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Abstract: The previously developed D-glucose derivative, i.e.,
methyl 6-deoxy-2,3-di-O-(tert-butyldimethylsilyl)-a-D-glucopyra-
noside, served as a significant stereocontrolling element for the
diastereoselective alkylation of the a-carbon in its acetoacetate at
C-4 with two types of alkyl halides. The thus obtained doubly
alkylated acetoacetate moiety bearing both methyl and allyl groups
was efficiently converted into functionalized cycloalk-2-en-1-one
derivatives by means of an intramolecular aldol strategy. Further-
more, the synthetic utility of the cycloalkenones was exemplified
through the 1,4-addition to the thus obtained cyclopentenone
derivative.

Key words: D-glucose derivatives, chiral auxiliary, double alkyla-
tion, asymmetric quaternization, intramolecular aldol reactions

In relation to the development of stereoselective carbon–
carbon bond-forming reactions realized in a chiral en-
vironment, we have been using sugar-based templates as
effective chiral auxiliaries.1 As a result, we have found
that a D-glucose derivative, i.e., methyl 6-deoxy-2,3-di-O-
(tert-butyldimethylsilyl)-a-D-glucopyranoside (1),2 pre-
pared from methyl a-D-glucopyranoside in six steps,
served as an effective chiral template for a variety of
carbon–carbon bond-forming reactions by using its 4-O-
propionyl ester (2),3 4-O-acryloyl ester (3),4 and 4-O-crot-
onyl ester (4)2,3a (Figure 1).

One of the highlights in current organic synthesis is the
development of the enantioselective construction of an
all-carbon asymmetric quaternary carbon center. For this
subject, the asymmetric induction of a quaternary carbon

has been extensively investigated by the use of a transi-
tion-metal catalyst,5 an organocatalyst6 or chiral auxilia-
ries.7

We are interested in the use of the D-glucose-derived
chiral template 1 for the stereoselective construction of an
asymmetric quaternary carbon. We herein report the high-
ly stereoselective quaternization of the a-carbon in the 4-
O-acetoacetyl derivative of 1 by a double C-alkylation
strategy and the utilization of the resulting differentially
a-dialkylated acetoacetate for the synthesis of two cyclo-
alk-2-en-1-ones, both incorporating an asymmetric qua-
ternary carbon, connecting with 1. The starting 4-
acetoacetate 58 was prepared by the acylation of 1 with
2,2,6-trimethyl-1,3-dioxin-4-one in refluxing o-xylene
(Scheme 1). The acetoacetate 5 exists as a 3:1 mixture of
1,3-diketo and keto–enol forms. The C-methylation at the
a-carbon of this mixture 5 occurred by using K2CO3 as a
base with methyl iodide at 40 °C. The C-methylated prod-
uct 6 exists as a 5:2:2 mixture of three tautomeric forms,
as detected on the basis of 1H NMR analysis. We did not
characterize each form in this mixture but, rather, used the
second alkylation directly. We explored the second alky-
lation with benzyl bromide as an electrophile. After the
examination of several bases, we found that sodium meth-
oxide was the most effective base for this reaction.9 As a
result, the benzylated product 7 was obtained as a single
diastereomer (based on 1H NMR analysis) in 75% yield.
We recognized that the order of this sequential alkylation
is essential for the observed high diastereoselectivity.
When the two alkylations were carried out in the order of
benzylation and methylation, the diastereomeric ratio for
the doubly alkylated product 7 was significantly changed,
with a decrease in the formation of 7.10 The absolute ste-
reochemistry of the newly introduced stereogenic carbon
in 7, i.e., the R-configuration as depicted, was established
by the following experiment. Treatment of 7 with hydra-
zine hydrate in EtOH at 140 °C provided a known pyrazo-
line derivative 811 in 88% yield.12 The sugar template 1
was also recovered in 87% yield. We then explored the al-
lylation of 6 for the second alkylation. The allylation pro-
ceeded with complete diastereoselectivity by using allyl
bromide as an electrophile, providing 9 in 80% yield as a
single diastereomer. The configuration of the new quater-
nary carbon in 9 was confirmed to be R, as depicted, on
the basis of converting 9 into a pyrazoline derivative 10 by
treatment of 9 with hydrazine hydrate as in the case of 7.13

Figure 1 Previously used substrates for stereoselective carbon–
carbon bond-forming reactions
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We had experienced analogous high diastereoselectivi-
ties, which were realized using the 4-O-acyl substrates 2–
4 for a variety of carbon–carbon bond-forming reactions.
We had also explained that these stereoselectivities were
effectively brought by the existence of a bulky OTBS
group installed at C-3 of 2–4, which disturbs the approach
of reactive species to the reaction site installed at C-4 from
the front side, i.e., the side shielded by the OTBS group.
In the present case, base-mediated deprotonation from 6 is
likely to result in the exclusive formation of Z-enolate, as
shown in Scheme 2.3 In this transition state, the 3-O-TBS
group hinders the approach of the electrophile from the
front side. Consequently, the alkyl halides predominantly
approached from the rear side of the enolate as depicted.
Although we could not determine the geometry of the in-
termediary enolate by spectroscopic means, the aforemen-
tioned argument is most likely to explain the observed
diastereoselectivity in the second alkylation step.

Scheme 1 Asymmetric quaternization of the a-carbon of acetoace-
tate 5. Reagents and conditions: (a) 2,2,6-trimethyl-1,3-dioxin-4-one,
o-xylene, reflux, 93%; (b) MeI, K2CO3, acetone, 40 °C, quantitative-
ly; (c) for 7: BnBr, MeONa, THF, –78 °C to r.t., 75%; for 9: allyl
bromide, MeONa, THF, 80%; (d) N2H4·H2O, EtOH, 140 °C (sealed
tube); 88% for 8 (87% for 1); quantitative yield for 10 (60% for 1).

We next investigated the synthetic utility of the differen-
tially a-disubstituted acetoacetate moiety in 9 as an enan-
tiopure building block. As one example for this aim, we
explored the transformation of 9 into a differentially 5,5-
disubstituted cyclopent-2-en-1-one 12 (Scheme 3). Ozo-
nolysis of the double bond in 9 followed by work-up with
PPh3 provided aldehyde 11, which was subjected to a
DBU-mediated intramolecular aldol condensation. The
desired cyclopentenone 1214 was obtained in 65% yield
over two steps. Then, the DIBAL-H reduction of 12 was
carried out at –78 °C, producing allylic alcohol 13 with a

>20:1 diastereomeric ratio. The newly introduced stereo-
genic center at the allylic position was established after
removal of the sugar template from 13. The hydride re-
duction of 13 using excess DIBAL-H eventually removed
the sugar template, providing a 2-cyclopentenol deriva-
tive 1415,16 in a virtually enantiopure form, and the sugar
template 1 was recovered.17

Scheme 3  Synthesis of a cyclopent-2-en-1-one derivative 12 and
removal of the sugar template. Reagents and conditions: (a) O3 (3%
O3 in O2), CH2Cl2, –78 °C, then PPh3, 95%; (b) DBU, DMF, 50 °C,
69%:(c) DIBAL-H, CH2Cl2, –78 °C, 79%, dr > 20:1; (d) DIBAL-H
(3 equiv, then 2 equiv), CH2Cl2, –78 °C to 0 °C, 61% for 14 and 59%
for 1 (recovery of 13, 20%).

We also explored the synthesis of the cyclohexenone ho-
mologue of 12, i.e. compound 18. This task was accom-
plished uneventfully by the analogous intramolecular
aldol condensation strategy used for the synthesis of 12
(Scheme 4). The Wittig carbon-elongation reaction of al-
dehyde 11 with the ylide prepared from Ph3PCH2OCH3Cl
provided an E/Z-mixture of methyl vinyl ether 15. Acid
hydrolysis of this mixture 15 afforded the one-carbon-
elongated aldehyde 16. When 16 was treated with DBU in
toluene at room temperature, the expected intramolecular
aldol reaction proceeded smoothly to afford the b-hydrox-
ylated cyclohexanone 17. Acetylation of 17 followed by
treatment of the resulting acetate with triethylamine
provided 18 in 74% from 16. 1,2-Hydride reduction of the
cyclohexenone 18 under Luche conditions18 provided
allylic alcohol 1919 virtually as a single product.20 Treat-
ment of 19 with excess DIBAL-H (two additions of a 5.0
equiv of DIBAL-H at –18 °C) resulted in the removal of
the sugar template, providing cyclohexenol bearing an
asymmetric quaternary carbon center 2021 in 83% yield.22

To demonstrate the synthetic utility of the enantiopure
cycloalkenones 12 and 18, we explored the diastereo-
selectivity in the 1,4-additions of carbon nucleophiles to
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12 and 18 (Scheme 5). In the case of the cyclopentenone
derivative 12, Me2CuLi as a carbon nucleophile attacked
in a 1,4-addition fashion with remarkable diastereoselec-
tivity, providing 21 as a single adduct. The configuration
at newly introduced b-carbon in 21 was confirmed to be
depicted by 1H NMR analysis, including a NOE experi-
ment, which revealed that two methyl groups on the cy-
clopentanone 21 are in a cis relationship.23 To evaluate the
role of the sugar template for effecting the stereoselectiv-
ity in the 1,4-addition to 12, we explored the 1,4-addition
of racemic 5-carboethoxy-5-methyl-2-cyclopenten-1-one
(racemic 22). The racemic 22 was prepared according to a
previous report.24 The 1,4-addition of a methyl nucleo-
phile to the racemic 22 under the same conditions used for
12 quantitatively provided the 1,4-adduct, racemic 23, as
an approximately 1:1 diastereomeric mixture. These re-
sults suggested the remarkable role of the sugar template
part in 12 as a stereocontrolling element for the exclusive
diastereoselectivity observed in the 1,4-addition of carbon
nucleophiles to 12. Although we cannot propose a distinct
transition-state model to account for these high stereose-
lectivities, further utilization of 12, such as the elaboration
of the enone part, is to be expected. On the other hand, the
1,4-addition of two alkylcuprates (R = Me or i-Pr) to the
cyclohexenone derivative 18 provided the corresponding
1,4-adducts 24. In contrast to the case of 12, the diastereo-
selectivities observed in 24 were low to modest [R = Me,

dr = 1.6:1 on the basis of the 1H NMR analysis of the in-
separable mixture (82% combined yield); R = i-Pr, dr =
5.3:1 (48% combined yield); the configurations of the
newly created stereogenic centers for these adducts were
not determined]. Therefore, the superiority of 12 to 18 as
the substrate for the 1,4-addition of carbon nucleophiles is
obvious.

In conclusion, we have demonstrated the highly stereose-
lective quaternization of the a-carbon of acetoacetate ester
installed at C-4 of the sugar template 1. One of the doubly
alkylated products (9) thus obtained serves as a versatile
building block. For example, compound 9 was trans-
formed into cycloalk-2-en-1-ones 12 and 18, both bearing
a methyl and an alkoxycarbonyl group at C-5 and C-6, re-
spectively, by means of an intramolecular aldol strategy.
The synthetic utility of 12 was enhanced by the highly
stereoselective 1,4-addition of carbon nucleophiles to 12.
The further synthetic utilization of 12 and 18 for stereo-
selective carbon–carbon bond-forming reactions is our
current concern.
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