

Nitration

Pd^{II}-Catalyzed Purine-Directed Ortho Nitration of 6-Arylpurines by C(sp²)–H Activation: A Practical Approach to Synthesize 6-(2-Nitroaryl)-Purine Derivatives

Quan Gou,^[b] Wenxi Li,^{[c][‡]} Qingsheng Zhao,^{[a][‡]} Jia Xie,^[a] Ping Luo,^[a] Guang Cao,^[a] Suiyun Chen,^{*[b]} and Jun Qin^{*[a]}

Abstract: Herein we report a method for Pd^{II} -catalyzed purinedirected *ortho* nitration of 6-arylpurines via $C(sp^2)$ –H activation by using *t*BuONO/O₂ as nitration agent. This procedure is highly efficient and produces a range of 6-(2-nitroaryl)-purine derivatives with good chemoselectivity and functional-group tolerance. The utility of the method is further illustrated in the synthesis of antibacterial agent.

Introduction

Aromatic nitro compounds are widespread in the field of material and pharmaceutical science.^[1] They are important synthetic precursors for other useful functional groups.^[2] The classical electrophilic aromatic nitration to prepare aromatic nitro compounds uses corrosive nitric acid as nitration agent and suffers from poor chemoselectivity and functional-group tolerance.^[3] Direct C(sp²)–H bond activation/nitration have become attractive synthetic solution to this problem and many excellent examples have been reported in the literature.^[4]

The purine skeleton, which is an inherent scaffold of RNA and DNA, has received much attention of scientists due to its importance in biochemistry and pharmaceutical industry.^[5] Particularly, the arylpurine derivatives have exhibited broad biological activities as antiviral (Hepatitis C), anticancer, and antimycobacterial agents (Scheme 1).^[6] Due to their biological significance and applications, chemists have developed synthetic methods to functionalize arylpurines. An important method is the metal-catalyzed C(sp²)–H activation/functionalization because it simplifies the overall synthetic procedure.^[7] Functionalization of arylpurines by C(sp²)–H acetoxylation, acylation, allylation, arylation, cyanation, halogenation, trifluoromethylthiolation, olefination, and amination have been reported recently.^[8]

[a]	Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University,
	Kunming 650091, P. R. China
	E-mail: ginjun@ynu.edu.cn
[b]	School of Life Science, Yunnan University,
	Kunming 650091, P. R. China
	E-mail: chensuiyun@ynu.edu.cn
	www.ynu.edu.cn
[c]	Institute of Agricultural Environment and Resource,
	Yunnan Academy of Agricultural Science,
	Kunming 650205, P. R. China
[‡]	These authors contributed equally to this work.
	Comparison information and ODCID(a) forms the mother w(a) for this anti-

Supporting information and ORCID(s) from the author(s) for this article are

available on the WWW under https://doi.org/10.1002/ejoc.201800567.

Nevertheless, *ortho* nitration of 6-arylpurines by $C(sp^2)$ –H activation has never been disclosed. Herein, we report a method of Pd^{II}-catalyzed purine-directed *ortho* nitration of 6-arylpurines by $C(sp^2)$ –H activation. This method is operated under mild conditions by using *t*BuONO/O₂ as nitration source. It is highly efficient and produces a variety of 6-(2-nitroaryl)-purine derivatives with good chemoselectivity and functional group tolerance.

protein kinase inhibitor

Alzheimer's disease drug candidate *Merck*

P-38 kinase inhibitor

Scheme 1. Purine-based bioactive molecules.

Results and Discussion

In a program directed to develop new C–H activation reactions,^[9] we have become interested in investigating of *ortho* nitration of 6-arylpurines by using purine as intrinsic directing group. If successful, this transformation could produce a variety of 6-(2-nitroaryl)-purine derivatives in a straightforward manner. Our study was commenced with nitration of 9-benzyl-6-phenyl-

9H-purine 1a as the model reaction (Table 1). Treatment of 1a with NaNO₂ in the presence of Cu(OAc)₂ under air did not afford the desired mono-nitrated product 2a (Table 1, entry 1). With $Pd(OAc)_2$ as catalyst, the reaction with either AqNO₂ or NaNO₂ as nitration agent in the presence of K₂S₂O₈ did not produce any amount of 2a (Table 1, entries 2-4). However, when tBuONO was used as nitration agent under O₂, the reaction provided 2a in 30 % yield (Table 1, entry 5). Solvent effects were then screened (Table 1, entries 6-11). It was found that benzotrifluoride was the best solvent, affording 2a in 90 % yield along with 5 % of the di-nitrated product **3a** (Table 1, entry 9). Other solvents such as DCE, MeCN, anisole, PhCl or o-dichlorobenzene were inferior to benzotrifluoride. Afterwards, we investigated the effects of base additives on the reaction efficiency. It was shown that bases such as Na₂CO₃, K₂CO₃, KOAc or Cs₂CO₃ were detrimental to the reaction (Table 1, entries 12-15). After that, we screened different palladium catalysts (Table 1, entries 16-18). We found that Pd(OAc)₂ remained to be the best catalyst. Ultimately, the optimal reaction conditions were Pd(OAc)₂ (10 mol-%), tBuONO (2.0 equiv.) under 1 atm O₂ in benzotrifluoride (0.1 M) at 110 °C. It was worth to note that the reaction conditions were highly chemoselective in that the nitration on 1a occurred exclusively on ortho position of phenyl group without formation of C-2 or C-8 nitrated product.

With the optimal reaction conditions in hands, we investigated the scope of 6-arylpurines (Table 2). To our delight, nitra-

Bn

tBuONO/O2

3

Table 1. Optimization of reaction conditions.^[a]

18

tions of substrates with either electron-donating or electronwithdrawing ortho-substituted phenyl groups proceeded smoothly to furnish the desired products in good yields (Table 2, 2ba-2ca). In addition, para-substituted 6-arylpurines bearing either electron-deficient groups like F, Cl, Br, CO₂Me, OCF₃, or electron-rich groups such as tBu, MeO, Me, and TMS also performed well under the reaction conditions, affording the corresponding products in good to excellent yields (Table 2, 2da-2ha, 2ia-2la). Moreover, substrates with either electronwithdrawing or electron-donating meta-substitutions also afforded the nitration products without incident under the reaction conditions (Table 2, 2ma-2pa). The sterically hindered substrates were also tolerated to afford the product in good yield (Table 2, 2ga-2ra). It is worth to note that the reaction conditions tolerated useful functional groups such as Br and CO₂Me that could be utilized as handles for further transformations.

Afterwards, we examined the effect of N9-substitutions of 6phenylpurines on the nitration (Table 3). Nitrations of substrates bearing N9-alkyl substitutions such as methyl, butyl and isopropyl groups were well tolerated to give the products in moderate to good yields (Table 3, 2sa-ua). In addition, the nitration of substrates that contained either aryl or benzyl group as N9substitution proceeded smoothly in moderate to good yields (Table 3, 2va-wa). It is worth to note that the benzyl group of the product 2wa could be removed to release the free nitrogen atom for further derivatizations. Purine nucleosides are a class

Bn

	$H \xrightarrow{2} N \xrightarrow{4} N^9$ $1 N \xrightarrow{5} N$ $R \xrightarrow{1} N \xrightarrow{5} N$ $R \xrightarrow{1} N \xrightarrow{5} N$ $R \xrightarrow{1} N $					
		1a	2aa 3aa			
Entry	Catalyst	Nitro source	Solvent	Yield ^[b]		
				2aa/3aa		
1 ^[c]	Cu(OAc) ₂	NaNO ₂	MeOH	0:0		
2 ^[d]	Pd(OAc) ₂	AgNO ₂ /K ₂ S ₂ O ₈	dichloroethane	0:0		
3 ^[d]	Pd(OAc) ₂	AgNO ₂ /K ₂ S ₂ O ₈	toluene	0:0		
4 ^[e]	Pd(OAc) ₂	NaNO ₂ /K ₂ S ₂ O ₈	toluene	0:0		
5	Pd(OAc) ₂	tBuONO/O ₂	toluene	30:0		
6	Pd(OAc) ₂	tBuONO/O ₂	dichloroethane	41:15		
7	Pd(OAc) ₂	tBuONO/O ₂	MeCN	0:0		
8	Pd(OAc) ₂	tBuONO/O ₂	anisole	0:0		
9	Pd(OAc) ₂	tBuONO/O ₂	benzotrifluoride	90:5 ^[f]		
10	Pd(OAc) ₂	tBuONO/O ₂	PhCl	78:21		
11	Pd(OAc) ₂	tBuONO/O ₂	o-dichlorobenzene	0:0		
12 ^[g]	Pd(OAc) ₂	tBuONO/O ₂	benzotrifluoride	10:0		
13 ^[h]	Pd(OAc) ₂	tBuONO/O ₂	benzotrifluoride	15:0		
14 ^[i]	Pd(OAc) ₂	tBuONO/O ₂	benzotrifluoride	0:0		
15 ^[j]	Pd(OAc) ₂	tBuONO/O ₂	benzotrifluoride	0:0		
16	PdCl ₂	tBuONO/O ₂	benzotrifluoride	6:0		
17	Pd(MeCN) ₂ Cl ₂	tBuONO/O ₂	benzotrifluoride	75:12		

Bn

[a] General procedure: 1a (0.20 mmol), nitro source (0.40 mmol), and catalyst (10 mol-%) in solvent (2.0 mL) at 110 °C for 12-24 h with TLC control. [b] Determined by analysis of crude mixture with CH₂Br₂ as internal standard by ¹H NMR spectroscopy (400 MHz). [c] Cu(OAc)₂: 3.0 equiv., NaNO₂: 2.0 equiv., 2.0 equiv. of K2HPO4 was added. [d] AgNO2: 2.0 equiv., K2S2O8: 2.0 equiv. [e] NaNO2: 2.0 equiv., K2S2O8: 2.0 equiv. [f] Isolated yield. [g] 2.0 equiv. of Na2CO3 was added. [h] 2.0 equiv. of K2CO3 was added. [i] 2.0 equiv. of KOAc was added. [j] 2.0 equiv. of Cs2CO3 was added.

benzotrifluoride

Pd(PPh₃)₂Cl₂

45:10

Table 2. Substrate scope of 9-benzyl-6-arylpurines.^[a,b]

[a] Reaction conditions: **1** (0.20 mmol), tBuONO (0.40 mmol), and Pd(OAc)₂ (10 mol-%) under 1 atm O₂ in benzotrifluoride (2.0 mL) at 110 °C for 12–24 h with TLC control. [b] Isolated yield.

of important structures that have demonstrated important biological activity as anti-HIV/HBV agents.^[10] We examined the nitration of purine nucleoside substrate **1x** under the reaction conditions. We were pleased to find that the reaction afforded the nitration product **2xa** in 80 % yield.

Table 3. Substrate scope of N9-substituted 6-phenylpurines.^[a,b]

[a] Reaction conditions: **1** (0.20 mmol), tBuONO (0.40 mmol), and Pd(OAc)₂ (10 mol-%) under 1 atm O₂ in benzotrifluoride (2.0 mL) at 110 °C for 12–24 h with TLC control. [b] Isolated yield.

The utility of the method was successfully demonstrated in the synthesis of antibacterial agent **5xa** as shown in Scheme 2.^[11] Under the reaction conditions, nitration of **1x** was performed on a gram scale to give **2xa** in 75 % yield. Then, an additional nitro group was introduced at C2 position by treatment of **2xa** with TBAN/TFAA (TBAN = *tetra*-butylammonium nitrate) to provide **3xa** in 70 % yield. Afterwards, the C-2 nitro group of **3xa** was selectively replaced by 3-amino-1-propanol to deliver **4xa**, which was finally transformed into **5xa** by a two-step sequence including hydrogenative reduction and deglycosylation in 55 % overall yield.

To gain insights into the reaction mechanism, a series of control experiments was performed (Scheme 3). The nitration of **1a** was completely inhibited in the presence of radical scavengers, such as BHT or TEMPO, implying that a radical process might be involved for the reaction (Scheme 3, **a**). The kinetic isotope experiments (parallel intermolecular KIE = 2.25, see the Supporting Information) indicated that the cleavage of the

Scheme 2. Synthesis of antibacterial agent 5xa.

C(sp²)–H bond of the substrate occurred as the rate-limiting step (Scheme 3, **b**).^[12] The purine N1 and N7 atom of **1a** were involved in the reaction presumably as chelating group, because substrate **1y** or **1z**, which had either N1 or N7 absent compared to **1a**, afforded the nitration product **2ya** and **2za** in much lower yield under the reaction condition (36 % and 67 % respectively) (Scheme 3, **c**). Based on the limited data available, a radical pathway involving Pd^{II}/Pd^{IV} catalysis was tentatively proposed as shown in Scheme 4.^[4j–4I] In the first step, either the N1 or the N7 atom of substrate **1** coordinate to Pd^{II} followed by cleavage of the C(sp²)–H bond to either form the six-membered or the five-membered cyclopalladated complex **A-1** or **A-2**. Then, an oxidative addition of **A-1** and **A-2** with 'NO₂ generated by *t*BuONO/O₂ produced an Pd^{III} intermediate, which was further oxidized by O₂ to give the Pd^{IV} intermediates **B-1** or **B**- **2**. Finally, a reductive elimination of **B-1** or **B-2** afforded **2** along with regeneration of the Pd^{II} for the next catalytic cycle.

(a) radical experiments

1-	standard condition	2
Ia	TEMPO (2.0 equiv)	zaa
	or BHT (2.0 equiv)	

(b) parallel intermolecular kinetic isotope experiments

(c) control experiments

Scheme 3. Control experiments.

Scheme 4. Proposed reaction mechanism.

Conclusion

In conclusion, we have developed an efficient protocol for the *ortho* nitration of 6-arylpurines by Pd^{II} -catalyzed $C(sp^2)$ -H activation using purine as an intrinsic directing group. This approach is operated under mild conditions and uses $tBuONO/O_2$ as nitration agent. It shows good chemoselectivity and functional-group tolerance and produces a variety of 6-(2-nitroaryI)-purine derivatives, which are useful scaffolds in medicinal chemistry. The utility of the method is further illustrated in the synthesis of an antibacterial agent. Further investigation of the detailed reaction mechanism and expanding the reaction scope is currently in progress.

Experimental Section

A 15 mL Schlenk tube was charged with **1** (0.20 mmol), tBuONO (2.0 equiv.), and Pd(OAc)₂ (10 mol-%) in benzotrifluoride (0.1 μ). The Schlenk tube was purged with oxygen and then tightly capped. The mixture was vigorously stirred at 110 °C and the progress of this reaction was monitored by TLC. Upon completion of the reaction, the mixture was filtered through a short pad of Celite. The filtrate was concentrated in vacuo to give a residue, which was purified by flash chromatography to furnish the title compounds **2**.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgments

We gratefully acknowledge financial support from Program of High-End Science and Technology Talents of Yunnan Province (2012HA003), Postdoctoral Science Foundation of China, Program of Hundred Oversea High-Level Talents of Yunnan Province (W8110305), Yunnan University (XT412003), and Program for Changjiang Scholars and Innovation Research Team in University (IRT13095).

Keywords: Palladium · Nitration · Nitrogen heterocycles · *tert*-Butyl nitrite · Radical reactions

- N. Ono, The Nitro Group in Organic Synthesis Wiley-VCH, Weinheim, 2001.
- [2] a) J. Zhang, J. Chen, M. Liu, X. Zheng, J. Ding, H. Wu, Green Chem. 2012, 14, 912; b) S. S. Bahekar, A. P. Sarkate, V. M. Wadhai, P. S. Wakte, D. B. Shinde, Catal. Commun. 2013, 41, 123; c) F. Zhou, D.-S. Wang, X. Guan, T. G. Driver, Angew. Chem. Int. Ed. 2017, 56, 4530; Angew. Chem. 2017, 129, 4601; d) F. Inoue, M. Kashihara, M. R. Yadav, Y. Nakao, Angew. Chem. Int. Ed. 2017, 56, 13307; Angew. Chem. 2017, 129, 13492; e) Y. Yang, Angew. Chem. Int. Ed. 2017, 56, 15802; Angew. Chem. 2017, 129, 16010.
- [3] G. A. Olah, R. Malhotra, S. C. Narang, Nitration Methods and Mechanisms, VCH: New York, 1989.
- [4] For recent two examples on cobalt-catalyzed, see: a) C. J. Whiteoak, O. Planas, A. Company, X. Ribas, Adv. Synth. Catal. 2016, 358, 1679; b) P. Sadhu, S. K. Alla, T. Punniyamurthy, J. Org. Chem. 2015, 80, 8245; For recent several examples on copper-catalyzed, see: c) L. Zhang, Z. Liu, H. Li, G. Fang, B.-D. Barry, T. A. Belay, X. Bi, Q. Liu, Org. Lett. 2011, 13, 6536; d) D. Katayev, K. F. Pfister, T. Wendling, L. J. Gooßen, Chem. Eur. J. 2014, 20, 9902; e) J. Liu, S. Zhuang, Q. Gui, X. Chen, Z. Yang, Z. Tan, Adv. Synth. Catal. 2015, 357, 732; f) A. Bose, P. Mal, Chem. Commun. 2017, 53, 11368;

For a recent example on rhodium-catalyzed, see: g) F. Xie, Z. Qi, X. Li, *Angew. Chem. Int. Ed.* 2013, *52*, 11862; *Angew. Chem.* 2013, *125*, 12078;
For a recent example on ruthenium-catalyzed, see: h) Z. Fan, J. Ni, A. Zhang, J. Am. Chem. Soc. 2016, *138*, 8470; For several recent examples on palladium-catalyzed, see: i) Y.-K. Liu, S.-J. Lou, D.-Q. Xu, Z.-Y. Xu, Chem. Eur. J. 2010, *16*, 13590; j) G. G. Pawar, A. Brahmanandan, M. Kapur, Org. Lett. 2016, *18*, 448; k) B. Majhi, D. Kundu, S. Ahammed, B. C. Ranu, Chem. Eur. J. 2014, *20*, 9862; l) Y.-F. Liang, X. Li, X. Wang, Y. Yan, P. Feng, N. Jiao, ACS Catal. 2015, *5*, 1956; m) W. Zhang, S. Ren, J. Zhang, Y. Liu, J. Org. Chem. 2015, *80*, 5973; For a recent example on iron-catalyzed, see: n) Y. He, N. Zhao, L. Qiu, X. Zhang, X. Fan, Org. Lett. 2016, *18*, 6054.

- [5] a) D. M. Huryn, M. Okabe, *Chem. Rev.* **1992**, *92*, 1745; b) S. Knapp, *Chem. Rev.* **1995**, *95*, 1859; c) L. A. Agrofoglio, I. Gillaizeau, Y. Saito, *Chem. Rev.* **2003**, *103*, 1875; d) M. Legraverend, D. S. Grierson, *Bioorg. Med. Chem.* **2006**, *14*, 3987; e) L. R. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, *Nat. Rev. Drug Discovery* **2013**, *12*, 447.
- [6] a) M. Hocek, A. Holy, I. Votruba, H. Dvorakova, J. Med. Chem. 2000, 43, 1817; b) L. L. Gundersen, J. Nissen-Meyer, F. Rise, B. Spilsberg, J. Med. Chem. 2002, 45, 1383; c) M. Hocek, P. Naus, R. Pohl, I. Votruba, P. A. Furman, P. M. Tharnish, M. J. Otto, J. Med. Chem. 2005, 48, 5869; d) A. K. Bakkestuen, L. L. Gundersen, B. T. Utenova, J. Med. Chem. 2005, 48, 2710; e) S. A. Laufer, D. M. Domeyer, T. R. F. Scior, W. Albrecht, D. R. J. Hauser, J. Med. Chem. 2005, 48, 710; f) D. Qing, J.-Q. Wang, WO 2005063766, 2005; g) D. M. Xiao, J. J. Li, Y. Zhu, Y. D. Hu, H. T. Wang, Z. Wang, Z. P. Wang, Y. H. Wei, Y. H. Sun, Q. Wu, H. Zhang, Y. Peng, F. S. Sun, Y. Sun, H. Luo, Y. X. Han, CN 103102349, 2011; h) A. Rivkin, S. P. Ahearn, S. M. Chichetti, C. L. Hamblett, Y. Garcia, M. Martinez, B. Munoz, WO 2010019392, 2010; i) A. Rivkin, S. P. Ahearn, S. M. Chichetti, C. L. Hamblett, Y. Garcia, M. Martinez, J. L. Hubbs, M. H. Reutershan, M. H. Daniels, P. Siliphaivanh, K. M. Otta, C. Li, A. Rosenau, L. M. Surdi, J. Jung, B. L. Hughes, J. L. Crispino, G. N. Nikov, R. E. Middleton, C. M. Moxham, A. A. Szewczak, S. Shah, L. Y. Moy, C. M. Kenific, F. Tanga, J. C. Cruz, P. Andrade, M. H. Angagaw, N. H. Shomer, T. Miller, B. Munoz, M. S. Shearman, Bioorg. Med. Chem. Lett. 2010, 20, 2279.
- [7] For selected reviews on transition metal-catalyzed C–H functionalization:
 a) L. Ackermann, *Chem. Rev.* 2011, *111*, 1315; b) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, *Chem. Soc. Rev.* 2011, *40*, 5068; c) B.-J. Li, Z.-J. Shi, *Chem. Soc. Rev.* 2012, *41*, 5588; d) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, *Chem. Rev.* 2017, *117*, 8754; e) Y. Yang, J. Lan, J. You, *Chem. Rev.* 2017, *117*, 8787.
- [8] For a recent example on the acetoxylation of arylpurines, see: a) H.-M. Guo, W.-H. Rao, H.-Y. Niu, L.-L. Jiang, G. Meng, J.-J. Jin, X.-N. Yang, G.-R. Qu, Chem. Commun. 2011, 47, 5608; For a recent example on the acylation of arylpurines, see: b) Y.-F. Liang, X.-Y. Wang, C.-H. Tang, T. Shen, J.-Z. Liu, N. Jiao, Chem. Commun. 2016, 52, 1416; For a recent example on the allylation of arylpurines, see: c) Y. Bunno, N. Murakami, Y. Suzuki, M. Kanai, T. Yoshino, S. Matsunaga, Ora. Lett. 2016, 18, 2216; For recent examples on the arylation of arylpurines, see: d) H.-M. Guo, L.-L. Jiang, H.-Y. Niu, W.-H. Rao, L. Liang, R.-Z. Mao, D.-Y. Li, G.-R. Qu, Org. Lett. 2011, 13, 2008; e) M. K. Lakshman, A. C. Deb, R. R. Chamala, P. Pradhan, R. Pratap, Angew. Chem. Int. Ed. 2011, 50, 11400; Angew. Chem. 2011, 123, 11602; f) L. Liang, M.-S. Xie, H.-X. Wang, H.-Y. Niu, G.-R. Qu, H.-M. Guo, J. Org. Chem. 2017, 82, 5966; For a recent example on the cyanation of arylpurines, see: g) A. B. Pawar, S. Chang, Org. Lett. 2015, 17, 660; For a recent example on the halogenation of arylpurines, see: h) A. B. Pawar, D. M. Lade, Org. Biomol. Chem. 2016, 14, 3275; For a recent example on the trifluoromethylthiolation of arylpurines, see: i) M. Yoshida, K. Kawai, R. Tanaka, T. Yoshino, S. Matsunaga, Chem. Commun. 2017, 53, 5974; For a recent example on the olefination of arylpurines, see: j) C.-H. Xu, L.-J. Zhang, J.-B. Xu, Y.-X. Pan, F.-J. Li, H.-R. Li, L.-J. Xu, ChemistrySelect 2016, 1, 653; For recent examples on the amination of arylpurines, see: k) H. J. Kim, M. J. Ajitha, Y. Lee, J. Ryu, J. Kim, Y. Lee, Y. Jung, S. Chang, J. Am. Chem. Soc. 2014, 136, 1132; I) Y. Liang, Y.-F. Liang, C. Tang, Y. Yuan, N. Jiao, Chem. Eur. J. 2015, 21, 16395.
- [9] a) Q. Gou, B. Deng, H. Zhang, J. Qin, Org. Lett. **2013**, *15*, 4604; b) Q. Gou, Z.-F. Zhang, Z.-C. Liu, J. Qin, J. Org. Chem. **2015**, *80*, 3176; c) Q. Gou, B. Deng, J. Qin, Chem. Eur. J. **2015**, *21*, 12586; d) Q. Gou, G. Liu, Z.-N. Liu, J. Qin, Chem. Eur. J. **2015**, *21*, 15491; e) Q. Gou, Y.-W. Yang, Z.-N. Liu, J. Qin, Chem. Eur. J. **2016**, *22*, 16057; f) Q. Gou, G. Liu, L. Zhou, S. Chen, J. Qin, Eur. J. Org. Chem. **2017**, 6314.

- [10] a) N. C. Srivastav, N. Shakya, M. Mak, B. Agrawal, D. L. Tyrrell, R. Kumar, J. Med. Chem. 2010, 53, 7156; b) V. Gogineni, R. F. Schinazi, M. T. Hamann, Chem. Rev. 2015, 115, 9655.
- [11] A. Dmytro, D. Alexis, G. Vincent, L. BenoÎt, B. Yannick, D. Nicolas, G. Johan, M. Francois, O. Mayalen, WO 2012172043, 2012.
- [12] E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066; Angew. Chem. 2012, 124, 3120.

Received: April 11, 2018

Communication

Nitration

Q. Gou, W. Li, Q. Zhao, J. Xie, P. Luo, G. Cao, S. Chen,* J. Qin* 1–7

Pd^{II}-Catalyzed Purine-Directed Or tho Nitration of 6-Arylpurines by C(sp²)-H Activation: A Practical Approach to Synthesize 6-(2-Nitroaryl) Purine Derivatives

6-(2-Nitroaryl)-purine can be obtained through Pd^{II}-catalyzed C(sp²)–H activation of 6-arylpurines in the presence

of tBuONO/O₂. The purine substituent acts as an *ortho* directing group for the

ċн

nitration.

DOI: 10.1002/ejoc.201800567