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A facile route to ketene-functionalized polymers
for general materials applications
Frank A. Leibfarth1, Minhyuk Kang2, Myungsoo Ham2, Joohee Kim2, Luis M. Campos1, Nalini Gupta1,

Bongjin Moon2* and Craig J. Hawker1*

Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are
to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in
polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed,
which take advantage of Meldrum’s acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes.
The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be
stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as
reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such
versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The
strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in
polymer chemistry.

A
pplications for functional materials that possess tailor-made
properties have been expanding significantly with the
development of nanotechnology and the growing need to

address resource, health and energy issues1. A constant in all of
these studies is the need for control of functional groups and for
these functional groups to perform multiple roles, such as cross-
linking, light harvesting and ligation. In addition to these issues,
practical use demands that functional groups be incorporated via
robust high-yielding chemistry2. Addressing these seemingly con-
trasting challenges requires the development of powerful method-
ology for macromolecular systems.

Accordingly, thermolytic generation of reactive groups provides
the advantages of reagent-free, fast and efficient generation of func-
tional polymers in both solution and the bulk. A classic example of
the thermal generation of highly reactive species is o-quinodi-
methane, which is obtained from the corresponding precursor ben-
zocyclobutene (BCB)3. This robust and efficient ring-opening
reaction has been successful in the formulation of thermosetting
materials4,5, intramolecularly collapsed nanoparticles6–8, selective
crosslinking of polymer matrices9,10 and synthesis of C60-fuller-
ene-grafted polymers11. The BCB system, however, is inherently
limited owing to the synthetic difficulty in monomer preparation
and its reliance on a transient reactive intermediate, which restricts
its applications to a single (crosslinking) function. To overcome
these limitations, a robust and modular approach to the generation
of ketene-functionalized materials is presented.

The selection of ketenes as a target functional group is governed
by its rich history in organic chemistry and versatile reactivity.
Although it has been over a century since the discovery of ketenes
by Staudinger in 190512 and its synthetic use has been well demon-
strated in complex small-molecule syntheses13,14, the value of this
versatile functional group in polymer and materials chemistry has
yet to be fully exploited15. Early efforts to this end constituted the
direct polymerization of ketenes16,17, and Endo has recently furth-
ered such efforts in realizing the living anionic polymerization of
stable ketenes to produce novel polyesters18,19. Ketenes as functional

groups have been limited to the generation of transient species
and the concomitant trapping by nucleophiles. The well known
diazonapthoquinone (DNQ) moiety has been used as a precursor
for ketene intermediates via the Wolff rearrangement20 and has
found applications in photoactivated solubility modification for
photoresists21 and supramolecular assembly disruption22,23. Yagci
has also recently investigated the photolytic generation of transient
a-oxoketene species from benzodioxinone and its use as a highly
reactive electrophile24–26.

Herein, we present a range of ketene precursors based on the
modular chemistry of Meldrum’s acid27, which allows for the syn-
thesis of monomers for both radical and ring-opening metathesis
polymerization (ROMP) mechanisms. The observed thermal gener-
ation and subsequent reaction of ketene intermediates under
ambient conditions are exploited to provide crosslinking via
dimerization and functionalization via nucleophilic addition in
both solution and the solid state. Above all, the versatility of this
approach and the fertile chemistry of ketenes are combined to
provide methodology applicable to a variety of functionalized
polymeric materials.

Results and discussion
The synthetic route to ketene derivatives involves thermal treatment
of 5,5-dialkyl-2,2-dimethyl-1,3-dioxa-4,6-dione (or 5,5-dialkyl
Meldrum’s acid) 1. Traditionally, this reaction is performed under
flash vacuum pyrolysis conditions (500 8C, 0.01 torr) to give the
dialkyl ketene 2 after loss of acetone and carbon dioxide28–30.
However, model studies (Supplementary Information) with diben-
zyl Meldrum’s acid (R¼ R0 ¼ benzyl, 1) showed that heating at
200 8C or above resulted in highly efficient formation of ketene 2,
which in the absence of nucleophiles underwent dimerization to
2,2,4,4-tetraalkyl-1,3-cyclobutanedione, 3 (ref. 30). In the presence
of nucleophiles (NuH) such as amines or alcohols, the ketene inter-
mediate was trapped as the expected amide or ester, 4 (Fig. 1).

Coupled with the highly efficient generation of 2 from 1,
Meldrum’s acid is also an attractive monomer building block
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owing to its commercial availability and rich chemistry associated
with the acidic methylene group. The latter allows a wide variety
of derivatives to be prepared in high yields under mild conditions.
To demonstrate this feature, two different strategies were developed
that allowed monomers to be prepared based on styrene and
norbornene, which are suitable for either radical or ring opening
polymerization procedures (Fig. 2).

Starting from Meldrum’s acid, 5, a novel, room temperature
Knoevenagel condensation and reduction allows access to the mono-
alkylated derivative, 6, which can then be readily alkylated under mild
conditions with 4-vinylbenzyl chloride to give the desired styrene-
based monomer 7 in approximately 90% yield. Condensation of 5
with formaldehyde in pyridine leads to the zwitterionic adduct 8
(ref. 31), and trapping with cyclopentadiene affords the norbornene
system 9 in only two steps. Homopolymerization of 7 under
normal and controlled radical polymerization conditions gives the
corresponding polymer of 10, whereas copolymerization of 7 with
styrene under controlled radical polymerization conditions was
shown to be a facile process leading to a range of materials with
varying amounts of Meldrum’s acid units along the backbone. For
example, copolymerization of a 19:1 mixture of styrene and 7
under standard atom transfer radical polymerization (ATRP)
conditions32—(1-bromoethyl)benzene, CuBr, 4,40-dinonyl-2,20-
dipyridyl, 110 8C (see Supplementary Information for details)—was
shown to be a living process giving the corresponding copolymer
of 10, with incorporation of 7 consistent with initial stoichiometry
(Mn¼ 21.0 kg mol–1, 74% conversion, PDI (Mw/Mn)¼ 1.12) (Fig. 3).

The critical step for materials functionalization is the efficient
and quantitative formation of the intermediate ketene derivative
11. This was initially explored by thermal gravimetric analysis
(TGA), which shows a significant mass loss beginning at 180 8C
corresponding to approximately 28 wt% of the homopolymer.
Based on the repeat unit structure, full conversion of the
Meldrum’s acid groups to ketene functionalities via loss of
acetone and CO2 leads to a theoretical value of 29.1 wt%, in close
agreement with the experimentally observed value. Definitive evi-
dence for the loss of acetone and CO2 was obtained by TGA–mass
spectrometry (Fig. 4a), which showed molecular ion peaks for CO2
(m/z¼ 44) and acetone (m/z¼ 58).

With quantitative data supporting the loss of acetone and CO2
from 10 at elevated temperatures, identification of the actual
ketene intermediate was investigated by Fourier transform infrared
spectroscopy. A representative set of spectra is shown in Fig. 4b with
the original polymer 10 showing a strong absorbance at 1,738 cm–1,
corresponding to the C¼O stretching mode of the diester derived
from Meldrum’s acid. Of particular note is that heating results in
the appearance of a strong absorbance at 2,103 cm–1, corresponding
to the typical absorbance for ketenes13. The emergence of the ketene
peak is coupled with a decrease in intensity for the ester absorbance
at 1,738 cm–1, and further heating shows a reduction in the intensity
of the ketene peak and the appearance of a new peak at 1,810 cm–1.

This final absorbance is explained by the propensity of dialkyl
ketenes to undergo [2þ 2] dimerization to form cyclobutane-1,3-
diones, as shown in 12. This expected sequence of reactions,
diester to ketene to cyclobutane-1,3-dione, was fully consistent
with model studies using small molecules and was similarly
observed at lower temperatures/longer heating times. As a
control, the polymer was shown to be stable at the experimental
temperatures by isothermal TGA (Supplementary Information).
To the best of our knowledge, this infrared data is the first obser-
vation of a ketene polymer system stable at room temperature33.

The dual role of ketenes to provide both crosslinking and a reac-
tive chemical handle was explored in solution experiments.
Thermolysis with a monomer incorporation of only 2 mol% to
styrene produced a crosslinked polymer, which was evidenced by
the observation of gel formation and swelling in an appropriate
solvent. Conversely, no crosslinking was observed when the
polymer was heated in the presence of a secondary amine;
instead, quantitative formation of the amide from the thermolyti-
cally generated ketenes provided efficient polymer backbone func-
tionalization (Supplementary Information). A kinetic argument
explains such observations, as nucleophilic addition of amines to
ketenes is much faster than ketene dimerization34. A detailed
kinetic study on this dual-purpose functional group in macromol-
ecular systems will be reported in due course.

To demonstrate the versatility and potential for ketene-functio-
nalized materials in high-value applications, the observed stability
of dialkyl ketenes under ambient conditions was exploited in the
creation of functionalized nanopatterned surfaces. In this case, the
generated ketene-containing thin film (that is, 11) serves both to
crosslink the polymer layer and to allow residual ketene groups
to be covalently modified. Such reactivity would prove useful
in surface patterning of biomolecules or materials for chemical/bio-
logical sensing as traditional methods rely on either non-covalent
adsorption35,36, or on multistep reactions for molecular recog-
nition37 or functionalization38. As initial evidence of the persistence
of ketenes in the solid state, cooling the polymer films to room temp-
erature after thermolysis (that is, at maximum ketene levels) revealed
that the ketene absorbance persists for extended periods under
ambient conditions (approximately 90þ% remaining after 12 hours).

This stability suggests that the ketene could be synthetically
accessible after crosslinking. To demonstrate this novel feature,
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Figure 1 | Thermolysis of 5,5-dialkyl Meldrum’s acid to a ketene, and

subsequent reactivity. Meldrum’s acid thermolyses through the loss of

acetone and CO2 to form the ketene 2, which has two paths of reactivity:

(1) dimerization to the cyclobutanedione, 3, or (2) addition in the presence

of a nucleophile to afford the corresponding ester or amide, 4.

8

O O

O O

N
AcOH

CH3CN

O

O

O

O

9

6

O O

O O
Cl

7

O O

O O

1) PhCHO

5

O O

O O

5

O O

O O

CH2O
Pyridine

K2CO3

DMF

2) NaBH4

Figure 2 | Synthesis of Meldrum’s-acid-containing monomers for radical

and ring-opening methathesis polymerizations. The rich chemistry of

Meldrum’s acid is used as a starting point for both monomers in this study.

The styrenic-type monomer, 7, was generated by a reductive alkylation with

benzaldehyde (54%) followed by alkylation with 4-vinylbenzyl chloride

under mildly basic conditions (86%). The norbornene monomer was

prepared via a formylation to provide zwitterionic 8 (96%), which reacted

smoothly with the dienophile cyclopentadiene in a Diels-Alder reaction to

afford 9 (61%).
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microcontact printing (mCP)39 was used to pattern an amine-
functional fluorescent dye, tetramethylrhodamine-5-carboxamide
cadaverine (TAMRA cadaverine), onto a polymer thin film40. In
the control system, a thin film of the Meldrum’s-acid-functionalized
derivative 10 was microcontact printed with the dye without heat
treatment. As can be seen in Fig. 5, transfer of the fluorescent
pattern could be observed (Fig. 5a), however gentle rinsing with
water resulted in complete removal of the dye (Fig. 5b). In direct con-
trast, if the thin film of 10 was heated at 225 8C for two minutes,
cooled to room temperature and microcontact printed with the dye,
the pattern was persistent before and after extensive rinsing with a
variety of solvents, demonstrating covalent attachment of the dye

(Fig. 5d). Furthermore, to probe the stability of the films, the
control sample and crosslinked system were sonicated in aqueous
solution for five minutes. The control film showed significant cracking
and loss of film integrity, whereas the thermally treated film was not
affected by sonication (Supplementary Information). Similarly,
washing with organic solvents led to complete dissolution of the
control sample whereas the thermolysed system retained a uniform
surface with the printed fluorescent pattern still present. These mCP
results illustrate the power of ketenes in materials chemistry; their
reactivity towards soft nucleophiles combined with their propensity
towards dimerization provides both a reactive surface for the attach-
ment of a variety of substrates and a stabilized crosslinked thin film.
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Subsequent ketene dimerization provides crosslinking, and unreacted ketenes can be trapped with nucleophiles to give 13. The balance between dimerization

and addition can be controlled by thermolysis time and order of addition of the nucleophile.
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The versatility of this strategy is further demonstrated by the
synthesis of a norbornene-derived Meldrum’s acid monomer 9
(refs 41,42), which was prepared by the Diels-Alder reaction
between cyclopentadiene and the methylidene-Meldrum’s acid-
pyridine adduct 8 (Fig. 2). Ring-opening metathesis polymerization
using the third-generation Grubbs catalyst (Grubbs-III)43 proceeded
smoothly at room temperature, providing Meldrum’s-acid-contain-
ing polynorbornene 14 (PMANB) with accurate molecular weight
and polydispersity control (that is, Mn¼ 11.2 kg mol–1, PDI
(Mw/Mn)¼ 1.06) (Fig. 6). TGA analysis of 14 showed 46.1%
weight loss with an onset temperature of 150–160 8C, closely match-
ing the theoretical weight loss for acetone and CO2 (45.9%), and
provides evidence for the formation of 15. Generation of the
ketene functionality was also verified by observing the diagnostic

ketene peak at 2,106 cm–1 in the Fourier transform infrared
spectrum of heat-treated films of PMANB, 14 (see Supplementary
Information). These results indicate that ketene generation from 14
occurs at significantly lower temperatures than from 10, which we
attribute to the favourable release of spiro-ring strain upon thermoly-
sis of 14. Further reductions in the temperature of ketene generation
will significantly expand the potential applications of this method-
ology. Efforts to this end are underway in our laboratory and will
be reported in a future manuscript. The block copolymer PMANB-
b-PNB (16) could be also synthesized by the successive feeding of
two monomers, 9 and norbornene, at different temperatures (room
temperature for 9 and –20 8C for norbornene). The resulting
PMANB–b–PNB showed the targeted molecular weight (22.9 kg
mol21–b–23.2 kg mol21) with a narrow polydispersity (PDI¼ 1.20).
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In conclusion, ketenes formed by the thermolysis of modular
Meldrum’s acid derivatives have been demonstrated to have signifi-
cant potential for general materials functionalization with the
approach being versatile in both monomer and polymer backbone
selection. The inherent chemistry of ketenes, specifically the
ability to provide crosslinking, act as a reactive chemical handle,
or both, allows this simple and modular chemistry to be applied
to a variety of challenges in materials, including covalent microcon-
tact printing of crosslinked thin films. This strategy highlights the
robust, efficient and orthogonal nature of Meldrum’s acid as a
monomer building block and the significant opportunities
afforded by the traditionally neglected ketene functional group in
polymer chemistry.

Methods
Diels-Alder reaction for the synthesis of 20,20-dimethyl-spiro[bicyclo[2.2.1]hept-
5-ene-2,50-[1,3]dioxane]-40,60-dione (9). To a solution of freshly cracked
cyclopentadiene (820 mg, 12.4 mmol) in CH3CN (10 ml) was added acetic acid
(750 mg, 12.5 mmol). To the solution was added a suspension of 1-[(6-hydroxy-2,2-
dimethyl-4-oxo-4H-1,3-dioxin-5-yl)methyl]pyridinium hydroxide, inner salt (8)
(1.95 g, 8.30 mmol) in CH3CN (20 ml) at 0 8C. The yellow colour gradually
disappeared upon addition. After stirring for 1 h at 0 8C, water (30 ml) was
added and the mixture was extracted with EtOAc (3� 100 ml). The combined
ether layer was dried over MgSO4, filtered and concentrated in vacuo to yield a
crude product as a yellowish white solid (2.38 g). The crude product was
further purified by flash column chromatography to afford the desired product 9
as a white solid. All new compounds were fully characterized
(see Supplementary Information).

Copolymerization of 7 with styrene via ATRP. The statistical copolymerization of 7
with styrene is illustrated by conditions that provide a polymer containing 2 mol% of
7 to styrene. ATRP initiator (1-bromoethyl)benzene (16.9 mg, 0.091 mmol), styrene
(2.50 g, 24.5 mmol), 5-benzyl-2,2-dimethyl-5-(4-vinylbenzyl)-[1,3]dioxane-4,6-
dione (7) (175 mg, 0.50 mmol), and 4,40-dinonyl-2,20-bipyridine (74.4 mg,
0.18 mmol) were added to a 20 ml scored ampule and the solution was
deoxygenated by freezing in liquid nitrogen under vacuum and subsequent thawing
to room temperature. This process was repeated twice, the ampule was filled with
nitrogen and CuBr (13 mg, 0.091 mmol) was added. The ampule was again frozen
by liquid nitrogen under vacuum and subsequently thawed to room temperature.
This process was repeated twice, the ampule was sealed, and the brown solution was
placed in an oil bath at 110 8C for 17 hours. The viscous solution was quenched by
exposing to air, diluted with 15 ml THF, and precipitated into 200 ml methanol. The
resulting product was a white powder (conversion¼ 74%, Mn¼ 23.7 kg mol–1,
PDI¼ 1.12).

Synthesis of polymer PMANB (14) by ROMP. A vial was charged with Grubbs
catalyst III (9 mg, 11 mmol) and 1 ml of dry CH2Cl2 under nitrogen atmosphere.
A solution of monomer 9 (100 mg, 0.45 mmol) in 3 ml of dry CH2Cl2 was
added at room temperature. After 30 min, the reaction was quenched by adding
excess ethyl vinyl ether (�10 equivalents). The solution was dripped into methanol
to precipitate the desired polymer. The resulting product was a white powder.
Yield: 92%, conversion: 100%, Mn: 11,200 g mol–1, PDI: 1.06.

mCP of TAMRA cadaverine fluorescent dye. A thin film of 10 was prepared by
spin casting a 20 wt% solution of 10 onto an 18� 18 mm2 glass slide (spin
rate¼ 1,500 rpm for 45 seconds). A poly[(mercaptopropyl)methylsiloxane]
stamp was fabricated by previously reported procedures39. The stamp was immersed
in a 0.02 M solution of TAMRA cadaverine in deionized water to ink for three
minutes. The stamp was removed from the solution, dried under a stream of
nitrogen, placed in conformal contact and pressed against the polymer surface for
two minutes. The stamp was observed to stick to the glass slide and was carefully
peeled off. The polymer film used as a control was stamped after spin casting.
In order to prepare a reactive surface of ketenes for covalent attachment of TAMRA
cadaverine, a polymer film was placed on a microscope hot stage for two minutes
at 225 8C. Fluorescence images were obtained after printing. The slides were
immersed in water under slight convection (60 rpm) for 12 hours. The slides
were removed from water, dried and reimaged.
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