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Ni-catalyzed Iterative Alkyl Transfer from Nitrogen 
Enabled by the In Situ Methylation of Tertiary Amines 
Chideraa Iheanyi Nwachukwu,† Timothy Patrick McFadden† and Andrew George Roberts*,† 
†Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States 

ABSTRACT: Current methods to achieve transition-metal-catalyzed alkyl C–N bond cleavage require the preformation of 
ammonium, pyridinium or sulfonamide derivatives from the corresponding alkyl amines. These activated substrates permit 
C–N bond cleavage and their resultant intermediates can be intercepted to affect C–C bond forming transforms. Here we 
report the combination of in situ amine methylation and Ni-catalyzed benzalkyl C–N bond cleavage under reductive 
conditions. This method permits iterative alkyl group transfer from tertiary amines and demonstrates a deaminative strategy 
for the construction of Csp3–Csp3 bonds. We demonstrate PO(OMe)3 (trimethylphosphate) to be a Ni-compatible 
methylation reagent for the in situ conversion of trialkyl amines into tetraalkylammonium salts. Single, double, and triple 
benzalkyl group transfers can all be achieved from the appropriately substituted tertiary amines. Transformations developed 
herein proceed via recurring events: the in situ methylation of tertiary amines by PO(OMe)3, Ni-catalyzed C–N bond 
cleavage and concurrent Csp3–Csp3 bond formation.

1. INTRODUCTION 

1.1. Background. Given the abundance of nitrogen present 
within chemical feedstocks,1 pharmaceuticals,2 and natural 
products,3 methods to construct carbon–carbon (C–C) bonds 
from amines via selective carbon–nitrogen (C–N) bond 
cleavage processes—where the nitrogen atom is retained 
(rearranged)4 or excised5—would be of high value for complex 
molecule synthesis and chemical diversification strategies. 
Indeed, multistep syntheses that incorporate a Stevens 
rearrangement, a strategic and predictable C–N bond cleavage 
method, exemplify the power of nitrogen atom rearrangement 
chemistry for Csp3–Csp3 bond formation.6 Despite the 
considerable understanding of C–N bond cleavage reactions,7 
nitrogen atom excision processes that occur with transition 
metal mediated functionalization of the cleaved C–N bond are 
known to a lesser extent.8,9 Certainly, metal-catalyzed 
hydrodenitrogenation (HDN) processes serve to remove 
nitrogen atoms from petroleum feedstocks; however, the high 
temperatures and pressures are generally viewed as non-
translatable for precise transformations in a more complex 
setting.10 Recent studies using transition-metal catalysis have 
described the reactivity of amine derivatives as the electrophilic 
carbon-based partners (R1) in cross-coupling reactions (Figure 
1a).8,9 In particular, N-aryl trimethylammonium (R1 = aryl),9b-

e,11,12 N-benzalkyl trimethylammonium (R1 = benzalkyl)9e,13,14 
and N-alkyl pyridinium (R1 = alkyl) salts15 have been employed 
for the selective metal-catalyzed transfer of aryl, benzyl and 
alkyl groups from nitrogen, respectively. Additionally, visible 
light mediated methods for alkyl C–N bond cleavage from N-
benzalkyl trimethylammonium16 and N-alkyl pyridinium salts 
(R1 = alkyl) have also been reported.17 
     The practical advantages of ammonium and pyridinium 
substrates as stable carbon transfer reagents (R1), include their 
ready availability from amine precursors,15a and if necessary, 
their facile enantioenrichment by recrystallization.9e Moreover, 
recent strategies have highlighted the latent advantage of 
tertiary amines employed through multistep sequences to direct 
electrophilic aromatic substitution9c,12b or C–H 
functionalization chemistries13e,18 prior to their stepwise 
removal by quaternization (e.g., permethylation) and 
chemoselective C–N bond cleavage. 
     Despite these advances, and the varied mechanisms 
proposed for C–N bond cleavage, known carbon group transfer 
reactions (e.g., R1) from a nitrogen atom occur as singular 
events (Figure 1a). In such reactions, only one group is cleaved 
(e.g., R1) and reacted with a nucleophilic partner (R2). These 
steps can be mediated by a transition metal to facilitate 
subsequent cross-coupling to yield products of type R1–R2.  
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Figure 1. Transition metal-catalyzed cleavage and 
functionalization of carbon–nitrogen (C–N) bonds. 

Similar visible light mediated processes that are proposed to 
generate and intercept alkyl radical intermediates have also 
been studied.16,17 In most cases, the trimethylamine or 2,4,6-
triphenylpyridine byproduct is discarded.16 Thus, the utility of 
tertiary amines and their corresponding ammonium derivatives 
in multi-step transforms is underexplored. 
     1.2. Proposed strategy for iterative alkyl transfer from 
nitrogen.   A fundamental understanding of iterative alkyl 
group transfer from nitrogen would significantly distinguish 
alkylammonium substrates from their alkyl halide and alkyl 
pyridinium counterparts. Theoretically, alkyl amines could 
permit iterative group transfers via alkyl ammonium 
intermediates, enabling up to three C–N bond cleavages from a 
tertiary amine, whereas alkyl halides or alkyl pyridiniums can 
only affect single group transfer, one C–X or C–N bond 
cleavage, respectively (Figure 1a).  
     Accordingly, we proposed that tertiary amines could serve 
to template the programmed construction of Csp3–Csp3 bonds 
with the net excision of a nitrogen atom (Figure 1b). Our 
objective of study was to understand the operative 
mechanism(s) and conditional requirements for iterative 
deamination chemistry. We envisioned a reductive Ni-
catalyzed process could permit the in situ methylation of 
tertiary amine intermediates.13c In this instance, R1 and R2 are 
viewed as transferable carbon-based electrophiles and Y is 
representative of a non-transferrable substituent. We posited 
that iterative steps, including amine methylation by a 
hypothetical reagent, MeX (steps i and iii), and Ni-catalyzed C–
N cleavage of the resultant ammonium salt intermediates A and 
C (steps ii and iv), could produce a Ni-III intermediate D, 
bearing a combination of the transferrable groups, R1 and R2. A 
stoichiometric reductant, such as Mn, would regulate the 
oxidation state of key Ni-intermediates.19 Reductive 
elimination (step iv) from D (LnNiR1R2X) or the symmetrically  

substituted variants D’ (LnNiR1R1X or LnNiR2R2X, not 
depicted) would provide cross- and dimeric products 
respectively—with unknown selectivity.20,21 The impact of 
generated radical intermediates and liberated tertiary amines on 
Ni-catalyzed steps, as well as the potential disruption of 
beneficial Ni–ligand interactions, were also unknown. The 
discovery of a Ni-compatible methylation reagent (MeX), with 
chemoselectivity for tertiary amine intermediates, would render 
this multi-step proposal achievable in a one-pot fashion. 
Overall, the transformation could be described as a reductive 
deamination wherein two C–N bonds are cleaved and one C–C 
bond formed. 
     The advent of cross-electrophile coupling chemistry has 
indeed inspired the development of related Ni-catalyzed 
transformations that involve concurrent C–O/C–X bond 
cleavages (Figure 2a).20,21,22 Cao and Shi report a dual C–O 
cleavage transform using a Ni-catalyst in combination with a 
stoichiometric reductant (e.g., Zn) and bis(pinacolato)diboron 
(B2pin2) to affect iterative benzalkyl C–O bond cleavages.22b 
The reaction converts dibenzalkylethers into cross- and 
dimeric- 1,2-diarylethane products with net excision of  oxygen 
atom. To the best of our knowledge, the analogous deaminative 
transform of a dibenzalkyl tertiary amine is unknown.5,23      
     For our study of iterative benzalkyl group transfers from 
nitrogen, we were encouraged by a report from the Martin 
group.13c They concluded that the reductive carboxylation of 
benzalkyl trimethylammonium salts proceeded via a Ni-
catalyzed benzylic C–N bond cleavage event (Figure 2b). By 
using an atmosphere of CO2, and Mn as a stoichiometric 
reductant, only benzalkyl carboxylic acids were obtained. 
Homodimeric products (e.g., 1,2-diarylethanes) were not 
observed. We reasoned that similar conditions, performed 
under an inert atmosphere, would permit C–C coupling events 
(homodimerization). In addition, the electrochemical 
homodimerization of benzalkyl trimethylammonium salts 
provides fundamental reactivity precedent for C–N cleavage 
and C–C bond forming events that are proposed to occur via 
radical homocoupling.24,25

  
     We hypothesized that benzalkyl trimethylammonium salts 
could be efficiently dimerized under reductive Ni-catalysis 
conditions. Until recently,13f Ni-catalyzed reductive coupling 
reactions of benzalkyl trimethylammonium salts with 
electrophiles other than CO2 were unknown.13c During the 
course of our investigation, Shu and coworkers demonstrated 
the use of benzalkyl trimethylammonium salts as effective 
electrophilic partners for C–N/C–O cross-electrophile coupling 
with alkenyl and aryl acetates.13f Notably, dimeric products that  

 

Figure 2. Ni-catalyzed cleavage of benzylic C–O and C–N 
bonds.   
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result from the homocoupling of benzalkyl 
trimethylammonium salts are reported. An improved 
understanding of such homodimerization events could be 
applied for the discovery of a method wherein a tertiary amine 
could serve to template the construction of Csp3–Csp3 bonds 
(Scheme 1b). Herein, we disclose results that detail the 
discovery of a method for iterative benzalkyl group transfer 
from a nitrogen atom center, enabling the formation of cross- 
and dimeric- 1,2-diarylethane products.  

2. RESULTS AND DISCUSSION 

     2.1. Development of conditions for the reductive 
dimerization of benzalkylammonium salts. We began our 
studies with the systematic examination of conditions for the 
reductive dimerization of benzalkyl ammonium salts (Table 1). 
Optimization efforts found the reaction of 
benzyltrimethylammonium iodide (1a) with NiI2 (10 mol%), 
Xantphos (L1, 15 mol%),26 and Mn (3.0 equiv) in N,N-
dimethylacetamide (DMA, 0.4 M) at 120 °C for 24 h to provide 
1,2-diphenylethane (2a) in 65% isolated yield (entry 1, ‘System 
I’). The use of Zn as an alternative co-reductant (entry 2), other 
NiII sources (entries 3 and 4), or dimethylformamide (DMF) in 
place of DMA (entry 5) were all found to result in a lower yield 
of 2a. Furthermore, the use of excess ligand (L1, entry 6) had a  
Table 1. Optimization of reaction conditions for the Ni-
catalyzed reductive cleavage of benzylic C–N bonds and 
control experiments. 

 

aReaction conditions: 1a or 3a (1.34 mmol), NiI2 (10 mol%), 
Xantphos (L1) (15 mol%), Mn (3 equiv, 4.02 mmol), DMA (0.4 
M) at 120 °C for 24 h; yields of isolated 2a are provided as an 
average of two independent runs. bYield of isolated 2a provided as 
an average of four independent runs. 

deleterious effect on the yield. A representative ligand screen 
L2–L4 (entries 7-9) highlights a preference for bidentate 
ligands and demonstrates the efficiency of Xantphos (L1, entry 
1) for this transformation.26 We found the use of 1,10-
phenanthroline-based ligands to be less effective13c (for a 
complete ligand screen, see Table S1). Consistent with related 
benzalkyl C–N bond cleavage methods, this reaction proceeds 
without ligand (entry 10), albeit with diminished efficiency.9e 
Control experiments demonstrate the crucial role of Ni (entry 
11 and 12) and Mn (entry 13). Intriguingly, the addition of 
(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO, entry 14) 
resulted in a slight decrease in yield albeit with no detectable 
TEMPO adducts (Table 1).13c,27 Next, we examined the impact 
of tertiary amine additives on catalysis efficiency. Although the 
presumed reaction byproduct, trimethylamine (b.p. 2.9 °C), can 
be tentatively identified by its characteristic fishy odor during 
reaction workup, its low boiling point precludes facile 
quantitative analysis. Control studies found that stoichiometric 
addition of triethylamine (1 equiv, b.p. 89 °C, entry 15) or 
dimethylbenzylamine (1 equiv, b.p. 180 °C, entry 16) resulted 
in slightly diminished yields. This suggests that liberated 
tertiary amines would be tolerated in reactions that require 
iterative methylation and C–N bond cleavage processes. During 
efforts to address the mechanistic inquiry of benzyl iodide 
intermediates that may be formed in situ, we identified an 
alternatively effective, iodide-free process. Here, we define 
‘System II’ (entry 17), as the reaction of 
benzyltrimethylammonium triflate (3a) with Ni(OTf)2 (10 
mol%), Xantphos (L1, 15 mol%), and Mn (3.0 equiv) in DMA 
(0.4 M) at 120 °C for 24 h to provide homodimer 2a in 69% 
yield. System II-type conditions might find application in 
settings wherein benzylic halide intermediates are detrimental 
to product outcome and selectivity. Indeed, iodide introduced 
with the Ni-source, 3a with NiI2 (10 mol%, entry 18), or, with 
the substrate, 1a with Ni(OTf)2 (10 mol%, entry 19) proceeds 
with slightly diminished yields. 
     2.2. Reductive deaminative dimerization scope and 
limitations. With optimized conditions (System I), we 
evaluated the scope of the Ni-catalyzed reductive dimerization 
of benzalkyl trimethylammonium iodides (Table 2). A 
representative examination of benzalkyl ammonium iodides 
(1a–1l) found dimeric products (2a–2l) as the sole observable 
reaction products, isolable in 58% average yield (12 examples, 
Table 2)). Interestingly, ortho-substitution is tolerated, with the 
ortho-methoxy variant (1i) providing dimer (2i) with improved 
isolated yield relative to substrates bearing and ortho-methyl 
and ortho-fluoro substituent (1h, 1j). This is suggestive of a 
beneficial substrate (1i) Ni-chelation in C–N bond cleavage 
and/or C–C bond forming events.13c 
     Certain substrates (1m–1r) undergo efficient Ni-catalyzed 
benzylic C–N bond cleavage, yet dimerization events to access 
products 2m–2r appear to compete with a reduction pathway 
(4m–4r). Extended π systems (1n, 1o) permit access to dimers 
(2n, 2o) as major products alongside reduced derivatives (4n, 
4o) as minor products. Electron-deficient substrates (1p, 1q) 
favor reduction products almost exclusively (4p, 4q), a result 
that may be reflective of the difficulty to affect their 
dimerization by reductive elimination. An overtly electron-rich 
substrate (1r) provided access to brittonin a (2r) alongside 
reduction product 4r. Overall, these results (17 examples, 54% 
average yield) suggest that the developed procedure is a general 
method for benzylic C–N bond cleavage with successive C–C 
bond formation. 

Ph

Ph
2a

Ph N

1a X = I

Me

Me
Me

X

System I
10 mol% NiI2
15 mol% L1

3.0 equiv Mn
0.4 M DMA
120 ºC, 24 h

O

MeMe

PPh2PPh2

Xantphos (L1)

N N

R R

4,4’-dmbpy, R = Me (L2)
4,4’-dtbbpy, R = t-Bu (L3)

N N

6,6’-dmbpy (L4)

MeMe

+

deviation from standard conditions
none
Zn instead of Mn
NiBr2 (10 mol%)
NiBr2�glyme) (10 mol%)
DMF as solvent
L1 (30 mol%)
L2 as ligand
L3 as ligand 
L4 as ligand
no ligand
no NiI2
no NiI2, no ligand
no Mn
TEMPO (1 equiv)
triethylamine (1 equiv)
dimethylbenzylamine (1 equiv)
3a (X = OTf), Ni(OTf)2 (10 mol%) (System II) 
3a (X = OTf)
Ni(OTf)2 (10 mol%)

2a (%)[a]

65
47
33
50
40
40
42
57
46
19
trace
trace
trace
��
��
��
69[b]

55
60独

entry
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
独

3a X = OTf

Me
N

Me

Me

Page 3 of 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

4 

Table 2. An examination of Ni-catalyzed benzylic C–N bond 
cleavage and the homodimerization reactivity of 
ammonium substrates.   

 

aReaction conditions: 1a–1r (1.34 mmol), NiI2 (10 mol%), 
Xantphos (15 mol%), Mn (3 equiv, 4.02 mmol), DMA (0.4 M) at 
120 °C for 24 h; yields of isolated products (2a–2r) and (4m –4r) 
are provided as an average of two independent runs. 

  2.3. Discovery of a Ni-compatible reagent for the in situ 
methylation of amines. Due to our familiarity with the 
reactivity of benzalkyl trimethylammonium salts (1a, 3a), we 
studied the one-pot conversion of N,N-dimethylbenzylamine  
(5) into 1,2-diphenylethane (2a) (Scheme 1). For this, we 
examined a series of methylation reagents (MeI, MeOTf, 
PO(OMe)3) in their ability to serve as Ni-compatible in situ 
methylators for the conversion of 5 into ammonium salts 
(confer 6, Scheme 1).13c,28 The choice of trimethylphosphate 
(PO(OMe)3) was inspired by a report from Hartwig and co- 
workers that described the slow generation of MeI from the in 
situ reaction of LiI with PO(OMe)3.29 Accordingly, we 
wondered if PO(OMe)3 could be used as an electrophile for in 
situ amine alkylation. Although PO(OMe)3 is known to affect 
the controlled alkylation of anilines,28 it was unclear if this 
electrophile would undergo deleterious reactions (e.g., 
oxidative addition) at Ni, thereby precluding its desired utility. 

Scheme 1. Discovery of reaction conditions for the in situ 
methylation and Ni-catalyzed cleavage of benzylic C–N 
bonds from tertiary amines.  

  
aYields of isolated products (2a) and (7) are provided as an average 
of two independent runs. 

     We hypothesized two possible productive scenarios that 
could be operative: (1) the combination of iodide, from NiI2, 
and PO(OMe)3 in DMA would produce low concentrations of 
MeI, and, MeI would react preferentially with 5 to form a Ni-
reactive ammonium salt intermediate (6), or, (2) PO(OMe)3 
reacts directly with 5 to form a Ni-reactive ammonium salt 
intermediate (6). We tested these hypotheses by the comparison 
of ‘System I’ and ‘System II’ type conditions. Interestingly, 
System I conditions provide homodimer 2a in 70% yield when 
4 equiv of PO(OMe)3 is employed, whereas the respective 
reactions with 4 equiv of MeI (18%) or 4 equiv of MeOTf 
(35%) are less effective (Scheme 1a). The control reaction of 5 
with PO(OMe)3 in DMA at 120 °C for 24 h afforded 
benzyltrimethylammonium dimethylphosphate salt 6 (X = 
OPO(OMe)2) in 35% isolated yield. Only a single methyl group 
is transferred to the amine.28 System II also affords homodimer 
2a in 70% yield (Scheme 1b). Additionally, using known 
catalysis conditions and PO(OMe)3 as an additive (2 equiv), 
N,N-dimethylbenzylamine 5 can be converted to phenylacetic 
acid 7 (35%) (Scheme 1c). This unoptimized yield is 
significantly improved relative to the previously reported use of 
MeI (1 equiv, 7% and 4 equiv, 0%) as an in situ methylation 
reagent.13c Collectively, these studies suggest that 5 is 
methylated in situ by PO(OMe)3 and the in situ formation of 
MeI is neither required nor beneficial for these transforms. 
Overall, this understanding of the reactivity of PO(OMe)3 for 
the in situ methylation of tertiary amines is significant and 
supportive of the development of one-pot methods for Ni-
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catalyzed cleavage and functionalization of benzylic C–N 
bonds. 
2.4. Trimethylphosphate for iterative benzalkyl transfer 
from ammoniums and amines. The abovementioned results 
support the chemoselectivity of PO(OMe)3 for tertiary amine 
methylation in the presence of low-valent Ni-intermediates. 
Conversion for one benzalkyl transfer event, defined herein as 
1 × methylation and 1 × C–N cleavage, occurs with 70% overall 
yield using either System I, or System II conditions. This 
efficiency suggested that iterative benzalkyl transfer chemistry 
could be possible. We first examined the reactivity of mono- 
(1a), di- (8), tri- (9) and tetra- (10) benzylammonium salts 
(Table 3). Based on our nascent understanding, we expect 
benzyl trialkylammonium salts (1a, 8–10: (PhCH2)mNMenI, 
where m + n = 4), reacted under control conditions without 
PO(OMe)3 (System I), to only transfer a single benzyl group. 
This benzyl group transfer event would generate the respective 
tertiary amine represented by the formula: (PhCH2)m-1NMen. 
Interestingly, singular benzyl group transfer proceeds with 
increasing efficiency for the series (1a, 8–9). Substrates 1a, 8, 
and 9, provide homodimer (2a) in 65%, 70% and 76% yield, 
respectively. The tertiary amines liberated from experiments 
with 8 and 9, benzyl dimethylamine and dibenzyl methylamine, 
respectively, can be observed by 1H NMR analysis of the crude  

Table 3. An examination of iterative alkyl transfer 
efficiency from benzyl ammonium substrates. Support for 
single, double and triple benzylic C–N bond cleavage events. 

     

 aYields of isolated products (2a) are provided as an average of two 
independent runs. Yields are calculated on the basis of available 
benzyl groups for each substrate. For example, 1 mol of compound 
8, bearing two benzyl groups, can theoretically provide 1 mol of 
1,2-diphenylethane (2a). For reactions run in the absence of 
trimethylphosphate, the generated tertiary amines can be observed 
quantitatively by 1H NMR analysis of the crude reaction mixture. 
bHomodimer 2a is not detected [ND] upon 1H NMR analysis of the 
crude reaction mixture.  

reaction mixture and support the claim of singular benzyl 
transfer (see the Supporting Information). Attempts to prepare 
tetrabenzylammonium iodide were unsuccessful. We attribute 
this to a presumed facile nucleophilic dealkylation by the iodide 
counterion, as tribenzylamine is recovered from attempted 
alkylations with benzyl iodide. Instead, tetrabenzylammonium 
tosylate 10 could be prepared, however, this substrate was not 
productive under catalytic conditions (see the Supporting 
Information). 
     We next examined C–N cleavage efficiency for the series of 
benzyl trialkylammonium salts (1a, 8–9) in the presence of 4 
equiv of PO(OMe)3 (Table 3). We observe a diminished yield 
for the conversion of 1a into 2a (42%). For a transformation 
that does not require methylation, this result suggests that 
excessive PO(OMe)3 may exhibit a deleterious effect on 
catalysis. Conversely, when PO(OMe)3 can be utilized, 
dibenzyl dimethylammonium (8) and tribenzyl 
methylammonium (9) salts permit double and triple benzyl 
transfers, to form 2a with 46% and 47% overall efficiency, 
respectively. To better understand reactivity trends of benzyl 
group transfer across varied substrates, we define the efficiency 
of a single transfer event as the overall yield of three combined 
events [1 × methylation, 1 × C–N bond cleavage, 1 × C–C bond 
formation]# of iterations. From this definition, iterative yields can be 
calculated for double, [68%]2 = 46%, and triple, [78%]3 = 47%, 
benzyl transfer reactions. Again, the trend of increasing group 
transfer efficiency appears to track with the increasing electron 
density for the initial ammonium substrate (Table 3: double 
from 8, [68%]; triple from 9, [78%]). These results are 
significant and demonstrate the efficiency of optimized 
conditions for iterative benzyl group transfers. For example, no 
fewer than six discrete events must take place during the 
conversion of tribenzyl methylammonium 9 into homodimer 
2a: 2 × methylations, 3 × C–N bond cleavages, and concomitant 
C–C bond formation. No benzyl tertiary amine byproducts are 
observable in all reactions conducted with 4 equiv PO(OMe)3. 
It is also noteworthy that these iterative transfers are achievable 
without an increase in catalyst, ligand or reductant loading. 
     The efficiency of the abovementioned results suggested that 
intermediary tertiary amines (5, 11, 12) methylated in situ by 
PO(OMe)3 under catalysis conditions would also exhibit 
benzalkyl group transfer chemistry (Table 4). Control 
experiments demonstrate that benzyl transfer will not occur 
without methylation (i.e., benzyl transfer is not possible using 
System I conditions). In situ methylation with PO(OMe)3 would 
eliminate the need for the preparation and isolation of 
intermediary ammonium salts. As anticipated from experiments 
with 5 (Scheme 1, 70% of 2a), tertiary amines 11 and 12 also 
reacted under the same catalytic conditions with 4 equiv of 
PO(OMe)3 to permit two and three benzyl transfers, calculated 
as [60%]2 = 36% and [69%]3 = 33% of homodimer 2a, 
respectively. Here the trend of increasing efficiency for the 
series (11, 12) is also observed by comparison of iterative 
yields, double, [60%] and triple, [69%], respectively. The 
decreasing overall yields for the series (5, 11, 12) are attributed 
to the difficulty of the initial methylation event (see the 
Supporting Information). Notwithstanding the inefficiency of 
the first methylation, the one-pot conversion of tribenzylamine 
12 with PO(OMe)3 into homodimer 2a must involve no fewer 
than seven discrete events, including, 3 × methylations, 3 × C–
N cleavages, as well as concomitant C–C bond formation. A 
stepwise breakdown indicates that at least seven events must 
proceed with an overall efficiency per event of [85%]7 = 33%.  

Ph N
Me

Me
Me

I

Ph N IPh
MeMe

Ph N
I

Ph
Me

Ph

Ph N TsOPh

Ph

Ph

control:
0 equiv

PO(OMe)3
(theoretical
transfers)

4 equiv
PO(OMe)3
(theoretical
transfers)

1 benzyl

1 benzyl

1 benzyl

1 benzyl

1 benzyl

2 benzyls

3 benzyls

4 benzyls

isolated
2a (%)

65

70

76

ND[b]

isolated
2a (%)

42

46
calc. [68%]2

47
calc. [78%]3

- -

(PhCH2)mNMen

4 equiv PO(OMe)3
10 mol% NiI2

15 mol% Xantphos

3.0 equiv Mn
0.4 M DMA
120 ºC, 24 h

I

Ph

Ph
2a

+ Me3N
+ Me4NX

1a

8

9

10

1a, 8−10
(m + n = 4)

ammonium
substrate

(PhCH2)m-1NMen

b) theoretical and observed benzyl group transfers:[a]

observable by 1H NMR for
control reactions 0 equiv PO(OMe)3

a) iterative benzyl transfer from tetraalkyl ammoniums
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Table 4. An examination of iterative alkyl transfer 
efficiency from benzyl amine substrates. Support for single, 
double and triple benzylic C–N bond cleavage events.  

  

aYields of isolated products (2a) are provided as an average of two 
independent runs. bReaction performed with excess PO(OMe)3 (8 
equiv, 120 °C, 5 d.  

2.5. Proposed reaction pathways and a mechanistic study: 
reductive deamination of an unsymmetrical tertiary amine. 
Next we studied this reductive deamination process in the 
context of an unsymmetrical tertiary amine substrate (13), 
bearing R1 = benzyl and R2 = para-methylbenzyl substituents 
(Scheme 2). We reasoned that the reactivity of this substrate, as 
measured by product ratios, compared to a series of related 
crossover experiments would provide mechanistic insight. As 
proposed, we anticipated the in situ methylation of a benzalkyl  

Scheme 2. Proposed pathways for the in situ methylation of 
tertiary amines; Ni-catalyzed C–N bond cleavage and Csp3–
Csp3 bond formation. 

 

tertiary amine 13, followed by indiscriminate C–N bond 
cleavage (R1 or R2, R1 depicted as first cleavage) from 
ammonium 14 would generate a benzalkylated Ni-intermediate 
(B). Intermediate B could proceed along two pathways 
proposed as follows: (1) the disproportionation of Ni-
intermediate B would generate a low-valent Ni intermediate, a 
dissociated tertiary amine (15 or 5) and a mixture of benzylic 
radical species; with benzylic radical intermediates ultimately 
leading to a mixture of cross, 16, and dimeric products, 2a and 
2b (pathway I), or alternatively; (2) significant tertiary amine 
coordination during reduction and methylation events could 
provide proposed intermediate C along an amine-coordinated 
path (pathway II). The generation of an ammonium in 
proximity to a low-valent Ni-intermediate (C) could enable 
cross-selective oxidative addition to access intermediate D. The 
overall conversion of B to D with selectivity for cross-product 
(16) formation would support a molecule-to-molecule 
transformation consistent with pathway II. 
     An examination of reaction mechanism by evaluation of a 
non-symmetric amine (13, entry A) and relevant crossover 
experiments (entries B–F) is presented in Table 5. As a 
hypothetical reference point, a statistical distribution of 
16:2a:2b, 0.5:0.25:0.25, is provided as part of Table 5 (entry 
F). All product distributions (16:2a:2b) for these experiments 
are normalized ratios (see the Supporting Information). 
Table 5. An examination of reaction mechanism by 
evaluation of an unsymmetrical tertiary amine substrate 

 

Ph N
Me

Me

Ph N Ph

Ph N Ph

Ph

Me

control:
0 equiv

PO(OMe)3
(theoretical
transfers)

4 equiv
PO(OMe)3
(theoretical
transfers)

0 benzyls

0 benzyls

0 benzyls

1 benzyl

2 benzyls

3 benzyls

isolated
2a (%)

70

36
calc. [60%]2

33[b]

calc. [69%]3

(PhCH2)mNMen

4 equiv PO(OMe)3
10 mol% NiI2

15 mol% Xantphos

3.0 equiv Mn
0.4 M DMA
120 ºC, 24 h

Ph

Ph
2a

+ Me3N
+ Me4NX

5

11

12

5, 11, 12
(m + n = 3)

tertiary amine
substrate

b) theoretical and observed benzyl group transfers:[a]

a) iterative benzyl transfer from tertiary amines
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N
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Me Me

!+

X
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1314
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½ MnIIX2

½ Mn0

Ln NiI
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Me Me
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C
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Me Me
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Ln NiI X
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R1 R1

R2 R2

+
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2a

2b
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R2 R1
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oxidative
addition
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Ln NiI X
+

B

D

N R2

Me Me

coordinated

pathway II

radical

pathway I

15 or (5)

0.50

0.41

0.41

0.46

0.43

0.45

0.25

0.34

0.23

0.15

0.18

0.10

0.25

0.26

0.36

0.39

0.39

0.45

4 equiv PO(OMe)3
10 mol% NiI2

15 mol% Xantphos

3.0 equiv Mn
0.4 M DMA
120 ºC, 24 h

N Ar2Ar1

Me Me
NMe3Ar1

NMe3Ar2

entry

N
Me

Ar2Ar1
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a) mechanistic probe

b) evaluated substrates:

I
I

I

Ar1 Ar2

Ar2 Ar2

Ar1 Ar1

2a16

2b

+

+

homo-cross-

Ar1 = C6H5
Ar2 = C6H4(p-CH3)

entry B — 14

N
Me

Ar2Ar1

entry A — 13 entry C — 1a + 1b

BrAr1

BrAr2

entry D — 17a + 17b

at
120 ºC

BrAr1

BrAr2

entry E — 17a + 17b
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23 ºC

statistical product distribution for any cross-electrophile coupling

Ar1 Ar2
Ar2 Ar2

Ar1 Ar1

2a16 2b+ +

c) normalized product distributions:

A

B
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F
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     Using optimal conditions, tertiary amine 13 with 4 equiv 
PO(OMe)3 afforded cross-product and dimeric products 
(16:2a:2b) with a 0.45:0.10:0.45 ratio (Table 5, entry A). The 
pre-methylated variant, ammonium iodide (14), afforded a 
similar product distribution 0.45:0.18:0.39 (entry B), albeit with 
improved overall conversion. The comparison of these product 
distributions (entry A and entry B) suggests the tertiary amine 
(13) and the ammonium substrate (14) operate along a similar 
mechanistic pathway. This is consistent with our understanding 
of in situ methylation and the compatibility of this step with 
concurrent C–N bond cleavage events. Furthermore, the 
crossover experiment of two different ammonium iodide salts 
(0.5 equiv 1a, 0.5 equiv 1b) produced nearly the same ratio of 
products, 0.46:0.15:0.39 (entry C). This result suggests that 
amine coordination events (Scheme 2, confer B à C, pathway 
II) do not augment cross-product (16) formation selectivity. 
However, there is a marked selectivity observed for the 
homodimeric products (2a:2b, ~1:3). We attribute this outcome 
to the relative stability of the para-methyl benzyl radical 
leading to the favorable formation of homodimer 2b.30 
Additional control crossover experiments with comparable 
organohalide substrates, benzyl bromide (17a) and para-methyl 
benzyl bromide (17b) were also informative. Using the 
conditions optimized for ammonium substrates (120 °C, 
PO(OMe)3 excluded), 0.5 equiv 17a with 0.5 equiv 17b 
provided products in a 0.41:0.23:0.36 ratio (entry D). The same 
reaction run at room temperature afforded a largely statistical 
product distribution consistent with benzalkyl radical coupling 
(0.41:0.34:0.26, entry E).31 Again, the higher temperature 
experiment supports the dependence of product outcome on the 
stability of benzylic radical intermediates.32 Overall, these 
deaminative coupling (entries A–C) and benzalkyl bromide 
crossover experiments (entries D–E) support the Ni-catalyzed 
coupling of benzylic radical intermediates (Scheme 2).20,26c,33  
     Our product distributions are also in agreement with the 
related deoxygenative transforms reported by the Shi group.22b 
In this related transform, dual C–O bond cleavage events must 
proceed in a stepwise fashion. The dual C–N bond cleavage 
results presented here are consistent in this aspect. Likewise, 
the key reagents, B2pin2 for C–O bond activation, and  
PO(OMe)3 for C–N bond activation, are compatible with 
reductive Ni-catalysis. The statistical distribution of cross- and 
dimeric products in both transforms support a mechanism 
involving Ni-benzalkyl intermediates.22b,24,26c,27 Recent studies 
from the Shu laboratory support a similar convergence of 
benzylic radical intermediates for the Ni-catalyzed cleavage of 
ammonium salts (C–N bond) coupled with aryl tosylates (C–O 
bond) under reductive conditions.13f 

2.6. Proposed mechanism. Based upon our findings and 
related transforms,13c,13f,20a,26c we propose a mechanism for the 
deamination of tertiary amines consistent with pathway I 
(Scheme 2). First, the in situ methylation of a tertiary amine 
(13) forms an activated ammonium intermediate (14). 
Oxidative addition affords benzalkylated Ni-intermediate B. 
The generation and interception of benzylic radical species by 
this intermediate (B) leads to dibenzalkylated intermediates, D 
(LnNiR1R2X) and D’ (LnNiR1R1X or LnNiR2R2X, not shown). 
Reductive elimination affords both cross, 16, and dimeric 
products, 2a and 2b, in largely statistical distributions.22b,26c 
Finally, reduction of the resultant Ni(I) intermediate by Mn 
serves to regenerate Ni(0). Intermediary tertiary amines (e.g., 5, 
15) are methylated by PO(OMe)3 and processed by Ni-
catalyzed C–N bond cleavage events. Although we cannot 
exclude events proposed along coordinated pathway II 

(Scheme 2, reduction; in situ tertiary amine methylation), we 
do not observe product distributions consistent with a molecule-
to-molecule transformation (i.e. the direct conversion of 13 à 
16 at a single Ni-center). 
 
3. CONCLUSION 

     In summary, we have demonstrated a method for Ni-
catalyzed iterative alkyl transfer from tertiary amines and 
ammoniums. We reveal the utility of trimethylphosphate, 
PO(OMe)3, as a Ni-compatible reagent for achieving in situ 
methylation of tertiary amines. In combination with Ni-
catalysis, this inexpensive reagent permits iterative 
methylation, Csp3–N bond cleavage and Csp3–Csp3 bond 
forming events. We show the use of this method for the 
homodimerization or carboxylation of benzalkyl 
dimethylamines and benzalkyl trimethylammonium salts. We 
anticipate the adoption of PO(OMe)3 as a Ni-compatible 
methylation reagent to streamline related reactions that involve 
benzalkyl C–N bond cleavage of ammonium salt 
intermediates.9 An understanding of dual C–N bond cleavage 
permits the deamination of dibenzalkyl methylamines to access 
1,2-diarylethane scaffolds. Up to three benzyl group transfers 
are possible from a single tertiary amine substrate. A 
preliminary survey of deaminative, as well as related crossover 
experiments, support the involvement of benzylic radical 
intermediates consistent with proposed pathway I. Future 
studies will evaluate conditions to favor tertiary amine 
coordination events and/or ammonium ion pairing18 with the 
Ni-catalyst in an effort to promote cross-selectivity in these 
deaminative transforms.  
 
4. EXPERIMENTAL SECTION 
General information. Solvents and reagents were purchased from 
commercial distributors and used as received. It is worthy to note that 
N,N-dimethylacetamide (DMA) purchased from Merck Millipore was 
superior.  Manganese powder -325 mesh was purchased from Sigma 
Aldrich. All Ni-catalyzed reactions were performed under a positive 
pressure of N2 in a round bottom flask equipped with a reflux 
condenser. 1H and 13C NMR spectra were obtained either on a Varian 
400 or 500 MHz Unity INOVA spectrometer. All 1H NMR spectra are 
reported in parts per million (ppm) relative to residual CHCl3 (7.26 
ppm) or H2O (4.79 ppm). Coupling constants, J, are reported in Hertz 
(Hz). All 13C NMR spectra are reported in ppm relative to residual 
CHCl3 (77.2 ppm). High resolution mass spectra were recorded at the 
Mass Spectrometry Facility in the Department of Chemistry at the 
University of Utah on a Finnigan MAT® 95 double focusing high 
resolution mass spectrometer. Low resolution mass spectra were 
recorded on Advion expression compact mass spectrometer (CMS). 
Column chromatography was carried out using 230-400 mesh silica gel 
purchased from Silicycle and used as received. Melting points are 
reported in degrees Celsius (°C) with a Mel-Temp II melting point 
apparatus. N,N-dimethylbenzylamines were prepared either from the 
corresponding benzyl amines using Eschweiler–Clarke conditions34 or 
via alkylation of dimethylamine with the corresponding benzyl 
halides.35,36 The amines were used without purification. 

General procedure for the preparation of mono-benzyl ammonium 
iodides. Synthesis of 1a-1r. Dimethylbenzylamine (1 equiv.) was 
dissolved in ethyl acetate (1.0 M). Methyl iodide (3 equiv.) was added 
dropwise at room temperature, and the entire mixture stirred at room 
temperature for 1 h. The resultant precipitate was filtered, and the 
filtrate washed with ethyl acetate (10 mL ´ 4) to afford the 
corresponding salt. If necessary, the benzyl trimethylammonium iodide 
salt was recrystallized from a 4:1 mixture of 2-propanol:toluene. 
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N,N,N-trimethyl-1-phenylmethanaminium iodide (1a).37 Reaction 
performed with 16 mmol of amine in 16 mL ethyl acetate. 1a was 
recrystallized to afford white needle-like crystals (4.2 g, 96%); mp: 
176–177 °C; 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 7.9 Hz, 2H), 
7.49 – 7.40 (m, 3H), 5.05 (s, 2H), 3.40 (s, 9H); 13C{1H} NMR (125 
MHz, D2O): δ 132.9, 130.9, 129.3, 127.4, 69.6, 52.6; LRMS (ESI+): 
Calcd. for C10H16N [M-I]: 150.13, found 150.23.  
N,N,N-trimethyl-1-(p-tolyl)methanaminium iodide (1b).37 Reaction 
performed with 7.1 mmol of amine in 7 mL ethyl acetate. 1b was 
isolated as a white solid (1.7 g, 80%) and recrystallized; mp: 208–210 
°C; 1H NMR (400 MHz, CDCl3): δ 7.51 (d, J = 7.7 Hz, 2H), 7.18 (d, J 
= 7.5 Hz, 2H), 4.95 (s, 2H), 3.37 (s, 9H), 2.36 (s, 3H); 13C{1H} NMR 
(125 MHz, CDCl3): δ 141.1, 133.0, 129.9, 124.2, 68.6, 52.7, 21.3; 
LRMS (ESI+): Calcd. for C11H18N [M-I]: 164.14, found 164.23.  
1-(4-methoxyphenyl)-N,N,N-trimethylmethanaminium iodide 
(1c).37 Reaction performed with 16 mmol of amine in 16 mL ethyl 
acetate. 1c was isolated as a white solid (3.7 g, 77%); mp: 157–158 °C; 
1H NMR (400 MHz, CDCl3): δ 7.57 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 
8.5, 2H), 4.96 (s, 2H), 3.81 (s, 3H), 3.35 (s, 9H); 13C{1H} NMR (125 
MHz, CDCl3): δ 161.4, 134.5, 119.1, 114.6, 68.3, 55.5, 52.5; LRMS 
(ESI+): Calcd. for C11H18NO [M-I]: 180.14, found 180.25. 
1-(4-fluorophenyl)-N,N,N-trimethylmethanaminium iodide (1d).13c 
Reaction performed with 16 mmol of amine in 16 mL ethyl acetate. 1d 
was isolated as a white solid (4.6 g, 95%); mp: 238–239 °C; 1H NMR 
(500 MHz, D2O): δ 7.46 (dd, J = 8.7, 5.6 Hz, 1H), 7.16 (t, J = 8.7 Hz, 
2H), 4.37 (s, 2H), 2.98 (s, 9H); 13C{1H} NMR (125 MHz, D2O) 163.9 
(d, JCF = 248.3 Hz), 134.9 (d, JCF = 9.1 Hz), 123.4, 116.1 (d, JCF = 22.0 
Hz), 68.7, 52.2; LRMS (ESI+): Calcd. for C10H15FN [M-I]: 168.12, 
found 168.08.  
N,N,N-trimethyl-1-(m-tolyl)methanaminium iodide (1e).13c 
Reaction performed with 5.3 mmol of amine in 6 mL ethyl acetate. 1e 
was isolated as a white solid (1.1 g, 71%); mp: 200–201 °C; 1H NMR 
(500 MHz, CDCl3): δ 7.51 – 7.40 (m, 2H), 7.33 – 7.26 (m, 2H), 4.98 
(s, 2H), 3.42 (s, 9H), 2.36 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): 
δ 139.2, 133.5, 131.7, 130.2, 129.2, 127.1, 70.0, 52.9, 21.4; LRMS 
(ESI+): Calcd. for C11H18N [M-I]: 164.14, found: 164.07.  
1-(3-methoxyphenyl)-N,N,N-trimethylmethanaminium iodide 
(1f).13c Reaction performed with 16 mmol of amine in 16 mL ethyl 
acetate. 1f was obtained as a white solid (3.4 g, 70%); mp: 140–141 
°C; 1H NMR (500 MHz, CDCl3): δ 7.37 – 7.32 (m, 1H), 7.30 – 7.29 
(m, 1H), 7.20 (dt, J = 7.6, 1.3 Hz, 1H), 7.01 (dt, J = 8.4, 1.4 Hz, 1H), 
5.01 (s, 2H), 3.83 (s, 3H), 3.42 (s, 9H); 13C{1H} NMR (125 MHz, 
CDCl3): δ 160.0, 130.3, 128.4, 125.1, 118.5, 116.7, 68.8, 55.9, 53.1; 
LRMS (ESI+): Calcd. for C11H18NO [M-I]: 180.14, found 180.12. 
1-(3-fluorophenyl)-N,N,N-trimethylmethanaminium iodide (1g). 
Reaction performed with 9.3 mmol of amine in 10 mL ethyl acetate. 1g 
was isolated as a white solid (1.7 g, 62%) and recrystallized; mp: 184–
185 °C; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.8 Hz, 1H), 7.49 
– 7.38 (m, 2H), 7.21 – 7.17 (m, 1H), 5.14 (s, 2H), 3.42 (s, 9H); 13C{1H} 
NMR (125 MHz, CDCl3): δ 161.9 (d, JCF = 250.7 Hz), 135.4 (d, JCF = 
2.1 Hz), 133.7 (d, JCF = 8.6 Hz), 125.5 (d, JCF = 3.8 Hz), 116.4 (d, JCF 
= 21.9 Hz), 114.8 (d, JCF = 13.8 Hz), 62.7, 53.3; HRMS (ESI+): Calcd. 
for C10H15FN [M-I]: 168.1189, found 168.1189. 
N,N,N-trimethyl-1-(m-tolyl)methanaminium iodide (1h).37 
Reaction performed with 16 mmol of amine in 16 mL ethyl acetate. 1h 
was isolated as a white solid (2.7 g, 89%); mp: 210–212 °C; 1H NMR 
(500 MHz, CDCl3): δ 7.64 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 
7.29 – 7.21 (m, 2H), 4.98 (s, 2H), 3.44 (s, 9H), 2.53 (s, 3H); 13C{1H} 
NMR (125 MHz, CDCl3): δ 139.9, 134.6, 132.0, 131.0, 126.6, 125.76, 
66.5, 53.1, 21.2; LRMS (ESI+): Calcd. for C11H18N [M-I]: 164.14, 
found 164.09. 
1-(3-methoxyphenyl)-N,N,N-trimethylmethanaminium iodide 
(1i).13c Reaction performed with 6.0 mmol of amine in 6 mL ethyl 
acetate. 1i was isolated as a white solid (1.5 g, 81%); mp: 151–152 °C; 
1H NMR (500 MHz, D2O): δ 7.43 (t, J = 8.3 Hz, 1H), 7.32 (d, J = 7.6 
Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 4.34 (s, 2H), 
3.75 (s, 3H), 2.95 (s, 9H); 13C{1H} NMR (125 MHz, D2O): δ 158.8, 
134.8, 132.9, 120.8, 115.6, 112.1, 63.8, 55.5, 52.6; LRMS (ESI+): 
Calcd. for C11H18NO [M-I]: 180.14, found 180.13. 
1-(2-fluorophenyl)-N,N,N-trimethylmethanaminium iodide (1j). 
Reaction performed with 6.5 mmol of amine in 7 mL ethyl acetate. 1j 
was isolated as a white solid (1.8 g, 94%) and recrystallized; mp: 174–

175 °C; 1H NMR (500 MHz, CDCl3): δ 7.92 (td, J = 7.4, 1.8 Hz, 1H), 
7.52 (d, J = 7.3 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.19 (t, J = 9.1 Hz, 1H), 
5.01 (s, 2H), 3.47 (s, 9H); 13C{1H} NMR (125 MHz, D2O): δ 162.4 (d, 
JCF = 244.5 Hz), 131.0 (d, JCF = 8.4 Hz), 128.82, 119.5 (d, JCF = 22.2 
Hz), 117.8 (d, JCF = 20.9 Hz), 68.7, 52.6; HRMS (ESI+): Calcd. for 
C10H15FN [M-I]: 168.1189, found 168.1188. 
1-(benzo[d][1,3]dioxol-5-yl)-N,N,N-trimethylmethanaminium 
iodide (1k).13c Reaction performed with 9.5 mmol of amine in 10 mL 
ethyl acetate. 1k was isolated as a white solid (1.5 g, 50%); mp: 221–
222 °C; 1H NMR (400 MHz, D2O): δ 6.92 – 6.85 (m, 2H), 5.91 (s, 2H), 
4.26 (s, 2H), 2.93 (s, 9H); 13C{1H} NMR (125 MHz, D2O): δ 149.2, 
147.7, 127.5, 120.7, 112.4, 108.8, 101.8, 69.4, 52.2; LRMS (ESI+): 
Calcd. for C11H16NO2 [M-I]: 194.12, found 194.21. 
N,N,N-trimethyl-1-(4-(trifluoromethyl)phenyl)methanaminium 
iodide (1l). Reaction performed with 20 mmol of amine in 20 mL ethyl 
acetate. 1l was isolated as a white solid (6.5 g, 96%); mp: 175–176 °C; 
1H NMR (500 MHz, CDCl3): δ 7.93 (d, J = 7.9 Hz, 2H), 7.71 (d, J = 
7.9 Hz, 2H), 5.30 (s, 2H), 3.46 (s, 9H); 13C{1H} NMR (125 MHz, 
CDCl3): δ 133.8, 133.2, 131.1, 126.2, 124.5, 67.2, 53.1; HRMS (ESI+): 
Calcd. for C11H15F3N [M-I]: 218.1157, found 218.1161. 
1-(4-(tert-butyl)phenyl)-N,N,N-trimethylmethanaminium iodide 
(1m).37 Reaction performed with 7.0 mmol of amine in 7 mL ethyl 
acetate. 1m was isolated as a white solid (1.7 g, 73%); mp: 211–212 
°C. 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 8.0 Hz, 2H), 7.45 (d, J 
= 8.0 Hz, 2H), 4.95 (s, 2H), 3.40 (s, 9H), 1.29 (s, 9H); 13C{1H} NMR 
(125 MHz, CDCl3): δ 154.3, 132.9, 126.2, 124.2, 68.6, 52.8, 34.9, 31.2; 
LRMS (ESI+): Calcd. for C14H24N [M-I]: 206.19, found 206.25.  
N,N,N-trimethyl-1-(naphthalene-2-yl)methanaminium iodide 
(1n).13c Reaction performed with 17 mmol of amine in 17 mL ethyl 
acetate. 1n was isolated as a pale orange solid (3.7 g, 65%); mp: 179–
180 °C; 1H NMR (500 MHz, CDCl3): δ 8.18 (s, 1H), 7.98 – 7.78 (m, 
3H), 7.71 (dd, J = 8.4, 1.7 Hz, 1H), 7.63 – 7.43 (m, 2H), 5.26 (s, 2H), 
3.46 (s, 9H); 13C{1H} NMR (125 MHz, CDCl3): δ 133.9, 133.7, 132.8, 
129.2, 129.0, 128.5, 127.9, 127.8, 127.1, 124.5, 68.8, 53.0; LRMS 
(ESI+): Calcd. for C14H18N [M-I]: 200.14, found 200.28.  
N,N,N-trimethyl-1-(naphthalene-1-yl)methanaminium iodide (1o). 
Reaction performed with 17 mmol of amine in 17 mL ethyl acetate. 1o 
was isolated as a white solid (2.9 g, 52%) and recrystallized; mp: 213–
215 °C; 1H NMR (500 MHz, DMSO-d6): δ 8.54 (d, J = 8.6 Hz, 1H), 
8.14 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.1 Hz, 
1H), 7.76 – 7.50 (m, 3H), 5.11 (s, 2H), 3.13 (s, 9H); 13C{1H} NMR 
(125 MHz, DMSO-d6): δ 134.11,134.08, 133.3, 131.8, 129.5, 127.8, 
126.8, 125.8, 125.0, 124.6, 64.2, 52.7; HRMS (ESI+): Calcd. for 
C14H18N [M-I]: 200.1434, found 200.1438. 
1-(4-(methoxycarbonyl)phenyl)-N,N,N-trimethylmethammonium 
iodide (1p). Reaction performed with 8.6 mmol of amine in 9 mL ethyl 
acetate. 1p was isolated as a white solid (2.6 g, 92%); mp: 196–197 °C; 
1H NMR (500 MHz, CDCl3): δ 8.09 (d, J = 7.9 Hz, 2H), 7.82 (d, J = 
8.1 Hz, 2H), 5.25 (s, 2H), 3.95 (s, 3H), 3.46 (s, 4H); 13C{1H} NMR 
(125 MHz, CDCl3): δ 166.0, 133.3, 132.6, 131.7, 130.3, 67.7, 53.1, 
52.6; HRMS (ESI+): Calcd. for C12H18NO2 [M-I]: 208.1338, found 
208.1339. 
1-(4-cyanophenyl)-N,N,N-trimethylmethanaminium iodide (1q). 
Reaction performed with 13 mmol of amine in 13 mL ethyl acetate. 1q 
was isolated as a white solid (2.86 g, 71%); mp: 232–233 °C; 1H NMR 
(500 MHz, D2O): δ 7.80 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 
4.48 (s, 2H), 3.02 (s, 2H); 13C{1H} NMR (125 MHz, D2O): δ 133.5, 
133.1, 132.4, 118.7, 113.5, 68.5, 52.6; HRMS (ESI+): Calcd. for 
C11H15N2 [M-I]: 175.1230, found 175.1237. 
(3,4,5-trimethoxyphenyl)-1-N,N,N-trimethylammoniun iodide 
(1r). Reaction performed with 3.1 mmol of amine in 3 mL ethyl acetate. 
1r was isolated as a white solid (879 mg, 77%); mp: 207–209 °C; 1H 
NMR (500 MHz, CDCl3): δ 7.00 (s, 1H), 4.97 (s, 2H), 3.86 (s, 6H), 
3.81 (s, 3H), 3.38 (s, 9H); 13C{1H} NMR (125 MHz, CDCl3): δ 153.5, 
139.8, 122.6, 110.6, 68.7, 60.9, 57.0, 53.0; HRMS (ESI+): Calcd. for 
C13H22NO3 [M-I]: 240.1600, found 240.1604. 
General procedure for reductive homodimerization. 
Synthesis of 2a-2r: A 25 mL oven dried round bottom flask equipped 
with a magnetic stir bar was evacuated and charged with catalyst NiI2 
(42 mg, 0.134 mmol) and Xantphos (115 mg, 0.2 mmol) under positive 
pressure of nitrogen. Degassed DMA (3.4 mL, 0.4 M) was added via a 
syringe and the entire mixture stirred for 5 mins at 120 °C  (oil bath) 
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after which the solution became homogeneous and the color changed 
from grey to red. Manganese (219 mg, 4 mmol) and benzyl 
trimethylammonium salt (1.34 mmol) were then added to the mixture. 
The flask was then equipped with a condenser and the entire mixture 
stirred under nitrogen at 120 °C (oil bath) for 24 h. The mixture was 
cooled to room temperature and subsequently extracted with ether (20 
mL ´ 3). The combined organic extract was washed with water (20 
mL´ 2), followed by brine (10 mL). The organic layer was then dried 
over Na2SO4, filtered and solvent removed under reduced pressure. The 
crude mixture was purified by flash column chromatography on silica 
gel.  
1,2-Diphenylethane (2a).38 Isolated as an off-white solid (79 mg, 0.43 
mmol, 65%) via flash column chromatography with hexanes as the 
eluent; Rf = 0.56 (hexanes); 1H NMR (400 MHz, CDCl3): δ 7.31 – 7.29 
(m, 4H), 7.22 – 7.20 (m, 6H), 2.91 (s, 4H); 13C{1H} NMR (101 MHz, 
CDCl3): δ 141.8, 128.5, 128.4, 126.0, 38.0; LRMS (EI+): Calcd. for 
C14H14 [M+]: 182.11, found 182.20.  
1,2-di-p-tolylethane (2b).39 Isolated as a white solid (94 mg, 0.45 
mmol, 67%) via flash column chromatography with hexanes as the 
eluent; Rf = 0.40 (hexanes); 1H NMR (400 MHz, CDCl3): δ 7.09 (s, 
5H), 2.86 (s, 4H), 2.32 (s, 6H); 13C{1H} NMR (101 MHz, CDCl3): δ 
138.9, 135.0, 129.0, 128.3, 37.6, 21.0; LRMS (EI+): Calcd. for C16H18 
[M+]: 210.14; found 210.20.  
1,2-bis(4-methoxyphenyl)ethane (2c).40 Isolated as a white solid (94 
mg, 0.38 mmol, 58%) via flash column chromatography with a 20:1 
mixture of hexanes/ethyl acetate as the eluent; Rf = 0.40 (20:1 
Hex/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.09 (d, J = 8.6 Hz, 4H), 
6.83 (d, J = 8.6 Hz, 4H), 3.79 (s, 6H), 2.84 (s, 4H); 13C{1H} NMR (101 
MHz, CDCl3): δ 157.8, 134.0, 129.4, 113.7 55.2, 37.3; LRMS (EI+): 
Calcd. for C16H18O2 [M+]: 242.13, found 242.20.  
1,2-bis(4-fluorophenyl)ethane (2d).39 Isolated as a white solid (92 mg, 
0.42 mmol, 63%) via flash column chromatography with hexanes as 
the eluent; Rf = 0.37 (hexanes); 1H NMR (400 MHz, CDCl3) δ 7.11 (dd, 
J = 8.6, 5.6 Hz, 4H), 6.98 (t, J = 8.7 Hz, 4H), 2.90 (s, 4H); 13C{1H} 
NMR (125 MHz, CDCl3): δ 161.4 (d, JCF = 243.6 Hz), 137.0 (d, JCF = 
3.1 Hz), 129.9 (d, JCF = 7.7 Hz), 115.1 (d, JCF = 21.0 Hz), 37.2; 19F 
NMR (282 MHz, CDCl3): δ -117.8; LRMS (EI+): Calcd. for C14H12F2 
[M+]: 218.09, found 218.20.  
1,2-di-m-tolylethane (2e).39 Isolated as a colorless oil (95.4 mg, 0.45 
mmol, 68%) via flash column chromatography with hexanes as the 
eluent; Rf = 0.40 (hexanes); 1H NMR (400 MHz, CDCl3): δ 7.21 (t, J = 
7.4 Hz, 2H), 7.16 – 6.92 (m, 6H), 2.89 (s, 4H), 2.36 (s, 6H); 13C{1H} 
NMR (101 MHz, CDCl3): δ 141.9, 137.9, 129.3, 128.3, 126.7, 125.4, 
38.0, 21.4; LRMS (EI+): Calcd. for C16H18 [M+]: 210.14, found 210.20. 
1,2-bis(3-methoxyphenyl)ethane (2f).38 Isolated as a white solid 
(113.2 mg, 0.47 mmol, 70%) via flash column chromatography with a 
20:1 mixture of hexanes/ethyl acetate as the eluent; Rf = 0.48 (20:1 
Hex/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.34 – 7.16 (m, 1H), 6.88 
– 6.72 (m, 2H), 3.80 (s, 2H), 2.93 (s, 1H); 13C{1H} NMR (101 MHz, 
CDCl3): δ 159.7, 143.4, 129.3, 120.9, 114.2, 111.3, 55.1, 37.9; LRMS 
(EI+): Calcd. for C16H18O2 [M+]: 242.13, found 242.20.  
1,2-bis(3-fluorophenyl)ethane (2g).39 Isolated as a white solid (64 mg, 
0.29 mmol, 44%) via flash column chromatography with hexanes as 
the eluent; Rf = 0.40 (hexanes); 1H NMR (400 MHz, CDCl3) δ 7.18 (td, 
J = 7.7, 1.6 Hz, 2H), 7.25 – 7.20 (m, 2H), 6.93 – 6.85 (m, 6H), 2.91 (s, 
4H); 13C{1H} NMR (125 MHz, CDCl3): δ 162.9 (d, JCF = 245.3 Hz), 
143.8 (d, JCF = 7.1 Hz), 129.8 (d, JCF = 8.5 Hz), 124.1 (d, JCF = 2.8 Hz), 
115.3 (d, JCF = 20.9 Hz), 113.0 (d, JCF = 21.3 Hz), 37.2 (d, JCF = 1.8 
Hz); LRMS (EI+): Calcd. for C14H12F2 [M+]: 218.09, found 218.20.  
1,2-di-o-tolylethane (2h).39 Isolated as a white solid (73 mg, 0.35 
mmol, 52% yield via flash column chromatography with hexanes as the 
eluent; Rf = 0.40 (hexanes); 1H NMR (400 MHz, CDCl3): δ 7.19 – 7.17 
(m, 8H), 2.89 (s, 4H), 2.35 (s, 6H); 13C{1H} NMR (101 MHz, CDCl3): 

δ 140.2, 135.9, 130.2, 128.9, 126.13, 126.0, 34.2, 19.3; LRMS (EI+): 
Calcd. for C16H18 [M+]: 210.14, found 210.20.  
1,2-bis(2-methoxyphenyl)ethane (2i).38 Isolated as a white solid (129 
mg, 0.53 mmol, 80%) via flash column chromatography with a 20:1 
mixture of hexanes/ethyl acetate as the eluent; Rf = 0.40 (20:1 
Hex/EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.18 (td, J = 7.7, 1.6 Hz, 
2H), 7.12 (dd, J = 7.2, 1.8 Hz, 2H), 6.89-6.72 (m, 4H), 3.82 (s, 6H), 
2.90 (s, 1H); 13C{1H} NMR (101 MHz, CDCl3): δ 157.6, 130.9, 129.9, 

127.90, 120.2, 110.2, 55.3 30.5. LRMS (EI+): Calcd. for C16H18O2 
[M+]: 242.13, found 242.20.  
1,2-bis(2-fluorophenyl)ethane (2j).39 Isolated as a white solid (79 mg, 
0.36 mmol, 54%) via flash column chromatography with hexanes as 
the eluent; Rf = 0.40 (hexanes). 1H NMR (400 MHz, CDCl3) δ 7.20 – 
7.13 (m, 4H), 7.06 – 7.02 (m, 4H), 2.97 (s, 4H). 13C{1H} NMR (125 
MHz, CDCl3): δ 161.2 (d, JCF = 245.0 Hz), 130.7 (d, JCF = 5.1 Hz), 
127.8 (d, JCF = 8.1 Hz), 123.9 (d, JCF = 3.7 Hz), 115.2 (d, JCF = 22.0 
Hz), 112.9 (d, JCF = 21.1 Hz), 29.7; LRMS (EI+): Calcd. for C14H12F2 
[M+]: 218.09, found 218.20. 
1,2-bis(benzo[d][1,3]dioxo-5-yl)ethane (2k).41 Isolated as a white 
solid (110 mg, 0.4 mmol, 61%) via flash column chromatography with 
a 12:1 mixture of hexanes/ethyl acetate as the eluent. Rf = 0.40 (10:1 
Hex/EtOAc). 1H NMR (400 MHz, CDCl3) δ 6.70 (d, J = 7.8, 2H), 6.64 
(d, J = 1.7, 2H), 6.58 (dd, J = 7.9, 1.8, 2H), 5.90 (s, 4H), 2.77 (s, 4H); 
13C{1H} NMR (125 MHz, CDCl3): δ 147.5, 145.7, 135.5, 121.2, 108.9, 
108.1, 100.8, 37.9; LRMS (EI+): Calcd. for C16H14O4 [M+]: 270.09, 
found 270.20.  
1,2-bis(4-(trifluoromethyl)phenyl)ethane (2l).41 Isolated as a white 
solid (32 mg, 0.1 mmol, 15%) via flash column chromatography with 
hexanes as the eluent; Rf = 0.47 (hexanes); 1H NMR (400 MHz, 
CDCl3): δ 7.52 (d, J = 8.0 Hz, 4H), 7.24 (d, J = 7.8 Hz, 4H), 2.98 (s, 
4H); 13C{1H} NMR (101 MHz, CDCl3): δ 145.0, 128.7, 128.5, 125.3, 
37.2; LRMS (EI+): Calcd.  for C16H12F6 [M+]: 318.08, found 318.20. 
1,2-bis(4-(tert-butyl)phenyl) ethane (2m).39 Isolated as a white solid 
(131 mg, 0.45 mmol, 67%) via flash column chromatography with 
hexanes as the eluent;  Rf = 0.40 (hexanes); 1H NMR (400 MHz, 
CDCl3): δ 7.33 (d, J = 8.3 Hz, 4H), 7.18 (d, J = 8.2 Hz, 4H), 2.89 (s, 
4H), 1.32 (s, 18H); 13C{1H} NMR (101 MHz, CDCl3): δ 148.7, 139.0, 
128.0, 125.2, 37.4, 34.4, 31.4; LRMS (EI+): Calcd. for C22H30 [M+]: 
294.23, found 294.30.  
1-(tert-butyl)-4-methylbenzene (4m).42 The reduced product (4m) 
was also isolated a white solid (9.5 mg, 0.048 mmol, 5%); Rf = 0.50 
(hexanes); 1H NMR (400 MHz, CDCl3): δ 7.28 (d, J = 8.3 Hz, 2H), 7.11 
(d, J = 8.1 Hz, 2H), 2.31 (s, 3H), 1.30 (s, 9H). 
1,2-di(naphthalen-2-yl)ethane (2n).41 Isolated as a white solid (0.47, 
132 mg, 70%) via flash column chromatography with a 20:1 mixture 
of hexanes/ethyl acetate as the eluent.; Rf = 0.34 (20:1 hexanes/EtOAc); 
1H NMR (400 MHz, CDCl3): δ 7.89 – 7.73 (m, 6H), 7.66 (s, 2H), 7.47 
– 7.40 (m, 4H), 7.36 (d, J = 8.4 Hz, 2H), 3.18 (s, 4H); 13C{1H} NMR 
(125 MHz, CDCl3): δ 139.2, 133.6, 132.1, 127.9, 127.6, 127.5, 127.4, 
126.5, 126.0, 125.2, 38.0. LRMS (EI+): Calcd. for C22H18 [M+]: 282.14, 
found 282.20.  
2-methylnaphthalene (4n).43 The reduced product (4n) was also 
isolated as a colorless oil (25 mg, 0.17 mmol, 15%) with hexanes; Rf = 
0.4 (hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 7.79 – 7.72 (m, 
3H), 7.60 (s, 1H), 7.41(d, J = 6.9 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 
2.51 (s, 3H).  
1,2-di(naphthalen-1-yl)ethane (2o).40 Isolated as a white solid (105 
mg, 0.37 mmol, 56%) via flash column chromatography with a 20:1 
mixture of hexanes/ethyl acetate as the eluent; Rf = 0.34 (20:1 
hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 8.0 Hz, 
2H), 7.89 (dd, J = 8.0, 1.6 Hz, 2H), 7.75 (dd, J = 8.1, 1.3 Hz, 2H), 7.58 
– 7.46 (qd, J = 7.0, 1.6 Hz, 4H), 7.41 (t, J = 7.5 Hz, 2H), 7.35 (dd, J = 
7.0, 1.4 Hz, 2H), 3.52 (s, 4H); 13C{1H} NMR (125 MHz, CDCl3): δ 
138.1, 134.0, 131.9, 128.9, 126.9, 126.0, 125.7, 125.6, 123.7, 34.1; 
LRMS (EI+): Calcd. for C22H18 [M+]: 282.14, found 282.20. 
1-methylnaphthalene (4o).43 The reduced product (4o) was also 
isolated as a colorless oil (43 mg, 0.3 mmol, 23% yield) with hexanes; 
Rf = 0.4 (hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 
8.0 Hz, 1H), 7.86 (dd, J = 8.0, 1.6 Hz, 1H), 7.72 (dd, J = 8.1, 1.3 Hz, 
2H), 7.55 – 7.47 (qd, J = 7.0, 1.6 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.33 
(dd, J = 7.0, 1.4 Hz, 1H), 2.71 (s, 3H). 
Dimethyl 4,4’-(ethane-1,2-diyl)dibenzoate (2p).44 Isolated as a white 
solid (7 mg, 0.035 mmol, 4%) via flash column chromatography with 
a 4:1 mixture of hexanes/ethyl acetate as the eluent; Rf = 0.35 (5:1 
hexanes/EtOAc), 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 8.3 Hz, 
4H), 7.18 (d, J = 8.3 Hz, 4H) 3.89 (s, 6H), 2.97 (s, 4H). 
Methyl-4-methylbenzoate (4p).45 The reduced product (4p) was also 
isolated as colorless oil (79 mg, 0.53 mmol, 40%) with a 10:1 mixture 
of hexanes/ethyl acetate as the eluent; Rf = 0.34 (10:1 hexanes/EtOAc); 
1H NMR (400 MHz, CDCl3): δ 7.91 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 
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7.9 Hz, 2H), 3.88 (s, 3H), 2.39 (s, 3H); 13C{1H} NMR (125 MHz, 
CDCl3): δ 167.2, 143.5, 129.6, 129.1, 129.0, 127.5, 51.9, 21.6. 
4-methylbenzonitrile (4q).46 The reduced product (4q) was isolated as 
a colorless oil (61 mg, 0.52 mmol, 83%) with a 20:1 mixture of 
hexanes/ethyl acetate as the eluent; Rf = 0.6 (15:1 hexanes/EtOAc); 1H 
NMR (400 MHz, CDCl3): δ 7.49 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.5 
Hz, 2H), 2.38 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3): δ 143.7, 
132.0, 129.8, 119.1, 109.3, 21.8. 
1,2-bis(3,5,6-trimethoxyphenyl)ethane (2r).38  Isolated as an off-
white solid (36 mg, 0.1 mmol, 15%) via flash column chromatography 
with a 1:1 mixture of hexanes/ethyl acetate as the eluent; Rf = 0.40 (1:1 
hexanes/EtOAc); 1H NMR (400 MHz, CDCl3): δ 6.37 (s, 4H), 3.83 (s, 
18H), 2.86 (s, 4H), 13C{1H} NMR (125 MHz, CDCl3): δ 153.1, 137.4, 
136.2, 105.5, 60.9, 56.1, 38.5; HRMS (ESI+): Calcd. for C20H26O6 
[M+Na]+: 385.1627, found 385.1630. 
1,2,3-trimethoxy-5-methylbenzene (4r).47 The reduction product (4r) 
was also isolated as a white solid (88 mg, 0.48 mmol, 36%) via flash 
column chromatography with a 10:1 mixture of hexanes/ethyl acetate 
as the eluent; Rf = 0.48 (10:1 Hex/EtOAc); 1H NMR (400 MHz, 
CDCl3): δ 6.38 (s, 2H), 3.83 (s, 6H), 3.81 (s, 3H), 2.30 (s, 3H), 2.34 (s, 
3H). 
Procedure for Ni-catalyzed carboxylation of N,N-dimethylbenzyl 
amine.  
A 10 mL oven dried round bottom flask equipped with a magnetic stir 
bar was evacuated and charged with catalyst NiBr2·glyme (22 mg, 
0.067 mmol) and 2,9-dibutyl-4,7-dimethyl-1,10-phenanthroline (32 
mg, 0.15 mmol) under positive pressure of nitrogen. Degassed DMF 
(3.4 mL, 0.4 M) was added via a syringe. Manganese (74 mg, 1.32 
mmol), benzyl amine (1.34 mmol) and trimethylphosphate were added 
to the mixture, and the entire mixture evacuated and refilled three times 
under carbon-dioxide atmosphere. The flask was equipped with a 
condenser and the entire mixture stirred under an atmosphere of CO2 at 
100 °C (oil bath) for 24 h. The mixture was then cooled to room 
temperature, and carefully diluted with 2M HCl. The organic layer was 
extracted with ethyl acetate (20 mL ´ 3) and the combined extract 
washed with brine (10 mL) and then dried over Na2SO4. The crude 
product was purified by flash column chromatography with a 4:1 
mixture of hexanes/ethyl acetate. 7 was isolated as an off-white solid 
(32 mg, 0.26 mmol, 35%). Phenylacetic acid (7).13c 1H NMR (500 
MHz, CDCl3): δ 11.29 (b, 1H), 7.49 – 7.14 (m, 5H), 3.68 (s, 2H); 
13C{1H} NMR (125 MHz, CDCl3): δ 178.2, 134.0, 133.4, 130.3, 129.5, 
128.8, 127.5.1, 41.3. 
General procedure for preparation of di, tri and tetra- benzyl 
ammonium iodides. 
Synthesis of 8, 9, 10, 14: Amine (1 equiv.) and alkyl iodide (1.5 equiv.) 
or alkytosylate were dissolved in acetonitrile (1 M) in a round bottom 
flask. The entire mixture was refluxed (90°C in an oil bath) for 12 h. 
The resultant precipitate was filtered and the filtrate washed with ether 
(10 mL ´ 4) to afford the corresponding iodide salt (see Table S2 in the 
SI).  
N-benzyl-N,N-dimethyl-phenylmethanaminium iodide (8). 
Reaction performed with 22 mmol of amine in 22 mL acetonitrile. 8 
was isolated as an off white solid (1.8 g, 35%); mp: 189–190 °C; 1H 
NMR (500 MHz, CDCl3): δ 7.69 (d, J = 7.3 Hz, 4H), 7.45 – 7.39 (m, 
6H), 5.18 (s, 4H), 3.14 (s, 6H). 13C{1H} NMR (125 MHz, CDCl3): δ 
133.4, 130.8, 129.2, 127.1, 67.2, 48.2; HRMS (ESI+): Calcd. for 
C16H20N [M-I]: 226.1596, found 226.1599. 
N,N,N-tribenzyl-methyl ammonium iodide (9). Reaction was 
performed with 7.0 mmol of amine in 7 mL acetonitrile to afford a 
white solid (1.3 g, 42%); mp: 180–181 °C;  1H NMR (500 MHz, 
CDCl3): δ 7.66 (d, J = 6.9 Hz, 6H), 7.56 – 7.43 (m, 9H), 5.08 (s, 6H), 
2.80 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ 133.5, 130.9, 129.4, 
126.4, 64.6, 45.2; HRMS (ESI+): Calcd. for C22H24N [M-I]: 302.1903, 
found 302.1914. 
N,N,N,N-tetrabenzyl-methyl ammonium tosylate (10). Reaction 
performed with 3.5 mmol of amine in 4 ml acetonitrile, and 10 was 
isolated as a white solid (0.7 g, 37%). 1H NMR (500 MHz, CDCl3): δ 
7.66 (d, J = 6.9 Hz, 6H), 7.56 – 7.43 (m, 9H), 4.25 (s, 4H), 4.24 (s, 4H), 
2.80 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ 139.9, 131.2, 129.9, 
129.4, 128.8,126,2, 66.0, 21.4; HRMS (ESI+): Calcd. for C21H22N [M-
PhCH2OTs+H]+: 288.1752, found 288.1755. 

N-benzyl-N,N-dimethyl-1-(p-tolyl)methaneammonium iodide (14). 
Reaction was performed with 6.7 mmol of amine in 7 mL acetonitrile 
to afford a white solid filtration (1.4 g, 57%). mp: 189–190 °C; 1H 
NMR (500 MHz, CDCl3): δ 7.65 (d, J = 7.2 Hz, 2H), 7.51 (d, J = 7.7 
Hz, 2H), 7.45 – 7.38 (m, 3H), 7.19 (d, J = 7.7 Hz, 2H), 5.12 (s, 2H), 
5.14 (s, 2H), 5.10 (s, 2H), 3.10 (s, 6H), 2.34 (s, 3H); 13C{1H} NMR 
(125 MHz, CDCl3):  δ 141.1, 133.4,133.3, 130.7, 129.8, 129.2, 127.1, 
124.0, 67.1, 67.0, 48.2, 21.4; HRMS (ESI+): Calcd. for C17H22N [M-I]: 
240.1747, found 240.1749. 
General procedure for preparation of dibenzyl amines.   
Synthesis of 11, 13: Amine (23 mmol), alkyl iodide (26 mmol) were 
dissolved in acetonitrile (230 mL, 0.1 M) in a round bottom flask. N,N-
diisopropylethylamine (1.5 equiv.) was then added. The entire mixture 
was stirred at rt for 2 h. Solvent was then removed in vacuo and the 
resultant residue dissolved in dichloromethane (20 mL). The organic 
layer was subsequently washed once with water (5 mL) and the 
aqueous layer washed with dichloromethane (10 mL ´ 3). The 
combined organic layer was dried over anhydrous Na2SO4, filtered and 
the solvent removed again in vacuo. The crude mixture was purified by 
flash column chromatography to afford pure amine compound. 
N,N-dibenzyl-methylamine (11). Isolated as a light-yellow oil (4.36 
g, 90%) with a mixture of 20:1 hexanes/ethyl acetate. 1H NMR (500 
MHz, CDCl3): δ 7.48 – 7.34 (m, 10H), 3.62 (s, 4H), 2.29 (s, 3H); 
13C{1H} NMR (125 MHz, CDCl3): δ 139.6, 129.1, 128.4, 127.2, 62.1, 
42.5; HRMS (ESI+): Calcd. for C15H17N [M+H]+: 212.1439, found 
212.1439. 
N,N-benzyl-N-methyl-1-(p-tolyl)methaneamine (13). Isolated as a 
colorless oil (4.2 g, 81%) with a mixture of 20:1 hexanes/ethyl acetate; 

1H NMR (500 MHz, CDCl3): δ 7.49 (d, J = 8.5 Hz, 2H), 7.44 (t, J = 8.4 
Hz, 2H), 7.39 – 7.34 (m, 3H), 7.26 (d, J = 7.8 Hz, 2H), 3.63 (s, 2H), 
3.62 (s, 2H), 2.46 (s, 3H), 2.30 (s, 3H); 13C{1H} NMR (125 MHz, 
CDCl3): δ 139.6, 136.5, 136.4, 129.1, 129.0, 128.3, 61.9, 61.8, 42.3, 
21.3; HRMS (ESI+): Calcd. for C16H20N [M+H]+: 226.1596, found 
226.1599. 
Synthesis of 2,9-dibutyl-4,7-dimethyl-1,10-phenanthroline, L5 

To a solution of 4,7-dimethyl-1,10-phenanthroline (480 mg, 2.3 mmol) 
in anhydrous toluene (11.5 mL) at 0 °C was added slowly n-BuLi (6 
mL, 1.6 M, 9.6 mmol) over 5 mins. The entire mixture was allowed to 
slowly warm up to room temperature and further stirred for 12 h at this 
temperature. The reaction was then quenched by addition of water (30 
mL) and the organic layer extracted twice with dichloromethane (30 
mL ´ 2). The combined organic extract was stirred with activated 
MnO2 (1.24 g, 14.24 mmol) for 4 h. The slurry was then filtered 
through a pad of Celite and solvent removed under reduced pressure. 
The crude extract was purified by flash column chromatography with 
a mixture of 10:1 hexane/ethyl acetate as the eluent. L5 was obtained 
as a pale-yellow solid (530 mg, 69%).  
2,9-dibutyl-4,7-dimethyl-1,10-benzyl-phenanthroline (L5).13c 1H NMR 
(500 MHz, CDCl3): δ 7.93 (s, 2H), 7.34 (s, 2H), 3.16 (t, J = 7.9 Hz, 
4H), 2.75 (s, 6H), 1.93 – 1.51 (m, 4H), 1.52 (h, J = 7.4 Hz, 4H), 1.00 
(t, J = 7.4 Hz, 6H). 
General procedure for Ni-catalyzed iterative alkyl group transfer 
from amines and ammonium salts with and without 
trimethylphosphate 
A 25 mL oven dried round bottom flask equipped with a magnetic stir 
bar was evacuated and charged with catalyst NiI2 (42 mg, 0.134 mmol) 
and Xantphos (115 mg, 0.2 mmol) under positive pressure of nitrogen. 
Degassed DMA (3.4 mL, 0.4 M) was added via a syringe and the entire 
mixture stirred for 5 min at 120 °C  (oil bath), after which the solution 
became homogeneous and the color changed from grey to red. Mn (219 
mg, 4 mmol), either the benzyl amine or the corresponding ammonium 
salt (1.34 mmol), or with or without trimethyl phosphate (5.36 mmol) 
were added to the mixture. The flask was equipped with a condenser 
and the entire mixture stirred under nitrogen at 120 °C (oil bath) for 24 
h. The mixture was the cooled to room temperature and subsequently 
extracted with diethyl ether (20 mL ´ 3). The combined organic extract 
was washed with water (20 mL ´ 2), followed by brine (10 mL). The 
organic layer was then dried over Na2SO4, filtered and solvent removed 
under reduced pressure. The crude mixture was purified by flash 
column chromatography on silica gel with hexanes as the eluent. Yield 
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reported as an average of at least two independent runs. Yield of 
isolated diphenyl ethane (2a) was calculated based on total possible 
benzyl transfers with or without trimethyl phosphate additive. 
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