

Available online at www.sciencedirect.com

CHINESE Chemical Letters

Chinese Chemical Letters 21 (2010) 1350-1351

www.elsevier.com/locate/cclet

A new flavonoid from the bract of Zea mays L.

Yan Wang^{a,b}, Yin Yan Liu^a, Xiao Hong Yang^a, Di Chen^a, Cheng Peng^a, Guang Shu Wang^{a,*}

> ^a School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China ^b The Third Hospital, Jilin University, Changchun 130012, China Received 6 April 2010

Abstract

A new flavonoid was isolated from the bract of *Zea mays* L. The structure of the compound was identified as 4',5,7-trihydroxy-3',5'-dimethoxyflavone 7-O-[β -D-apiofuranosyl (1 \rightarrow 2)]- β -D-glucopyranoside on the ground of chemical and spectroscopic methods.

© 2010 Guang Shu Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Zea mays L.; Flavonoid; Bract

Zea mays (maize), a member of the Poaceae, is the most economically important crop in China and the third most important crop plant in the world, and has many biological activities [1]. In our study, a novel flavonoid was isolated for the first time from the bract of Zea mays L. The air-dried bract of Zea mays was extracted with 95% ethanol at room temperature. The extract was subjected to Diaion AB-8 column chromatography eluted with ethanol–H₂O, and the eluate was further chromatographed on silica gel and Sephadex LH-20 columns repeatedly to yield the new compound **1**.

Compound 1, yellow amorphous powder, produced positive reactions to AlCl₃ reagent and Molish reagent, had the molecular formula $C_{28}H_{32}O_{16}$ determined by HRESIMS ([M+H]⁺ 625.1760, calcd. 625.1763). Acid hydrolysis gave two kinds of monosaccharides, one of which was identified as D-glucose by paper chromatography comparison with authentic D-glucose. The IR spectrum of 1 indicated the presence of hydroxyl (3420 cm⁻¹), a carbonyl (1650 cm⁻¹) and an aromatic (1609 cm⁻¹) groups. UV maxima occurred at 349 nm (band I) and 269 nm (band II), characteristic of a flavonoid system. All the above data suggested that 1 was a flavonoid glycoside. The ¹H NMR spectrum (400 MHz, DMSO-*d*₆) showed two hydroxyl active proton signals at δ 12.96 (brs, 1H, 5-OH), 9.38 (brs, 1H, 4'-OH) in the lower field; five aromatic proton signals at δ 7.36 (brs, 2H, H-2',6'), 7.08 (s, 1H, H-3), 6.91 (d, 1H, *J* = 2.0 Hz, H-8), 6.44 (d, 1H, *J* = 2.0 Hz, H-6), two methoxy proton signals at δ 3.88 (s, 6H, 3',5'-OCH₃). From the above information, the aglycone was identified as tricin, 4',5,7-trihydroxy-3',5'-dimethoxyflavone, on further comparing corresponding ¹³C NMR data with the reported [2]. The coupling constant of the anomeric proton of glucose at δ 5.16 (d, 1H, *J* = 6.0 Hz) indicated that glucose moiety was in β -configuration. Besides the signals attributed to glucose moiety, there were four

* Corresponding author.

E-mail address: wgs@jlu.edu.cn (G.S. Wang).

^{1001-8417/\$ –} see front matter © 2010 Guang Shu Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.06.033

Table 1 ¹H NMR (400 MHz), ¹³C NMR (100 MHz), HMQC and HMBC data of compound **1** (DMSO- d_6 , δ).

No.	$\delta_{\rm C}$	$\delta_{ m H}$	HMBC $(H \rightarrow C)$	No.	$\delta_{\rm C}$	$\delta_{ m H}$	HMBC $(H \rightarrow C)$
2	164.1			7-0-	sugar		
3	103.8	7.08 (s, 1H)	182.0, 164.1, 120.2, 105.4	glc			
4	182.0			1″	98.3	5.16 (d, 1H, $J = 6.0$ Hz)	162.7, 76.1
5	161.1			2"	77.2	3.47 (m, 1H)	108.7, 98.3
6	99.4	6.44 (d, 1H, $J = 2.0$ Hz)	161.1, 105.4, 95.2	3″	76.1	3.75 (t, 1H, $J = 4.2$ Hz)	
7	162.7			4″	69.9	3.17 (m, 1H)	
8	95.2	6.91 (d, 1H, <i>J</i> = 2.0 Hz)	105.4, 99.4	5″	75.9	3.51 (m, 1H)	
9	156.9			6″	60.6	3.73, 3.44 (m, each 1H)	
10	105.4			api			
1'	120.2			1	108.7	5.35 (s, 1H)	74.0, 79.2
2',6'	104.5	7.36 (s, 2H)	164.1, 148.2, 140.1,	2	76.8	3.56 (m, 1H,)	
			120.2, 104.5				
3',5'	148.2			3	79.2		
4'	140.1			4	74.0	3.92, 3.66 (d, each 1H, $J = 9.2$ Hz)	79.2
3',5'-OCH ₃	56.4	3.88 (s, 6H)	148.2	5	64.2	3.23 (m, 2H)	

All assignments based on the extensive 1D and 2D NMR spectra (HMQC, HMBC, ¹H-¹H COSY).

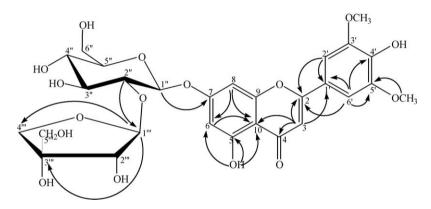


Fig. 1. The key HMBC correlation of compound 1 (arrows point from proton to carbon).

signals at δ 76.8, 79.2, 74.0, 64.2 in the region between δ 60.5 and 70.9, and one signal at δ 108.7 in the anomeric region between δ 95.1 and 108.8, which were attributed to β -D-apiose by comparing with the reported [3]. The complete assignment of the signals of compound **1** was based on 2D NMR of ¹H–¹H COSY, HMQC and HMBC. The down field about 4 ppm of the signal of C-2" of glucose (δ 77.2) showed that apiose was linked to C-2" of glucose, which was further confirmed by the HMBC correlation of 2"-H ($\delta_{\rm H}$ 3.47) to C-1 ($\delta_{\rm C}$ 108.7). The HMBC correlation of 1"-H ($\delta_{\rm H}$ 5.16) to C-7 ($\delta_{\rm C}$ 162.7) showed that glucose was linked to C-7 of alycone, which was further confirmed by free active hydroxyl protons of C-5 ($\delta_{\rm H}$ 12.96) and C-4' ($\delta_{\rm H}$ 9.38) and the HMBC correlation of 5-OH ($\delta_{\rm H}$ 12.96) to C-6 ($\delta_{\rm C}$ 99.4). For all the remaining assignments of ¹H NMR and ¹³C NMR see Table 1, and for all the remains of HMBC correlation see Fig. 1. Therefore, the structure of compound **1** was elucidated as 4',5,7-trihydroxy-3',5'-dimethoxyflavone 7-*O*-[β -D-apifuranosyl (1 \rightarrow 2)]- β -D-glucopyranoside.

References

- The Health Department and National Chinese Medicine Management Office. Zhonghua Bencao 8. Shanghai Scientific and Technical Publishers, Shanghai. (1999) pp. 436.
- [2] Q. He, E.Y. Zhu, Z.T. Wang, et al. J. Chin. Pharm. Sci. 13 (3) (2004) 212.
- [3] X.K. Zheng, J. Li, W.S. Feng, et al. Acta Pharmaceutica Sinica 38 (4) (2003) 268.