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Abstract: From a series of gold complexes of the
type [t-BuXPhosAuACHTUNGTRENNUNG(MeCN)]X (X= anion), the best
results in intermolecular gold(I)-catalyzed reactions
are obtained with the complex with the bulky and
soft anion BAr4

F� [BAr4
F�= 3,5-bis(trifluorometh-ACHTUNGTRENNUNGyl)phenylborate] improving the original protocols

by 10–30% yield. A kinetic study on the [2+2]cy-
cloaddition reaction of alkynes with alkenes is con-
sistent with an scenario in which the rate-determin-
ing step is the ligand exchange to generate the (h2-
phenylacetylene)gold(I) complex. We have studied
in detail the subtle differences that can be attribut-
ed to the anion in this formation, which result in
a substantial decrease in the formation of unpro-
ductive s,p-(alkyne)digold(I) complexes by destabi-
lizing the conjugated acid formed.

Keywords: cycloaddition; cyclobutenes; gold cataly-
sis; mechanistic study

Introduction

Gold(I)-catalyzed intramolecular cycloisomerization
reactions have been widely studied during the last
decade.[1] Gold(I) complexes have been found to be
powerful homogeneous catalysts for carbon-carbon,
carbon-oxygen or carbon-nitrogen bond formation
proceeding by nucleophilic additions to alkynes,
allenes and alkenes, giving access to new carbo- and
heterocyclic compounds. Despite these major advan-
ces, the development of intermolecular cycloadditions
using alkynes as the substrates has been shown to be
challenging.[2]

By using cationic gold(I) complexes with bulky li-
gands, we developed the intermolecular reaction of al-
kynes with alkenes to form regioselectively cyclo-ACHTUNGTRENNUNGbutenes of type 3a (Scheme 1).[3,4] More recently, we
have developed a synthesis of phenols 5 by the inter-
molecular reaction of alkynes with furans such as
4,[5,6] as well as a synthesis of oxabicyclo ACHTUNGTRENNUNG[3.2.1]oct-3-
enes of type 7a by cycloaddition between oxoalkene 6
and 1a.[7]

During our studies on the [2+2+2] cycloaddition of
alkynes with oxoalkenes,[7] we discovered that forma-
tion of the active gold species was more complex than
expected. Although it was possible to observe the
phenylacetylene gold(I) complex (8a) at �60 8C, the
resting state under the reaction conditions was the un-
reactive s,p-(phenylacetylene)digold(I) complex 9a,
which decreases the reaction efficiency (Scheme 2).

Different research groups reported the formation
of very similar digold(I) complexes and their influ-
ence on the reactivity in catalytic transformations.[8]

Scheme 1. Gold(I)-catalyzed intermolecular reactions.
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In this context, we have focused on tuning the catalyst
structure to minimize the formation of digold(I) com-
plexes. In intermolecular reactions involving alkynes,
we reasoned that the use of a more bulky, non-coordi-
nating, and less basic counterion could slow down the
deprotonation of terminal alkynes to form the s-ace-
tylide gold(I) intermediates. Hence, we have pre-
pared the new gold(I) complexes [t-BuXPhosAu-ACHTUNGTRENNUNG(MeCN)]BAr4

F A2 and [IPrAu ACHTUNGTRENNUNG(PhCN)]BAr4
F B2 with

the BAr4
F� anion [BAr4

F�=3,5-bis(trifluoromethyl)-
phenylborate] (Figure 1).[9] These are close relatives

of the corresponding complexes A1[10] and B1[11] with
hexafluoroantimonate anion, which have been used as
the catalysts of choice in gold(I)-catalyzed intermolec-
ular reactions.[3,4,5,7] Since complex B2 showed slightly
better performance than B1 in the intermolecular syn-
thesis of phenols of type 5,[5] we decided to study in
detail the effect of the anion on the corresponding t-
BuXPhos complexes A1 and A2. Analogous com-
plexes with BF4

� and PF6
� anions A3 and A4 have

also been studied. Herein we present a mechanistic
study of the intermolecular [2+2] cycloaddition of al-
kynes with alkenes in order to understand the influ-
ence of the counterion on the reactivity of these pro-
cesses. This work shows that A2 is the catalyst of
choice for intermolecular reactions of terminal al-
kynes.

Results and Discussion

The [2+2] cycloaddition of alkynes with alkenes was
developed using complex [t-BuXPhosAu ACHTUNGTRENNUNG(MeCN)]

SbF6 (A1) as catalyst, furnishing regioselectively cy-
clobutenes 3 in moderate to good yields.[3] This cyclo-
addition proceeded under mild conditions in dichloro-
methane at room temperature. Although, as expected,
the ligand had a strong influence on the selectivity,
we were surprised by the notable difference observed
when changing the counterion (Table 1). Thus, replac-
ing SbF6

� in A1 by BAr4
F� (A2) leads to an increase

in the yield of the cycloaddition of 1a with 2a from 80
to 95% (Table 1, entries 1 and 2). The use of BF4

�,
PF6

�, NTf2
� or OTf� as counterions led to 3a in lower

yields (Table 1, entries 3–6).
The cycloaddition between different terminal al-

kynes and 2a using catalysts A1 and A2 is shown in
Table 2. In most cases, yields using A2 were 10–30%
higher (Table 2), with the exception of MeO-substitut-
ed alkynes 1c, 1g, and 1l, which afforded the corre-
sponding cyclobutenes in very similar yields (Table 2,
entries 6, 14, and 24). In the case of 1n, a lower yield
was obtained (Table 2, entry 28). Cyclobutene 3a was
also obtained in 95% yield by performing the reaction
on a larger scale (2.0 mmol). Generating in situ A2 by
simple mixing of (t-BuXPhos)gold(I) chloride and
NaBAr4

F did not mean any drop in the yield.
Improved yields were also obtained in general

when phenylacetylene (1a) was used with different al-
kenes (Table 3). The reaction can also be extended to
allylsilane 2d, allyl ether 2e and allyl silyl ether 2f, al-

Scheme 2. Formation of s,p-digold(I) complexes from (h2-al-
kyne)gold(I) complexes (L= t-BuXPhos).

Figure 1. Cationic gold(I) complexes with SbF6
� and BAr4

F�

anions (BAr4
F�=3,5-bis(trifluoromethyl)phenylborate).

Table 1. Intermolecular gold(I)-catalyzed [2+2] cycloaddi-
tion between phenylacetylene (1a) and a-methylstyrene (2a)
with different gold(I) catalysts A.[a]

Entry X� 3a (Yield [%])[b]

1 SbF6
� 80

2 BAr4
F� 95

3 BF4
� 62

4 PF6
� 19

5[c] NTf2
� 26

6[c] OTf� 18

[a] 2a/1a= 2:1.
[b] Yield determined by 1H NMR using 1,4-diacetylbenzene

as internal standard.
[c] Catalysts generated in situ with [LAuCl] and the corre-

sponding silver salts.
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though yields were modest due to the lower nucleo-
philicity of these alkenes.

The yield in the macrocyclization of 1,14-enyne 10
to form 13-membered derivative 11 was also im-
proved from 57% using A1 to 82% with A2
(Scheme 3).[7]

We also explored the influence of the counterion in
the intermolecular [2+2+2]cycloaddition of alkynes
with oxoalkene 6 to furnish 8-oxabicyclo ACHTUNGTRENNUNG[3.2.1]oct-3-
enes 7a–d using A1 and A2. For this more challenging
cascade reaction, we could also observe a moderate
improvement of the yields using catalyst A2 (Table 4,
entries 2, 4, 6, and 8).

To define the role of the anion in intermolecular re-
actions, we studied experimentally the mechanism of
the [2+2]cycloaddition between alkynes and alkenes.
According to previous theoretical work,[7,12] the cata-
lytic cycle for the [2+2] cycloaddition of alkynes with

alkenes was expected to proceed by a rate-determin-
ing attack of the electron-rich alkene to the (h2-alk-ACHTUNGTRENNUNGyne)gold(I) complex 8 forming the cyclopropyl
gold(I) carbene 12 (Scheme 4). Then, the ring expan-
sion occurs to form benzylic carbocation 13, which
forms cyclobutene 3a after demetallation. An associa-
tive ligand exchange between (h2-cyclobutene)gold(I)
complex 14 and the starting alkyne closes the catalytic
cycle, regenerating 8.

However, in our previous study on the [2+2+2]cy-
cloaddition of alkynes with oxoalkenes,[7] we had ob-
served that the formation of the (h2-alkyne)gold(I)
complex 8a is complicated by the competitive forma-

Table 2. Intermolecular gold(I)-catalyzed [2+2] cycloaddi-
tion between alkynes (1a–n) and a-methylstyrene (2a).[a]

Entry R Catalyst Product (Yield [%])[b]

1 Ph (1a) A1 3a (80)[c]

2 A2 3a (95)
3 p-Tol (1b) A1 3b (74)[c]

4 A2 3b (86)
5 p-MeOC6H4 (1c) A1 3c (68)[c]

6 A2 3c (64)
7 p-FC6H4 (1d) A1 3d (75)[c]

8 A2 3 d (84)
9 p-ClC6H4 (1e) A1 3e (61)[c]

10 A2 3 e (91)
11 p-BrC6H4 (1f) A1 3f (74)[c]

12 A2 3 f (97)
13 m-MeOC6H4 (1g) A1 3g (80)
14 A2 3g (78)
15 m-Tol (1h) A1 3h (78)[c]

16 A2 3h (91)
17 m-HOC6H4 (1i) A1 3i (74)[c]

18 A2 3i (98)
19 m-FC6H4 (1j) A1 3j (67)
20 A2 3j (77)
21 m-ClC6H4 (1k) A1 3k (60)
22 A2 3k (83)
23 o-MeOC6H4 (1l) A1 3l (30)
24 A2 3l (24)
25 3-thienyl (1m) A1 3m (84)
26 A2 3m (86)
27 cyclopropyl (1n) A1 3n (46)[c]

28 A2 3n (35)

[a] 2a/1a–n =2:1.
[b] Isolated yields.
[c] Ref.[3]

Table 3. Intermolecular gold(I)-catalyzed [2+2] cycloaddi-
tion between phenylacetylene (1a) and alkenes 2b–f.[a]

Entry Catalyst Product (Yield [%])

1 A1 3o (74)[b,c]

2 A2 3o (79)[b]

3 A1 3p (53)[b,c]

4 A2 3p (69)[b]

5 A1 3q (48)[d]

6 A2 3q (71)[d]

7 A1 3r (26)[d]

8 A2 3r (31)[d]

9 A1 3s (21)[d]

10 A2 3s (31)[d]

[a] 2b–f/1a=2:1.
[b] Isolated yields.
[c] Ref.[3]

[d] Yield determined by 1H NMR using 1,4-diacetylbenzene
as internal standard.

Scheme 3. Gold(I)-catalyzed macrocyclization of a 1,14-
enyne.
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tion of s,p-digold(I) alkyne complex 9a (Scheme 2).
Therefore, we determined the order of the reagents in
the rate equation to gain further insight in the mecha-
nism. Initial rates were calculated for each component
by 1H NMR using diphenylmethane as internal stan-
dard (Figure 2). First order was observed for both the
alkyne 1a and the gold(I) catalyst A2, whereas the re-
action showed zero order dependence for the alkene
2a.

These results are consistent with a scenario in
which the actual rate-determining step is the ligand
exchange to generate the active species 8 (Scheme 4).
Complex A undergoes ligand exchange with 2a form-

ing 15. Generation of 8 is the slowest step due to its
unstability and rapid evolution to 9 or 3a.

Monitoring the [2+2]cycloaddition reaction by
1H NMR showed a significant dependence on the
anion (Figure 3). Besides the difference in the final
yields, the reaction rate increases with the bulkiness
and the softness of the counterion: BAr4

F�>SbF6
�>

BF4
�.

Analysis of the reaction mixture by 31P NMR
showed only the (alkene)gold(I) complex 15 and the
digold complex 9. The ratio between these species
[15]/[9] increased following the same trend: BAr4

F�

(b)>SbF6
� (a)>BF4

� (c). Thus, [15]/[9] drops from
115 (BArF4

F�) to 30 (SbF6
�) and finally to 4 for BF4

�

resulting in a smaller reservoir of the cationic gold(I)
species.

Table 4. Intermolecular gold(I)-catalyzed cyclization of 5-
methylhex-5-en-2-one (6) with terminal alkynes (1a–h).[a]

Entry R Catalyst Product (Yield [%])[b]

1 Ph (1a) A1 7a (68)[c]

2 A2 7a (72)
3 p-ClC6H4 (1e) A1 7b (51)[c]

4 A2 7b (62)
5 m-HOC6H4 (1i) A1 7c (65)[c]

6 A2 7c (81)
7 m-Tol (1h) A1 7d (70)[c]

8 A2 7d (72)

[a] 6/1a–h =1:3.5.
[b] Isolated yields.
[c] Ref.[7]

Scheme 4. Mechanism of the [2+2]cycloaddition between
alkACHTUNGTRENNUNGynes and alkenes considering all the gold(I) species in
equilibrium.

Figure 2. Order of the reagents in the [2+2]cycloaddition
between phenylacetylene (1a) and a-methylstyrene (2a)
with complex A2.

Figure 3. Kinetics of the [2+2]cycloaddition between phe-
nylacetylene (1a) and a-methylstyrene (2a) with different
gold(I) complexes (L = t-BuXPhos).
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The equilibrium constants for the formation of 9
and 15 from A1 and A2 were also determined, endo-
thermic and exothermic, respectively (Scheme 5). For-

mation of digold(I) complex with SbF6
� (9a) anion is

more favored than with BAr4
F� (9b), probably due to

the minor stability of the bulkier conjugated acid. We
also checked that A2 binds stronger to 2a than A1.

These results suggest that when BAr4
F� is used, the

concentration of catalytically active species 8b
(BAr4

F� as counteranion) is higher than with SbF6
�

(8a). We also studied the evolution of the gold(I) spe-
cies formed with A1 or A2 and 1a from �60 to 20 8C
by 31P NMR. With A1, the digold(I) complex 9a was
observed from �60 8C, becoming the only species at
�20 8C (Scheme 6). However, in the case of A2, the
corresponding digold(I) complex 9b was not observed
until 0 8C. Furthermore, the catalytically active species
8b was clearly observed up to the same temperature.

Complexes 15b and 9b (Figure 4) could be isolated
and were fully characterized by X-ray crystallogra-
phy.[13] The main divergence between 9a and 9b in the
solid state (Figure 4b and c, respectively) is the radi-
cally different position of the counterions. Whereas
BAr4

F� is located alongside the phenylacetylene
moiety in the same plane, SbF6

� is placed between
both gold atoms bending slightly the cation entity.
Thus, the angle of the p-coordinated gold(I), the
alkyne and the counterion is 130.38 for BAr4

F� (Au�B

10.22 �) and 77.38 for SbF6
� (Au�Sb 8.23 �) and the

angle of the s-gold is 210.08 for BAr4
F� (Au�B

11.52 �) and 60.68 for SbF6
� (Au�Sb 7.34 �). Com-

plex 16 was independently prepared by reaction of
the neutral gold(I) complex with lithium phenylacety-
lide and its structure was determined by X-ray diffrac-
tion.[13,14]

We performed DFT calculations of the key com-
plexes [t-BuXPhosAu(h2-phenylacetylene)]X 8 (X=
BF4

�, SbF6
�, BAr4

F�) [M06, 6-31G(d) (C, H, P, B, F)
and SDD (Au, Sb), CH2Cl2]. First, we evidenced the
steric congestion around the substrate hampering its
deprotonation depending on the counterion. We ana-
lyzed the charge distribution by electron density from
total SCF density mapped with ESP (1=0.03 e �3)
and the positive charge is widely distributed around
the ligand instead of being concentrated in the metal
center (Figure 5). We also checked the pattern be-
tween the bulkiness of the counterion and the acidity
of phenylacetylene by determining the Mulliken
atomic charges. The electron density decreases with
the anion size: BF4

�<SbF6
�<BAr4

F�, although the
differences are modest: 0.250 for BF4

� (8c), 0.243 for
SbF6

� (8a) and 0.237 for BAr4
F� (8 b). Presumably,

the large cation forms a more stable complex 8 with
a softer counterion as BAr4

F�.
Finally, we performed some additional experiments

to exclude other mechanistic pathways.[14] We started
by reacting the isolable intermediates under stoichio-
metric conditions with a-methylstyrene (2a). Neither
complex 9 nor 16 reacted with 2a in CH2Cl2 at 23 8C
for 8 h in the absence or presence of A2 as a catalyst.
On the other hand, complex 15b (Figure 4) reacts
with 1a to form cyclobutene 3a in 72% (CH2Cl2,
23 8C, 8 h) therefore that equilibrium is not inhibiting
the process.

Complex 16 is not catalytically active for the forma-
tion of 3a by [2+2] cycloaddition, although the activity
is restored upon addition of HSbF6, which cleaves the
Au�C bond generating the gold(I) catalyst (Table 5,
entries 1 and 2). More significantly, as we observed
before in another context,[7] digold complexes 9a and
9b are very poor catalysts for the [2+2] cycloaddition
between 1a with 2a (Table 5, entries 3 and 4), al-
though the reaction proceeds smoothly after addition
HSbF6 (Table 5, entry 5).

Conclusions

We have designed a new generation of gold(I) com-
plexes bearing BAr4

F� as counterion [BAr4
F�=3,5-

bis(trifluoromethyl)phenylborate]. These have proven
to be more efficient in different intermolecular
gold(I)-catalyzed reactions, improving the yields be-
tween 10 and 30%. We have then studied in detail the
subtle anion effects in the gold(I)-catalyzed [2+2]cy-

Scheme 5. Determination of the equilibrium constants from
A to 9 and 15.

Scheme 6. Gold(I) species formed between phenylacetylene
(1a) and A1 or A2 from 213 to 293 K.
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cloaddition of terminal alkynes with alkenes, which
sum up in a substantial decrease in the formation of
unproductive s,p-(alkyne)digold(I) complex when the
BAr4

F� anion is used.
Our kinetic study of the gold(I)-catalyzed [2+2]cy-

cloaddition reaction of terminal alkynes with alkenes
is consistent with a scenario in which the rate-
determining step is the first ligand exchange ofACHTUNGTRENNUNG[LAu ACHTUNGTRENNUNG(MeCN)]X to generate the active (h2-phenylace-
tylene)gold(I) complex, which is more stable with
softer counterions according to DFT calculations.
From a general practical perspective, we have found
that the best results in intermolecular gold(I)-cata-

lyzed reactions are obtained using [t-BuXPhosAu-ACHTUNGTRENNUNG(MeCN)]BAr4
F as catalyst.

Experimental Section

Procedure for the Synthesis of Gold(I) Complex A2

Chloro[(2’,4’,6’-triisopropyl-1,1’-biphenyl-2-yl)di-tert-butyl-
phosphine]gold(I) (100.0 mg, 0.152 mmol) and acetonitrile
(9.5 mL, 0.183 mmol) were dissolved in dichloromethane
(6.6 mL). Then, sodium tetrakis ACHTUNGTRENNUNG[3,5-bis(trifluoromethyl)phe-
nyl]borate (135.0 mg, 0.152 mmol) was added and the reac-
tion mixture was stirred at room temperature for 30 min.

Figure 4. X-Ray crystal structures: (a) a-methylstyrene gold(I) complex 15b, (b) [(t-BuXPhosAu)2C�CPh]+ ACHTUNGTRENNUNG[SbF6]
� 9a (taken

from ref.[7]) and (c) [(t-BuXPhosAu)2C�CPh]+ ACHTUNGTRENNUNG[BAr4
F]� 9b. ORTEP plot (50% thermal ellipsoids). Hydrogens are omitted

for clarity.
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The crude was filtered through Celite, then Teflon 0.22 and
concentrated to obtain a white powder; yield: 224 mg
(97%).

Procedure for the Synthesis of Cyclobutenes (3)

Alkyne (1 equiv.) and alkene (2 equiv.) were dissolved in di-
chloromethane (0.48 M) and the cationic gold(I) catalyst
(3 mol%) was added. The reaction mixture was stirred at
room temperature until no alkyne was observed by TLC.
Then, it was quenched by adding a drop of a solution of
Et3N in cyclohexane (1M) and the solvent was removed.

Preparative TLC was used to purify the resulting cyclobu-
tenes.
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[b] Yield determined by 1H NMR using 1,4-diacetylbenzene

as internal standard.
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