (q, J = 7.0 Hz, 2 H, OCH₂CH₃), 7.42-7.50 (m, 18 H, ArH), 7.62-7.67 (m, 12 H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 14.2 (OCH₂CH₃), 24.1 (CH₂), 24.3 (CH₂), 48.8 (NCH₂), 51.3 (NCH₂), 70.7 (OCH_2CH_3) , 94.1 (C_β) , 128.4 (t, ${}^{3}J_{PC} = 5.7$ Hz, m-C), 129.8 (t, ${}^{1}J_{PC} = 26.0$ Hz, *i*-C), 131.4 (*p*-C), 134.7 (t, ${}^{2}J_{PC} = 5.7$ Hz, *o*-C), 145.8 (C_a), 150.1 (C $\gamma).$ ^{31}P NMR (162 MHz, CD_2Cl_2): δ 21.8. IR (CH₂Cl₂): v(CCC) 2101 cm⁻¹; v(CO) 1604 cm⁻¹. UV-vis (CH_2Cl_2) : λ_{max} (nm) (log ϵ) 297 (4.462). FAB-MS: m/z (%) 861 $(50) [(M - BF_4)^+], 600 (37) [(M - BF_4 - PPh_3)^+].$ Anal. Calcd for C₄₅H₄₃BBrF₄NOP₂Pd (948.92): C, 56.96; H, 4.57; N, 1.48. Found: C, 56.83; H, 4.53; N, 1.55.

trans-Bromobis(triisopropylphosphine)(3-dimethylamino-3-oxy-1-propynyl)palladium(II) (5a). At ambient temperature, a solution of 0.55 g (0.68 mmol) of 2a in 30 mL of CH2Cl2 was treated with 0.29 mL (1.50 mmol, 2.2 equiv) of PⁱPr₃. The progress of the reaction was monitored by IR spectroscopy. When all of the starting material was consumed (60 min), the solvent was removed in vacuo and the crude product purified by column chromatography using a petroleum ether/Et₂O mixture as the eluant. Removal of the solvent gave 0.29 g (0.47 mmol, 70%) of pure **5a** as a white powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.35 (q, J = 7.04 Hz, 36H, CH(CH₃)₂), 2.82 (s, 3H, NCH₃), 2.89 (m, 6H, CH(CH₃)₂), 3.10 (s, 3H, NCH₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ 20.1 (CH(CH₃)₂), 24.7 (t, ²J_{PC} = 11.5 Hz, $CH(CH_3)_2$), 33.7 (NCH₃), 38.0 (NCH₃), 103.7 (t, ${}^{3}J_{PC} =$ 4.8 Hz, Pd-C=C), 107.7 (t, ${}^{2}J_{PC} = 12.6$ Hz, Pd-C=C), 155.3 (C(O)NMe₂). ³¹P NMR (162 MHz, CD₂Cl₂): δ 42.1. IR (THF): ν (C=C) 2098 cm⁻¹; ν (CO) 1605 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 251 (4.134), 288 (4.167). MS (FAB): m/z (%) 604 (19) $[M^+]$, 523 (24) $[(M - Br)^+]$, 362 (11) $[(M - Br - P(iPr)_3)^+]$. Anal. Calcd for C23H48BrNOP2Pd (602.91): C, 45.82; H, 8.02; N, 2.32. Found: C, 46.03; H, 7.97; N, 2.39.

trans-Bromobis(triisopropylphosphine)(3-*N*,*N*-tetramethyleneamino-3-oxy-1-propynyl)palladium(II) (5b). The synthesis of 5b from 1.23 g (1.48 mmol) of 2b and 0.62 mL (3.25 mmol, 2.2 equiv) of P^iPr_3 in 30 mL of CH₂Cl₂ was carried out analogously to 5a. The crude product was purified by column chromatography using an ether/CH₂Cl₂/acetone mixture. Yield: 0.65 g (1.03 mmol; 70%) of **5b** as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 1.38 (m, 36 H, CH(*CH*₃)₂), 1.87 (br, 4H, *CH*₂*CH*₂), 2.94 (m, 6 H, *CH*(CH₃)₂), 3.40 (t, *J* = 6.6 Hz, 2H, NCH₂), 3.53 (t, *J* = 6.6 Hz, 2H, NCH₂). ¹³C NMR (100 MHz, CDCl₃): δ 19.6 (CH(*C*H₃)₂), 24.0 (t, ²*J*_{PC} = 11.6 Hz, *C*H(CH₃)₂), 24.3 (CH₂), 25.2 (CH₂), 44.3 (NCH₂), 47.0 (NCH₂), 103.9 (t, ³*J*_{PC} = 4.8 Hz, Pd-C=*C*), 106.0 (t, ²*J*_{PC} = 12.4 Hz, Pd-*C*=*C*), 153.1 (C(O)NC₄H₈). ³¹P NMR (162 MHz, CDCl₃): δ 41.7. IR (CH₂Cl₂): ν (CCC) 2106 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 287 (4.224). FAB-MS: *m/z* (%) 629 (39) [M⁺], 549 (18) [(M - Br)⁺], 470 (6) [(M - P(ⁱPr)₃)⁺], 389 (9) [(M - Br - P(ⁱPr)₃)⁺], 347 (6) [(M - P(ⁱPr)₃)⁺ - C₇H₈NO], 267 (38) [(M - Br - P(ⁱPr)₃)⁺], 347 (6) [(M - P(ⁱPr)₃)⁺ - C₇H₈NO], 267 (38) [(M - Br - P(ⁱPr)₃)⁺], C₇H₈NO)⁺]. Anal. Calcd for C₂₅H₅₀BrNOP₂Pd (628.95): C, 47.74; H, 8.01; N, 2,23. Found: C, 47.68; H, 7.74; N, 2.57.

trans-Bromobis(triisopropylphosphine)(3-dimethylamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (6a-OTf). The synthesis of 6a-OTf from 0.3 g (0.50 mmol) of 5a and 0.06 mL (0.50 mmol) of MeOTf in 30 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Complex 6a-OTf was recrystallized from Et₂O. Yield: 0.37 g (0.49 mmol; 98%) of **6a**-OTf as a colorless powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.35 (q, J = 7.04 Hz, 36H, CH(CH₃)₂), 2.85 (m, 6H, CH(CH₃)₂), 3.25 (s, 3H, NCH₃), 3.45 (s, 3H, NCH₃), 4.20 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ 20.0 (CH(CH₃)₂), 25.0 (t, ²J_{PC} = 11.8 Hz, CH(CH₃)₂), 38.3 (NCH₃), 42.1 (NCH₃), 61.7 (OCH₃), 94.6 (t, ³J_{PC} = 3.8 Hz, C_{β}), 121.4 (q, ${}^{1}J_{CF}$ = 320.0 Hz, CF_{3}), 150.3 (t, ${}^{2}J_{PC}$ = 10.6 Hz, C_α), 153.7 (C_γ). ³¹P NMR (162 MHz, CD₂Cl₂): δ 45.3. IR (THF): ν (CCC) 2083 cm⁻¹. UV-vis (CH₂Cl₂): λ _{max} (nm) (log ε) 247 (4.103), 279 (4.371). FAB-MS: m/z (%) 618 (75) [(M - $OTf)^+$], 458 (48) [(M - OTf - P(ⁱPr)₃)⁺]. Anal. Calcd for C₂₅H₅₁BrF₃NO₄P₂PdS (767.01): C, 40.80; H, 6.98; N, 1.90. Found: C, 39.38; H, 6.33; N, 1.54.

trans-Bromobis(triisopropylphosphine)(3-N,N-tetramethyleneamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (6b-OTf). The synthesis of 6b-OTf from 0.18 g (0.27 mmol) of 5b and 0.03 mL (0.27 mmol) of MeOTf in 10 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Yield: 0.21 g (0.26 mmol; 97%) of **6b**-OTf as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 1.33 (m, 36 H, CH(CH₃)₂), 2.02 (br, 4H, CH₂CH₂), 2.84 (m, 6 H, $CH(CH_3)_2$), 3.76 (t, J = 7.0 Hz, 4 H, NCH_2), 4.15 (s, 3 H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 19.9 (CH(CH₃)₂), 24.7 (t, ${}^{1}J_{PC} = 11.1$ Hz, CH(CH₃)₂), 24.3 (CH₂), 24.5 (CH₂), 49.3 (NCH₂), 51.8 (NCH₂), 60.7 (OCH₃), 95.3 (t, ${}^{3}J_{PC} = 3.8$ Hz, C_{β}), 120.8 (q, ${}^{1}J_{CF} = 320.0$ Hz, CF₃), 147.1 (t, ${}^{2}J_{PC} = 11.6$ Hz, C_{α}), 151.1 (C_{γ}). ³¹P NMR (162 MHz, CDCl₃): δ 45.1. IR (CH₂Cl₂): ν (CCC) 2086 cm⁻¹; ν (CO) 1612 cm⁻¹. UV-vis (CH₂Cl₂): λ _{max} (nm) $(\log \epsilon)$ 280 (4.365). FAB-MS: m/z (%) 644 (70) $[(M - OTf)^+]$, 483 (65) $[(M - OTf - PPh_3)^+]$, 403 (13) $[(M - OTf - PPh_3 - PPh_3)^+]$ Br)⁺]. Anal. Calcd for $C_{27}H_{53}BrF_3NO_4P_2PdS$ (793.05): C, 40.89; H, 6.74; N, 1.77. Found: C, 40.85; H, 7.19; N, 1.54.

trans-Bromobis[tris(4-methoxyphenyl)phosphine](3-N,N-tetramethyleneamino-3-oxy-1-propynyl)palladium(II) (7b). The synthesis of 7b from 0.42 g (0.50 mmol) of 2b and 0.39 g (1.10 mmol, 2.2 equiv) of P(C₆H₄OMe-4)₃ in 30 mL of CH₂Cl₂ was carried out analogously to 5a. The crude product was purified by column chromatography using a petroleum ether/CH₂Cl₂/acetone mixture. Yield: 0.37 g (0.37 mmol; 74%) of **7b** as a pale yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 1.40 (m, 2H, CH₂), 1.58 (m, 2H, CH₂), 2.32 (t, J = 6.8 Hz, 2H, NCH₂), 3.06 (t, J = 6.6 Hz, 2H, NCH₂), 3.78 (s, 18H, OCH₃), 6.85–6.87 (m, 12 H, ArH), 7.57–7.61 (m, 12 H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 24.5 (CH₂), 24.9 (CH₂), 44.1 (NCH₂), 47.0 (NCH₂), 55.1 (OCH₃), 104.5 (t, ${}^{3}J_{PC} =$ 3.5 Hz, Pd-C=C), 109.2 (t, ${}^{3}J_{PC} = 9.0$ Hz, Pd-C=C), 113.5 (ArC), 122.7 (t, ${}^{2}J_{PC} = 27.8$ Hz, ArC), 136.3 (ArC), 153.1 (C(O)NC₄H₈), 161.1 (ArC). ³¹P NMR (162 MHz, CDCl₃): δ 20.2. IR (CH₂Cl₂): ν (CCC) 2114 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 317 (4.420). FAB-MS: *m*/*z* (%) 1013 (20) [M⁺], 933 (85) [(M - Br)⁺], 580 (27) [(M - Br - P(C₆H₄OMe-*p*)₃)⁺]. Anal. Calcd for C₄₉H₅₀BrNO₇P₂P d × 0.5 CH₂Cl₂ (1013.21): C, 56.32; H, 4.87; N, 1,33. Found: C, 55.69; H, 4.86; N, 1.02.

trans-Bromobis[tris(4-methoxyphenyl)phosphine](3-N,N-tetramethyleneamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (8b-OTf). The synthesis of 8b-OTf from 0.58 g (0.57 mmol) of 7b and 0.07 mL (0.57 mmol) of MeOTf in 20 mL of CH₂Cl₂ was carried out analogously to **3a**-OTf. Yield: 0.62 g (0.52 mmol; 91%) of **8b-**OTf as a yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 1.68 (m, 2H, CH₂), 1.85 (m, 2H, CH₂), 2.72 (m, 2H, NCH₂), 3.35 (m, 2H, NCH₂), 3.78 (s, 3H, OCH₃), 3.81 (s, 18 H, OCH₃), 6.92–6.95 (m, 12 H, ArH), 7.52–7.57 (m, 12 H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 24.1 (CH₂), 24.4 (CH₂), 48.7 (NCH₂), 51.3 (NCH₂), 55.4 (OCH₃), 60.5 (OCH₃), 93.9 (C_β), 114.0 (ArC), 121.6 (t, ${}^{1}J_{PC} = 28.7$ Hz, ArC), 136,3 (t, ${}^{2}J_{PC} = 7.1$ Hz, ArC), 151.1 (C_ν), 161.8 (ArC), 177.0 (C_α). ³¹P NMR (162 MHz, CDCl₃): δ 20.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2. IR (CH₂Cl₂): ν (CCC) 2098 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 328 (4.352). FAB-MS: m/z (%) 1028 (8) [(M - OTf)⁺], 948 (8) $[(M - OTf - Br)^+]$, 595 (23) $[(M - OTf - Br - P(C_6H_4OMe - M_2)^+]$ $(p)_3)^+$]. Anal. Calcd for C₅₁H₅₃BrF₃NO₁₀P₂PdS (1177.32): C, 52.03; H, 4.54; N, 1.19. Found: C, 52.10; H, 4.72; N, 1.26.

trans-(Trifluoroacetato)bis(triphenylphosphine)(3-dimethylamino-3-oxy-1-propynyl)palladium(II) (9a). A suspension of 0.55 g (0.68 mmol) of 2a and 0.15 g (0.68 mmol) of CF₃COOAg in 30 mL of dry CH₂Cl₂ was stirred for 30 min. The precipitate (AgBr) that formed was filtered off. The solvent of the crude reaction mixture was removed in vacuo. Crystallization of the crude product from CH₂Cl₂/Et₂O gave 0.54 g (0.65 mmol; 96%) of 9a as a colorless powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.93 (s, 3H, NCH₃), 2.47 (s, 3H, NCH₃), 7.41-7.51 (m, 18H, ArH), 7.71-7.79 (m, 12H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 33.2 (NCH₃), 37.2 (NCH₃), 93.8 (t, ${}^{2}J_{PC} = 10.7$ Hz, Pd-C=C), 107.4 (Pd-C=C), 107.4 (CF₃COO), 128.4 (t, ${}^{3}J_{PC} = 5.7$ Hz, m-C), 129.6 (t, ${}^{1}J_{PC} = 25.0$ Hz, *i*-C), 131.2 (*p*-C), 134.1 (t, ${}^{2}J_{PC} = 5.3$ Hz, *o*-C), 154.3 (C(O)NMe₂), 174.3 (CF₃COO). ³¹P NMR (162 MHz, CD₂Cl₂): δ 23.9. IR (THF): ν (C=C) 2114 cm⁻¹; ν (CO) 1680, 1609 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 239 (4.513), 297 (4.449). FAB-MS: m/z (%) 727 (11) [(M - CF₃COO)⁺], 631 (62) [(M - CF₃COO $-C_5H_6NO)^+$], 369 (62) [(M - CF_3COO - C_5H_6NO - PPh_3)^+]. Anal. Calcd for C₄₃H₃₆F₃NO₃P₂Pd • CH₂Cl₂ (840.13): C, 57.13; H, 4.14; N, 1.51. Found: C, 57.52; H, 4.30; N, 1.81.

trans-(Trifluoroacetato)bis(triphenylphosphine)(3-dimethylamino-3-methoxy-1,2-propadienylidene)palladium(II) Trifluoromethanesulfonate (10a-OTf). The synthesis of 10a-OTf from 0.49 g (0.58 mmol) of 9a and 0.07 mL (0.62 mmol) of MeOTf in 30 mL of CH₂Cl₂ was carried out analogously to 3a-OTf. Recrystallization from mixtures of CH₂Cl₂ and pentane afforded 0.52 g (0.52 mmol, 90%) of pure **10a**-OTf as a colorless powder. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.46 (s, 3H, NCH₃), 2.80 (s, 3H, NCH₃), 3.03 (s, 3H, OCH₃), 7.38–7.47 (m, 18H, ArH), 7.58–7.65 (m, 12H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 38.0 (NCH₃), 41.5 (NCH₃), 61.2 (OCH_3) , 95.6 (C_{β}) , 110.9 (CF_3COO) , 120.0 (SO_3CF_3) , 128.3 $(t, {}^1J_{PC})$ = 25.8 Hz, *i*-C), 129.3 (t, ${}^{3}J_{PC}$ = 5.8 Hz, *m*-C), 132.1 (*p*-C), 134.7 (t, ${}^{2}J_{PC} = 6.7$ Hz, o-C), 137.9 (t, ${}^{3}J_{PC} = 5.7$ Hz, C_a), 153.7 (C_y), 172.8 (CF₃COO). ³¹P NMR (162 MHz, CD₂Cl₂): δ 25.9. IR (THF): ν (CCC) 2102 cm⁻¹; ν (CO) 1678 cm⁻¹. UV–vis (CH₂Cl₂): λ _{max} (nm) (log ε) 251 (4.359), 307 (4.528). FAB-MS: m/z (%) 855 (13) [(M – OTf)⁺], 592 (80) [(M – OTf – PPh₃)⁺], 478 (39) [(M – OTf – PPh₃ - $CF_3COO)^+$]. Anal. Calcd for $C_{45}H_{39}F_6NO_6P_2$ -PdS • 0.5CH₂Cl₂ (1004.23): C, 52.21; H, 3.85; N, 1.34. Found: C, 51.94; H, 4.07; N, 1.44.

trans-(Trifluoracetato)bis(triphenylphosphine)(3-dimethylamino-3-methoxy-1,2-propadienylidene)palladium(II) Tetrafluoroborate (10a-BF₄). The synthesis of 10a-BF₄ from 0.47 g (0.56 mmol) of 9a and 99 mg (0.67 mmol, 1.2 equiv) of [Me₃O]BF₄ in 30 mL of CH₂Cl₂ was carried out analogously to **3a**-OTf. Yield: 0.45 g (0.48 mmol; 86%) of **10a**-BF₄ as an off-white powder. ¹H NMR (400 MHz, CDCl₃): δ 2.55 (s, 3 H, NCH₃), 2.89 (s, 3 H, NCH₃), 3.10 (s, 3 H, OCH₃), 7.49–7.57 (m, 18 H, ArH), 7.68–7.72 (m, 12 H, ArH). ¹³C NMR (100 MHz, CD₂Cl₂): δ 38.0 (NCH₃), 41.7 (NCH₃), 61.3 (OCH₃), 128.4 (t, ${}^{1}J_{PC} = 25.9$ Hz, *i*-C), 129.4 (t, ${}^{3}J_{PC} = 5.7$ Hz, m-C), 132.2 (*p*-C), 134.9 (t, ${}^{2}J_{PC} = 6.4$ Hz, *o*-C), 153.8 (C_y); C_{α} , C_{β} , CF₃COO not observed. ³¹P NMR (162 MHz, CD₂Cl₂): δ 26.2. IR (THF): v(CCC) 2103 cm⁻¹; v(CO) 1678 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 307 (4.450). FAB-MS: m/z (%) 854 (33) $[(M - BF_4)^+]$, 663 (100) $[(M - BF_4 - CF_3COO - Ph)^+]$, 631 (49) $[(M - BF_4 - CF_3COO - CCC(OMe)NMe^2)^+]$, 592 (68) $[(M - BF_4 - PPh^3)^+], 479 (37) [(M - BF_4 - PPh_3 - CF_3COO)^+],$ $369 (82) [(M - BF_4 - PPh_3 - CF_3COO - CCC(OMe)NMe_2)^+].$ Anal. Calcd for C₄₄H₃₉BF₇NO₃P₂Pd (941.96): C, 56.10; H, 4.17; N, 1.49. Found: 56.03; H, 4.22; N, 1.42.

X-ray Structural Analysis of 5b and 10a-BF₄. Data for 5b: $C_{25}H_{50}BrNOP_2Pd \cdot CDCl_3$, $M_r = 748.28$, monoclinic, space group $P2_1/c$, a = 8.9048(18) Å, b = 11.445(2) Å, c = 32.830(7) Å, $\beta = 91.24(3)^\circ$, V = 3345.1(12) Å³, Z = 4, $d_{calcd} = 1.486$ g cm⁻³, F(000) = 1536, $\mu = 2.104$ mm⁻¹, $2\theta_{max} = 51.3^\circ$, index ranges $-10 \le h \le 10$, $-13 \le k \le 13$, $-39 \le l \le 39$, 36 114 data (6273 unique), R(int) = 0.0931, 319 parameters, R1 ($I > 2\sigma(I)$) = 0.0343, wR2 = 0.0776, goodness of fit on F^2 1.042, $\Delta\rho_{max}$ ($\Delta\rho_{min}$) = 0.649 (-0.855) e Å⁻³.

Data for 10a-BF4: $C_{46}H_{43}BCl_4F_7NO_3P_2Pd$, $M_r = 1111.76$, monoclinic, space group $P2_1/n$, a = 11.612(2) Å, b = 23.143(5) Å, c = 18.136(4) Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 18.136(4)$ Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 18.136(4)$ Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 18.136(4)$ Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 10.136(4)$ Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 10.136(4)$ Å, $\beta = 90.71(3)^\circ$, V = 4873.5(17) Å³, Z = 4, $d_{calcd} = 10.136(4)$ Å, $\beta = 10.136(4)$

1.515 g cm⁻³, F(000) = 2248, $\mu = 0.733$ mm⁻¹, $2\theta_{max} = 53.7^{\circ}$, index ranges $-14 \le h \le 14$, $-29 \le k \le 29$, $-23 \le l \le 22$, 70 118 data: (10 300 unique), R(int) = 0.0879, 586 parameters, R1 ($I > 2\sigma(I)$) = 0.0406, wR2 = 0.0959, goodness of fit on F^2 1.023, $\Delta\rho_{max}$ ($\Delta\rho_{min}$) = 1.132 (-0.975) e Å⁻³.

Single crystals suitable for an X-ray structural analysis of **5b** were grown from CDCl₃ and those of **10a**-BF₄ by slow diffusion of hexane into a concentrated solution of **10a**-BF₄ in CH₂Cl₂ at 4 °C. The measurements were performed at 100(2) K with a crystal mounted on a glass fiber on a Stoe IPDS II diffractometer (graphite monochromator, Mo K α radiation, $\lambda = 0.710$ 73 Å). The structures were solved by direct methods using the SHELX-97 program package.²¹ The positions of the hydrogen atoms were calculated by assuming ideal geometry, and their coordinates were refined together with those of the attached carbon atoms as the riding model. All other atoms were refined anisotropically.

Acknowledgment. Support of this work by the Wacker-Chemie GmbH (gift of chemicals) is gratefully acknowledged.

Supporting Information Available: CIF files of the complexes **5b** and **10a**-BF₄ and tables giving the bond distances, bond angles, and torsion angles of **5b** and **10a**-BF₄. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800843E

(21) Sheldrick, G. M. SHELXTL-97, Programs for Crystal Structure Analysis; University of Göttingen, Göttingen, Germany, 1997.