LETTERS

Access to Tetronic Acids via Silver-Catalyzed CO₂ Incorporation into Conjugated Ynones

Yuta Sadamitsu, Keiichi Komatsuki, Kodai Saito, and Tohru Yamada*🔎

Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Supporting Information

ABSTRACT: Facile and versatile access to highly functionalized tetronic acids has been successfully achieved through the reaction of conjugated ynones with carbon dioxide. In the presence of a base, the enolates generated from the ynones capture CO_2 via a carbon—carbon bond-forming reaction, accompanied by a 5-*exo-dig* cyclization reaction of the resulting carboxylate to the alkyne, activated by a silver catalyst. The present method should be applicable to the synthesis of a wide variety of tetronic acids.

etronic acids, or 4-hydroxy-5H-furan-2-ones, are found in a range of natural products¹ and are considered as important scaffolds for the construction of bioactive and pharmaceutical compounds.² Although several methods for the synthesis of their derivatives have been reported, multiple steps are generally required, e.g., introduction of a substituent at the 3-position of the 2-furanone, protection and deprotection sequences, halogenation or diazotization, and a transitionmetal-catalyzed coupling reaction.³ Also, for substitution at the 5-position, organolithium reagents are generally employed to obtain the corresponding carbanion. Therefore, many limitations involving availability of electrophiles and tolerance of the functional groups are of concern.⁴ Recently, a silvercatalyzed synthesis of tetronic acids from (E)-2-en-4-ynoic acid was reported,⁵ though the preparation of the starting materials was complex.

Carbon dioxide is an attractive carbon source, having no toxicity in itself and availability at a low cost, as well as easy handling.⁶ Since CO₂ adducts are considered thermodynamically unstable, after nucleophilic addition to CO₂, decarboxylation often occurs competitively to form the starting compound. Therefore, in order to incorporate CO₂ into organic molecules, countermeasures are frequently needed to suppress the decarboxylation process.⁷ The successive intramolecular cyclization of an activated alkyne by transition metal catalysts⁸ is one of the most commonly used and reliable methods, widely applied to the syntheses of various multisubstituted heterocycles.⁹ A silver-catalyzed CO₂ incorporation reaction, based on the above-mentioned strategy, had been reported by this group. It was revealed that propargyl alcohols¹⁰ and alkynyl anilines¹¹ were applicable as heteroatom nucleophiles for these reactions with activated alkynes by silver catalysts. Recently, methods for CO₂ incorporation with carbon-carbon bond formation were developed using carbon nucleophiles, such as alkynyl ketones¹² and alkynyl allylsilanes.¹³ In this paper, we report that a readily prepared conjugated ynone has been employed as a carbon nucleophile to synthesize tetronic acid derivatives using CO2 in the presence of a silver catalyst (Scheme 1).

Scheme 1. Synthesis of Tetronic Acids Based on CO₂ Fixation into Ynones

Various organic bases were examined first, since enolate generation from the ynone would be crucial to capture the CO₂. Under 2.0 MPa pressure of CO₂, the ynone 1a was treated with organic bases in the presence of a catalytic amount of silver acetate in DCM (Table 1). When triethylamine or Nmethylimidazole (MeIm) was employed, no reaction occurred, and the vnone la was quantitatively recovered (entries 1 and 2). Using DMAP, the reaction proceeded slightly to afford the corresponding cyclic compounds in 19% yield (entry 3). Stronger bases were expected to generate the corresponding enolate to effectively capture the CO2. The use of 1,1,3,3tetramethylguanidine (TMG) resulted in a 37% yield (entry 4), whereas 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), DBU, and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) were found effective against the 5-exo-dig cyclization to afford tetronic acid 2a in 74%, 86%, and 90% yields, respectively (entries 5-7). On the other hand, when this reaction was carried out under a lower pressure of CO₂, the yield of the

Received: May 2, 2017

Table 1. Examination of Reaction Conditions

^{*a*}The reaction was carried out with 0.10 mmol of substrate. ^{*b*}Detected by ¹H NMR. ^{*c*}After quenching by 4 M solution of HCl in 1,4-dioxane, **1a** was converted to **4a**. The yield was estimated from the yield of **4a**. ^{*d*}Isolated yield. ^{*e*}N₂ (balloon) was used instead of CO₂. ^{*f*}The reaction time was 24 h.

desired product decreased, but no starting material was recovered. Even when this reaction was performed under a nitrogen atmosphere, no starting material was recovered (entry 8), but quantitative formation of a byproduct was observed. Based on the ¹H NMR, ¹³C NMR, and MS analyses, the byproduct was identified to be the corresponding 1,4-adduct of MTBD on the starting ynone (see Supporting Information). Therefore, in this reaction, it was assumed that a higher CO₂ pressure was required to selectively promote the CO₂ incorporation; thus, the reaction was carried out for 24 h under 2.0 MPa of CO₂ to afford the corresponding product **2a** in 92% yield (entry 9).

The optimized conditions were applied to various ynones (Table 2). Substituents on the alkyne termini (R^1) were first examined (entries 1-6). The substrates bearing phenyl (1a), otolyl (1b), *m*-tolyl (1c), and *p*-tolyl (1d) groups were converted to the corresponding tetronic acids (2a-d) in 92%, 88%, 74%, and 87% yield, respectively (entries 1-4). When the substrate bearing a p-methoxyphenyl group (1e) reacted, the desired product 2e was obtained quantitatively (entry 5). When the substrate bearing a p-benzonitrile group (1f) was employed, the corresponding product 2f was obtained in 62% yield (entry 6). These results suggested that an electron-withdrawing group on the aryl group of the alkyne termini caused a decrease in the nucleophilicity of the enolate, resulting in the lower yield. Various of substituents on the α -position of the carbonyl (R²) were next examined (entries 7-11). When substrates with no substituent (1g) or bearing an *n*-hexyl group (1h) were employed, the 5-exo-dig cyclization proceeded to afford the corresponding tetronic acids 2g and 2h in 95% and 97% yield, respectively (entries 7 and 8). On the other hand, when the

	R ¹ R	10 mol % AgOAc CO₂ (2.0 MPa) 4.0 equiv MTBD CH ₂ Cl ₂ (0.1 M) 25 °C 24 h	R¹	0 0 0 0 0 0 0 0	R ²
entry ^a	R ¹	R ²	1	2	yield 2 /% ^b
1	Ph	Ме	1a	2a	92
2 ^{<i>d</i>}	Me	Ме	1b	2b	88
3 ^d	Me	Ме	1c	2c	74
4 ^{<i>d</i>}	Me	Ме	1d	2d	87
5	MeO	Ме	1e	2e	>99
6 ^c	NC	Ме	1f	2f	62
7 ^d	Ph	Н	1g	2g	95
8 ^g	Ph کړ	Me	1h	2h	97
9 ^{e,h}	Ph	Me	1i	2 i	88 ⁱ
10 ^{e,f,g}	Ph	245 C	1j	2j	77 ^j
11 ^{c,e,h}	Ph	Ph	1k	2k	75

Table 2. Substrate Scope for Various Tetronic Acids

^aThe reaction was carried out using 0.10 mmol of substrate. ^bIsolated yield. ^cDBU was used instead of MTBD. ^d3.0 equiv of MTBD. ^eCH₃CN was used as solvent at 40 °C. ^f48 h. ^g20 mol% AgOAc. ^h20 mol% AgOTf. ⁱThe product was an 89:11 mixture of **2i** and **3i**. ^jThe product was an 85:15 mixture of **2k** and **3k**.

reactions of substrates bearing isopropyl (1i) and cyclohexyl (1j) groups were examined, 6-endo-dig cyclization occurred versus the 5-exo-dig cyclization to afford the tetronic acids 2 and the hydroxypyrones 3 in 88% (2i:3i = 89:11) and 77% (2j:3j = 85:15) yield, respectively (entries 9 and 10). These results suggested that a sterically demanding R^2 substituent tends to promote the 6-endo-dig cyclization (entries 7–10), though the precise reason is still unclear. The effect of the substituent on the aromatic groups R^2 was examined. The substrate bearing a phenyl group (1k) was converted to the corresponding tetronic acid 2k in 75% yield with a high regioselectivity (entry 11).

Next, using this protocol, we conducted the synthesis of aspulvinone E^{14} having various bioactivities (Scheme 2).¹⁵ The internal alkyne 11, which is a precursor for the CO₂ incorporation reaction, was prepared from the reaction of ethyl (4-methoxyphenyl)acetate with the lithium acetylide, generated from (4-methoxyphenyl)acetylene with *n*-BuLi. The silver-catalyzed intramolecular cyclization involving the CO₂

Scheme 2. Synthetic Application

fixation of **11** proceeded to afford the corresponding product **21** in 73% yield. Demethylation of **21** was performed based on the conditions of a previous report,^{14c} resulting in aspulvinone E in 98% isolated yield. Overall, the synthesis of aspulvinone E was achieved in three steps from commercially available materials. In one previous report,^{14c} the synthesis of aspulvinone E from pyruvic acid was achieved using a Dieckmann cyclization as a key step. However, multiple steps were required to synthesize the cyclization precursor (trifluoroethyl 2-cinnamate), and six steps were required to synthesize aspulvinone E. Therefore, our protocol can be regarded as noteworthy in terms of step-economy.

In conclusion, we have developed a highly efficient synthesis of tetronic acid derivatives through ynone enolate trapping carbon dioxide and silver-catalyzed *5-exo-dig* selective cyclization. This sequence allows a facile and versatile access to functionalized tetronic acid derivatives. Further application of this reaction to the synthesis of various tetronic acids is currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b01309.

Experimental procedures, analytical data for all new compounds, and NMR spectra for the products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: yamada@chem.keio.ac.jp. ORCID [©]

Tohru Yamada: 0000-0002-4177-5019 Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This paper is dedicated to Professor Emeritus Teruaki Mukaiyama of The University of Tokyo in celebration of his 90th birthday.

REFERENCES

(1) For selected reviews about tetronic acids, see: (a) Zografos, A. L.; Georgiadis, D. Synthesis 2006, 2006, 3157. (b) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16, 4203. (c) Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P. F.; Süssmuth, R. D. Nat. Prod. Rep. 2014, 31, 1554. (d) Georgiadis, D. In Natural Lactones and Lactams; Janecki, T., Ed.; Wiley: Weinheim, 2014; p 1.

(2) (a) Foden, F. R.; McCormick, J.; O'Mant, M. J. Med. Chem. 1975, 18, 199. (b) Rehse, K.; Wagenknecht, J.; Rietbrock, N. Arch. Pharm. (Weinheim, Ger.) 1978, 311, 986. (c) Ibi, A.; Taniguchi, E.; Maekawa, K. Agric. Biol. Chem. 1979, 43, 1641. (d) Davies, D. H.; Snape, E. W.; Suter, P. J.; King, T. J.; Falshaw, C. P. J. Chem. Soc., Chem. Commun. 1981, 1073. (e) Witiak, D. T.; Kokrady, S. S.; Patel, S. T.; Akbar, H.; Feller, D. R.; Newman, H. A. I. J. Med. Chem. 1982, 25, 90. (f) Rehse, K.; Emisch, U. Arch. Pharm. (Weinheim, Ger.) 1983, 316, 115. (g) Vanwagenen, B. C.; Cardellina, J. H., II Tetrahedron 1986, 42, 1117. (h) Booth, P. M.; Fox, C. M. J.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1987, 121. (i) Capon, R. J.; MacLeod, J. K. Aust. J. Chem. 1987, 40, 1327. (j) Matsumoto, M.; Kawamura, Y.; Yoshimura, Y.; Terui, Y.; Nakai, H.; Yoshida, T.; Shoji, J. J. Antibiot. 1990, 43, 739. (k) Luk, K.; Readshaw, S. A. J. Chem. Soc., Perkin Trans. 1 1991, 1641. (1) Kusumi, T.; Ichikawa, A.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 8947. (m) Ley, S. V.; Trudell, M. L.; Wadsworth, D. J. Tetrahedron 1991, 47, 8285. (n) Hata, G.; Kawai, H.; Kaneko, T.; Imaoka, T.; Kitano, Y.; Mutoh, M.; Imanishi, H. Chem. Lett. 1993, 22, 529. (o) Roggo, B. E.; Petersen, F.; Delmendo, R.; Jenny, H.-B.; Peter, H. H.; Roesel, J. J. Antibiot. 1994, 47, 136. (p) Sodeoka, M.; Sampe, R.; Kagamizono, T.; Osada, H. Tetrahedron Lett. 1996, 37, 8775. (q) Sodeoka, M.; Sampe, R.; Kojima, S.; Baba, Y.; Morisaki, N.; Hashimoto, Y. Chem. Pharm. Bull. 2001, 49, 206. (r) Bretschneider, T.; Benet-Buchholz, J.; Fischer, R.; Nauen, R. Chimia 2003, 57, 697. (s) Antane, S.; Caufield, C. E.; Hu, W.; Keeney, D.; Labthavikul, P.; Morris, K.; Naughton, S. M.; Petersen, P. J.; Rasmussen, B. A.; Singh, G.; Yang, Y. Bioorg. Med. Chem. Lett. 2006, 16, 176. (t) Peukert, S.; Sun, Y.; Zhang, R.; Hurley, B.; Sabio, M.; Shen, X.; Gray, C.; Dzink-Fox, J.; Tao, J.; Cebula, R.; Wattanasin, S. Bioorg. Med. Chem. Lett. 2008, 18, 1840. (u) Hu, Y.; Wang, J.; Lu, A.; Yang, C. Bioorg. Med. Chem. Lett. 2014, 24, 3772. (v) Murray, E. J.; Crowley, R. C.; Truman, A.; Clarke, S. R.; Cottam, J. A.; Jadhav, G. P.; Steele, V. R.; O'Shea, P.; Lindholm, C.; Cockayne, A.; Chhabra, S. R.; Chan, W. C.; Williams, P. J. Med. Chem. 2014, 57, 2813. (w) Zhang, P.; Li, X.-M.; Wang, J.-N.; Li, X.; Wang, B.-G. Phytochem. Lett. 2015, 11, 85. (x) Carneiro, V. M. T.; Trivella, D. B. B.; Scorsato, V.; Beraldo, V. L.; Dias, M. P.; Sobreira, T. J. P.; Aparicio, R.; Pilli, R. A. Eur. J. Med. Chem. 2015, 97, 42. (y) Zhang, L.-H.; Feng, B.-M.; Zhao, Y.-Q.; Sun, Y.; Liu, B.; Liu, F.; Chen, G.; Bai, J.; Hua, H.-M.; Wang, H.-F.; Pei, Y.-H. Bioorg. Med. Chem. Lett. 2016, 26, 346. (z) Igarashi, Y.; Matsuoka, N.; In, Y.; Kataura, T.; Tashiro, E.; Saiki, I.; Sudoh, Y.; Duangmal, K.; Thamchaipenet, A. Org. Lett. 2017, 19, 1406.

(3) (a) Willis, C.; Bodio, E.; Bourdreux, Y.; Billaud, C.; Gall, T. L.; Mioskowski, C. Tetrahedron Lett. 2007, 48, 6421. (b) Iikawa, S.; Chopin, N.; Pilet, G.; Bouillon, J.-P.; Médebielle, M. Tetrahedron Lett.
2013, 54, 4577. (c) Chopin, N.; Yanai, H.; Iikawa, S.; Pilet, G.; Bouillon, J.-P.; Médebielle, M. Eur. J. Org. Chem. 2015, 2015, 6259. (d) Manchoju, A.; Pansare, S. V. Org. Lett. 2016, 18, 5952.

(4) (a) Korovitch, A.; Le Roux, A.; Barbault, F.; Hémadi, M.; Ha-Duong, N.-T.; Lion, C.; Wagner, A.; Chahine, J.-M. E. H. *Inorg. Chim. Acta* **2013**, 394, 45. (b) Le Roux, A.; Meunier, S.; Le Gall, T.; Denis, J.-M.; Bischoff, P.; Wagner, A. *ChemMedChem* **2011**, 6, 561. (c) Yang, W.; Liu, J.; Zhang, H. *Tetrahedron Lett.* **2010**, 51, 4874. (d) Habrant, D.; Poigny, S.; Ségur-Derai, M.; Brunel, Y.; Heurtaux, B.; Le Gall, T.; Strehle, A.; Saladin, R.; Meunier, S.; Mioskowski, C.; Wagner, A. *J. Med. Chem.* **2009**, 52, 2454. (e) Pérez, M.; Pérez, D. I.; Martínez, A.; Castro, A.; Gómez, G.; Fall, Y. *Chem. Commun.* **2009**, 3252. (f) Mallinger, A.; Le Gall, T.; Mioskowski, C. *J. Org. Chem.* **2009**, 74, 1124. (g) Bourdreux, Y.; Bodio, E.; Willis, C.; Billaud, C.; Le Gall, T.; Mioskowski, C. *Tetrahedron* **2008**, 64, 8930.

(5) Yoshikawa, T.; Shindo, M. Org. Lett. 2009, 11, 5378.

Organic Letters

(6) For selected reviews about CO_2 fixation, see: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (b) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (c) Omae, I. Coord. Chem. Rev. 2012, 256, 1384. (d) Rintjema, J.; Kleij, A. W. Synthesis 2016, 48, 3863.

(7) For selected reports about the inhabitation of the decarboxylation, see: (a) Yoshida, Y.; Ishii, S.; Watanabe, M.; Yamashita, T. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 1534. (b) Tai, C.-C.; Huck, M. J.; McKoon, E. P.; Woo, T.; Jessop, P. G. J. Org. Chem. **2002**, *67*, 9070. (c) Flowers, B. J.; Gautreau-Service, R.; Jessop, P. G. Adv. Synth. Catal. **2008**, *350*, 2947. (d) Sakakura, T.; Kohno, K. Chem. Commun. **2009**, 1312. (e) Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem., Int. Ed. **2010**, *49*, 1309.

(8) For selected reviews about the intermolecular cyclization of an alkyne activated by a coinage metal, see: (a) Sekine, K.; Yamada, T. Chem. Soc. Rev. **2016**, 45, 4524. (b) Fang, G.; Bi, X. Chem. Soc. Rev. **2015**, 44, 8124. (c) Xu, B.; Wang, W.; Liu, L.-P.; Han, J.; Jin, Z.; Hammond, G. B. J. Organomet. Chem. **2011**, 696, 269. (d) Hashmi, A. S. K. In Silver in Organic Chemistry; Harmata, M., Ed.; Wiley: Weinheim, 2010; p 357. (e) Li, Y.; Li, W.; Zhang, J. Chem. - Eur. J. **2017**, 23, 467. (f) Dorel, R.; Echavarren, A. M. Chem. Rev. **2015**, 115, 9028. (g) Liao, Q.; Yang, X.; Xi, C. J. Org. Chem. **2014**, 79, 8507. (h) Asao, N. Synlett **2006**, 2006, 1645. (i) Sohel, S. M. A.; Liu, R.-S. Chem. Soc. Rev. **2009**, 38, 2269.

(9) For selected reports about CO₂ fixation based on alkyne activation by a transition metal, see: (a) Hase, S.; Kayaki, Y.; Ikariya, T. Organometallics **2013**, 32, 5285. (b) Laas, H.; Nissen, A.; Nürrenbach, A. Synthesis **1981**, 1981, 958. (c) Inoue, Y.; Ishikawa, J.; Taniguchi, M.; Hashimoto, H. Bull. Chem. Soc. Jpn. **1987**, 60, 1204. (d) Iritani, K.; Yanagihara, N.; Utimoto, K. J. Org. Chem. **1986**, 51, 5499. (e) Inoue, Y.; Ohuchi, K.; Imaizumi, S. Tetrahedron Lett. **1988**, 29, 5941. (f) Sasaki, Y. Tetrahedron Lett. **1986**, 27, 1573.

(10) (a) Yamada, W.; Sugawara, Y.; Cheng, H.-M.; Ikeno, T.; Yamada, T. Eur. J. Org. Chem. 2007, 2007, 2604. (b) Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902. (c) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc. 2010, 132, 4072. (d) Kikuchi, S.; Yoshida, S.; Sugawara, Y.; Yamada, W.; Cheng, H.-M.; Fukui, K.; Sekine, K.; Iwakura, I.; Ikeno, T.; Yamada, T. Bull. Chem. Soc. Jpn. 2011, 84, 698. (e) Ugajin, R.; Kikuchi, S.; Yamada, T. Synlett 2014, 25, 1178.

(11) (a) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. Chem. Lett. 2009, 38, 786. (b) Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013, 15, 848. (c) Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett. 2013, 15, 3710. (d) Ishida, T.; Kobayashi, R.; Yamada, T. Org. Lett. 2014, 16, 2430.

(12) (a) Kikuchi, S.; Sekine, K.; Ishida, T.; Yamada, T. *Angew. Chem., Int. Ed.* **2012**, *51*, 6989. (b) Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. *Chem. Commun.* **2013**, *49*, 11320.

(13) Sekine, K.; Sadamitsu, Y.; Yamada, Y. Org. Lett. 2015, 17, 5706.
(14) For selected reports about the synthesis of aspulvinone E, see:
(a) Gill, M.; Kiefel, M. J.; Lally, D. A.; Ten, A. Aust. J. Chem. 1990, 43, 1497.
(b) Bernier, D.; Moser, F.; Brückner, R. Synthesis 2007, 2007, 2240.
(c) Bernier, D.; Brückner, R. Synthesis 2007, 2007, 2249.

(15) (a) Cruz, P. G.; Auld, D. S.; Schultz, P. J.; Lovell, S.; Battaile, K. P.; MacArthur, R.; Shen, M.; Tamayo-Castillo, G.; Inglese, J.; Sherman, D. H. Chem. Biol. 2011, 18, 1442. (b) Nagia, M. M. S.; El-Metwally, M. M.; Shaaban, M.; El-Zalabani, S. M.; Hanna, A. G. Org. Med. Chem. Lett. 2012, 2, 9. (c) Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Bioorg. Med. Chem. Lett. 2013, 23, 1776. (d) Dewi, R. T.; Tachibana, S.; Fajriah, S.; Hanafi, M. Med. Chem. Res. 2015, 24, 737. (e) Geib, E.; Gressler, M.; Viediernikova, I.; Hillmann, F.; Jacobsen, I. D.; Nietzsche, S.; Hertweck, C.; Brock, M. Cell Chem. Biol. 2016, 23, 587.