Subscriber access provided by Karolinska Institutet, University Library

Article

Rhodium(III)-Catalyzed Annulation of Acetophenone O-Acetyl Oximes with Allenoates through Arene C-H Activation: An Access to Isoquinolines

Quannan Wang, Jiang Lou, Zilong Huang, and Zhengkun Yu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b03092 • Publication Date (Web): 24 Jan 2019 Downloaded from http://pubs.acs.org on January 24, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Rhodium(III)-Catalyzed Annulation of Acetophenone *O*-Acetyl Oximes with Allenoates through Arene C–H Activation: An Access to Isoquinolines

Quannan Wang,^{†,‡} Jiang Lou,^{†,‡} Zilong Huang,^{†,‡} and Zhengkun Yu*,^{†,§}

[†]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023,

People's Republic of China

[‡]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

§State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese

Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People's Republic of China

RECEIVED DATE (will be automatically inserted after manuscript is accepted).

ABSTRACT: Rhodium(III)-catalyzed annulation of acetophenone *O*-acetyl oximes with allenoates was achieved, affording isoquinolines in good to excellent yields with high regioselectivities under redox-neutral conditions. Allenoates acted as the C2 synthons in the annulation reaction. The present synthetic methodology features good functional group tolerance and avoids metal salts as the external oxidants. The proposed mechanism suggests that the reaction proceeds through arene C–H activation, allene insertion, and C–N coupling.

INTRODUCTION

Isoquinoline motif exists in a variety of biologically active molecules, pharmaceuticals, and functional materials^{1a} For example, (R)-(+)-Crispine A^{1b} shows significant cyctotoxic activity, PK 11195^{1c} can be used as an inhibitor of [³H]MeTRH, and Pareitropone^{1d} is the most potent anticancer agent among the relatively small family of tropoloiso-quinoline alkaloids (Scheme 1). Considerable efforts have recently been devoted to the synthesis of isoquinolines, and nitrogen-containing directing group-assisted transition-metal catalyzed C–H activation seems to be a promising route to reach this goal.² Among the nitrogen-containing directing groups

Scheme 1. Structures of (R)-(+)-Crispine A, PK 11195, and Pareitropone

for C–H activation, oxime ester has been paid much attention due to its ready availability, easy removal and transformation.³ In this regard, transition-metal-catalyzed C–H annulation of acetophenone *O*-acetyl oximes with alkynes has been developed to access isoquinolines.⁴ However, such a protocol is limited to internal alkynes, and only a few examples using terminal alkynes have been reported.⁵ To synthesize isoquinolines, vinyl acetates,^{6a} 1,3-dienes,^{6b} and diazo compounds⁷ have been explored as the coupling partners to react with acetophenone

O-acetyl oximes through arene C–H annulation. Although progress has been achieved, more powerful and elegant synthetic methods are strongly desired in this area.

Allenes, which can exhibit high reactivity in comparison to similar alkenes, have been demonstrated as useful building blocks for the construction of complex skeletons.⁸ Much attention has been paid to allene-involved, transition-metalcatalyzed C–H transformations. In the relevant catalytic cycle, allene is usually inserted into the metal-carbon bond of an *in-situ* generated organometallic species to form an alkenyl-metal or π -allyl-metal intermediate. Protonation or β -hydride elimination then occurs to give an allylation⁹ or allenylation¹⁰ product. Coupling such an intermediate with the nucleophilic atom in the directing group has recently been documented to build a heterocycle. Various nitrogen-containing directing groups have

been explored in the C–H annulation with allenes for the synthesis of *N*-heterocycles. Ding^{11a} and Cramer,^{11b,c} et al. reported an imine-directed C–H annulation of ketimines with allenes for the synthesis of 1-aminoindanes, respectively. Wang group realized a

 allenes formed bicyclic and tricyclic heterocycles.¹² Transition-metal-catalyzed C-H annulation of arylamides with allenes have been well explored to produce diverse isoquinolones by Rao,¹³ Ackermann,^{10a,14} Volla,¹⁵ Glorius,¹⁶ Cheng¹⁷, Ma,^{10b,18} and other groups¹⁹. Cheng, et al. recently developed a cobalt(III)-catalyzed oxidative [3+3] annulation of anilides with allenes to access 1,2-dihydroquinolines (Scheme 2a).²⁰ However, this reaction required silver(I) salt Ag_2CO_3 as the external oxidant. It has been known that the N-O functionality of oximes can act as an internal oxidant in the relevant C–H functionalization reactions,^{4,5} and the C=N functionality in the C=N-OR moiety is a potential directing group. During our continuous investigation of C-H activation,²¹ we were intrigued by the structural features of O-acyl oximes, and reasonably envisioned the direct C-H annulation of aromatic O-acyl oximes with allenes. Herein, we disclose a rhodium(III)-catalyzed [4+2] annulation of acetophenone O-acetyl oximes with allenoates for the synthesis of isoquinoline derivatives under redox-neutral conditions (Scheme 2b).

Initially, the reaction of (E)-acetophenone O-acetyl oxime (1a) with ethyl 2-methylbuta-2,3-dienoate (2a) was conducted to screen the reaction conditions (Table 1). With 2 mol % RhCl₃·3H₂O/8 mol % AgSbF₆ as the catalyst, 20 mol % PivOH as the additive, the reaction of 1a with 2a in a 1:2 molar ratio did not occur in

 1,2-dichloroethane (DCE) at 60 °C for 24 h under a nitrogen atmosphere (Table 1, entry 1). Changing the catalyst to 2 mol % [Cp*RhCl₂]₂/8 mol % AgSbF₆ led to

Table 1. Optimiation of Reaction Conditions^a

	H OAc $+$ CO_2Et conditions N			
	✓ Н 1а	2a	CO ₂ E 3a	Ēt
entry	[Ag] (mol %)	PivOH (mol %)	Temp (°C)	yield ^b (%)
1 ^c	$AgSbF_{6}(8)$	20	60	0
2	$AgSbF_{6}(8)$	20	60	66
3	$AgPF_{6}(8)$	20	60	40
4	$AgBF_{4}(8)$	20	60	51
5	$AgSbF_6(9)$	20	60	87
6	$AgSbF_{6}(10)$	20	60	91
7	$AgSbF_6(11)$	20	60	90
8	$AgSbF_{6}(10)$	30	60	90
9	$AgSbF_{6}(10)$	10	60	88
10^d	$AgSbF_{6}(10)$	20	60	92 (86) ^e
11	$AgSbF_{6}(10)$	20	50	83
12	$AgSbF_{6}(10)$	20	70	92
13 ^f	$AgSbF_{6}(10)$	20	60	0
14		20	60	0
15	$AgSbF_6(10)$		60	86

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), $[Cp*RhCl_2]_2$ (2 mol %), DCE (2 mL), 0.1 MPa N₂, 60 °C, 24 h. ^{*b*} Determined by ¹H NMR analysis with 1,3,5-trimethyloxylbenzene as the internal standard. ^{*c*} RhCl₃·3H₂O (2 mol %) ^{*d*} **1a** (0.3 mmol), **2a** (0.6 mmol), DCE (3 mL). ^{*e*} Isolated yield given in parentheses. ^{*f*} Without $[Cp*RhCl_2]_2$.

isoquinoline derivative **3a** in 66% yield by ¹H NMR determination (Table 1, entry 2). Both silver salts AgPF₆ and AgBF₄ were less effective than AgSbF₆ (Table 1, entries 3 and 4). Use of 10 mol % AgSbF₆ improved the product yield to 91% (Table 1, entries 5-7). The highest yield (92%) was reached, and the target product was obtained in 86% isolated yield from a 0.3 mmol-scale reaction (Table 1, entry 10). Lowering the temperature to 50 °C diminished the yield to 83%, and elevating the temperature to 70 °C did not further enhance the product yield (Table 1, entries 11 and 12). The control experiments revealed that the reaction could not occur in the absence of [Cp*RhCl₂]₂ or AgSbF₆ (Table 1, entries 13 and 14). It is noteworthy that the reaction could also occur in the absence of PivOH to give product **3a** in 86% NMR yield (Table 1, entry 15). The reaction of **1a** and **2a** was conducted under the optimal conditions with 2 mol % Cp*Co(CO)I₂ as the catalyst, but the reaction did not occur.

Under the optimized conditions, the scope of *O*-acetyl oximes **1** was investigated (Table 2). The substituted acetophenone *O*-acetyl oximes also efficiently reacted with **2a** to form the target products of type **3**. The *para*-methoxy substituent on the aryl ring of acetophenone *O*-acetyl oxime **1b** facilitated formation of **3b** (92%). Due to presence of two different reactive sites on the aryl ring of *meta*-methoxy acetophenone-based oxime substrate **1c** two isomeric products **3c** (52%) and **3c'** (35%) were generated. However, *ortho*-MeO group exhibited an obvious steric effect on the yield of **3d** (43%), and the reaction had to be performed at an elevated temperature (80 °C). Both 4-methyl and 4-ethyl substituents facilitated the reaction to

 produce **3e** and **3f** (88-90%), respectively. The halogen substituents F, Cl, and Br deteriorated the reaction efficiency to yield **3g-i** (62-64%). It is noteworthy that

Table 2. Scope of O-Acetyl Oximes 1^a

^{*a*} Conditions: **1** (0.3 mmol), **2a** (0.6 mmol), [Cp*RhCl₂]₂ (0.006 mmol), AgSbF₆ (0.03 mmol), PivOH (0.06 mol), DCE (3 mL), 0.1 MPa N₂, 60 °C, 24 h. Yields refer to the isolated products. ^{*b*} 80 °C. ^{*c*} [Cp*RhCl₂]₂ (0.012 mmol), AgSbF₆ (0.06 mmol).

electron-withdrawing groups such as F and CO₂Me remarkably reduced the product yields of 3g (62%) and 3j (51%), respectively. The negative impact from the ortho-substituent was also observed that 2,5-dimethoxy-acetophenone O-acetyl oxime (11) reacted with 2a to give 31 (69%), while its 3,4-dimethyl-substituted analog 1k almost kept the same reactivity as 1a did, forming 3k in 84% yield. Both 2-acetonaphthone and 2-acetylfluorene O-acetyl oximes (1m and 1n) reacted efficiently with 2a, yielding 3m (80%) and 3n (80%), respectively. Increasing the steric hindrance of the acyl group in the starting ketones, that is, using propiophenone and benzophenone O-acetyl oximes 10 and 1p as the substrates, led to 30 and 3p in 78% and 68% yields, respectively, demonstrating a negative steric effect on the reaction efficiency. Unexpectedly, α -tetralone O-acetyl oxime 1g reacted well with 2a to afford tricyclic isoquinoline 3q (83%). It should be noted that (E)-1-(thiophen-3yl)ethanone O-acetyl oxime (1r) also efficiently reacted with 2a to exclusively produce the corresponding product 3r (79%). However, both 1-(benzofuran-2-yl)ethanone and 1-(thiophen-2-yl)ethanone O-acetyl oximes 1s and 1t did not react with 2a under the same conditions, which is presumably attributed to the bidentate coordination of the vicinal N,O or N,S heteroatoms in the oxime substrate 1s or 1t to the rhodium atom of the catalyst that inhibits activation of the ortho-(hetero)arene C-H bond by the catalyst. The molecular structure of compound 3j was further confirmed by the X-ray single crystal crystallographic determination (See the Supporting Information for details). It should be noted that in the cases of using p-NO₂, p-CN, and p-CF₃-substituted aryl oxime derivatives as the substrates, the

 reactions with 2a could not effectively occur and no target products were obtained. *N*-Hetercycles such as (*E*)-1-(pyridin-4-yl)ethanone and (*E*)-1-(1-benzyl-1H-indol-3-yl)ethanone *O*-acetyl oximes could not react with 2a under the same conditions either.

^{*a*} Conditions: **1b** (0.3 mmol), **2** (0.6 mmol), $[Cp*RhCl_2]_2$ (0.006 mmol), AgSbF₆ (0.03 mmol), PivOH (0.06 mol), DCE (3 mL), 0.1 MPa N₂, 60 °C, 24 h. Yields refer to the isolated products. ^{*b*} [Cp*RhCl₂]₂ (0.012 mmol), AgSbF₆ (0.06 mmol).

Next, the protocol generality was investigated by testing various allenoates 2 as the coupling partners (Table 3). With *para*-methoxy-acetophenone O-acetyl oxime 1b as the substrate, its reactions with n-propyl, isopropyl, benzyl, and tert-butyl allenoates 2b-d efficiently underwent to afford the corresponding isoquinoline products 4a-d (81-93%), respectively, only tert-butyl group exhibited an obvious steric effect. Altering the 2-substituent of allenoates to ethyl, n-butyl, n-hexyl or isopentyl diminished the product yields of 4e-h to 57-79%, demonstrating a negative steric effect in comparison to the formation of 3b (92%, see Table 2). Ethyl 2-benzylbuta-2,3-dienoate (2i) exhibited a good reactivity to 1b, producing the target product 4i in 86% yield. Diethyl 2-vinylidenesuccinate (2k) also underwent the reaction well with 1b to form 4j (78%). Unexpectedly, ethyl penta-2,3-dienoate (21) reacted with 1b to afford two separable isomers 4k (50%) and 4k' (43%), and ethyl 5-phenylpenta-2,3-dienoate (2m) behaved the same way to yield separable 4l (84%) and 4l' (14%). However, unsubstituted allenoate 2n only exhibited a poor reactivity to undergo the reaction with 1b, giving 4m in 44% yield, while the reaction of 2d with 1b formed 4c in an excellent yield (91%). This result suggests that a 2-substituent is crucial to efficiently execute the desired reaction. Buta-2,3-dien-2-ylbenzene (20) was also tested as the substrate to react with 1b, generating the target product 4n in 47% yield, implicating that a terminal ester group is also a crucial functionality in the allene-type substatrates 2. It is noteworthy that electron-donating group-substituted

allenes such as 1,1-dimethylallene, methoxy allene, and cyclohexylallene could not undergo the same type of annulation reactions with **1b** to give the corresponding products **40-p** under the stated conditions.

To demonstrate the utility of the synthetic protocol, a gram-scale reaction of oxime **1b** and allenoate **2a** was performed, affording the target product **3b** in 92% yield (eq 1). Chemoselective reduction of isoquinolines **3a** and **3b** was readily conducted to give the corresponding alcohols **5a** (62%) and **5b** (64%), respectively (eq 2).

 To gain insight into the reaction mechanism, control experiments were carried out. Significant H/D exchange was observed for the *ortho* C–H of the aryl ring in (*E*)-acetophenone *O*-acetyl oxime (**1a**) in the presence of PivOD under the reaction conditions, revealing reversibility of the C–H bond cleavage (Scheme 3a). The kinetic isotope effect (KIE) was measured from the parallel experiments using **1a** and its deuterated form **1a**- d_5 with **2a** as the coupling partner (Scheme 3b). A primary isotope effect was obtained with $k_H/k_D = 3.2$, which suggests that arene C–H bond activation/cleavage is likely involved in the rate-determining step in the overall catalytic cycle.

A plausible mechanism^{13-18,24} is proposed in Scheme 4. With the assistance of coordination of the oxime moiety to the rhodium center, cyclorhodation of **1a** initially occurs to form intermediate **A**. The rhodium center is then coordinated by allenoate **2a** to give Rh(III) cation intermediate **B**. Regioselective migratory insertion of the

activated allenoate into the Rh–C(aryl) bond delivers a seven-membered rhodacycle intermediate **C**. Subsequent C–N bond formation and N–O bond cleavage of intermediate **C** affords intermediate **D** and regenerates the catalytically active Rh(III) species, accomplishing a catalytic cycle. Eventually, intermediate **D** undergoes 1,3-hydrogen shift^{13,15} to accompolish aromatization, yielding the more stable product **3a**.

In summary, we have successfully realized rhodium(III)-catalyzed C–H annulation of acetophenone *O*-acetyl oximes with allenoates to efficiently access isoquinoline derivatives under redox-neutral conditions. The [4+2] annulation reaction proceeds with high regioselectivities, broad scopes, and avoids metal salts as the external oxidants. The present synthetic protocol provides a convenient and mild route to functionalized isoquinolines.

EXPERIMENTAL SECTION

General Considerations. The solvents were dried and distilled prior to use by the literature methods. ¹H and ¹³C{¹H} NMR spectra were recorded on a 400 MHz spectrometer and all chemical shift values refer to $\delta_{TMS} = 0.00$ ppm or CDCl₃ (δ (¹H), 7.26 ppm and δ (¹³C), 77.16 ppm). The HRMS analysis was obtained on a GC-TOF mass spectrometer. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Known compounds **1a** and **1b**,^{4b} **1c** and **1d**,^{4f} **1e**-**i**,^{4b} **1j**,²² **1k** and **1m**,²³ **1n**,²⁴ **1o**,^{4b} **1p**,^{4f} **1q** and **1r**^{4b} **1t**,^{4f} **2a**, **2d**, and **2f-m**,²⁵ **2n**,²⁶ and **2o**²⁵ were prepared by the literature procedures, and their spectroscopic features are in good agreement with those reported in the literatures.

General Procedure for the Synthesis of Acetophenone O-Acetyl Oximes (1). A

mixture of the aryl ketone (5 mmol), NH₂OH·HCl (521 mg, 7.5 mmol) and pyridine (1.1 mL, 14 mmol) in 2 mL EtOH was stirred at 60 °C for 1 h. After cooled to ambient temperature, the reaction was quenched by water (10 mL). The resultant mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with aqueous 1 N HCl (2×10 mL), dried over anhydrous MgSO₄, filtered, and evaporated all the volatiles under reduced pressure. The resultant residue was treated with Ac₂O (0.9 mL, 10 mmol) and a catalytic amount of 4-dimethylaminopyridine (1.2 mg, 0.01 mmol) in pyridine (2.5 mL) with stirring at ambient temperature for 1 h. The reaction was then quenched by water (10 mL) and the mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with aqueous 1 N HCl (2×10 mL), dried over anhydrous MgSO₄, filtered, and evaporated all the volatiles under reduced pressure and the mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with aqueous 1 N HCl (2×10 mL), dried over anhydrous MgSO₄, filtered, and evaporated all the volatiles under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ether = 10:1, v/v) to afford **1**.

(*E*)-1-(2,5-Dimethoxyphenyl)ethanone O-acetyl oxime (11). 0.87 g, 74% yield; white solid; m.p. 76-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.89 (m, 2 H), 6.82 (d, J =8.7 Hz, 1 H), 3.75 (d, J = 5.7 Hz, 6 H), 2.30 (s, 3 H), 2.21 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.9, 164.7, 153.4, 151.7, 125.9, 116.4, 115.2, 112.4, 56.1, 55.9, 19.8, 17.7. HRMS (EI) calcd for C₁₂H₁₅NO₄ [M+H]⁺: 238.1079; Found: 238.1079.

(E)-1-(Benzofuran-2-yl)ethanone O-acetyl oxime (1s): 0.81 g, 74% yield; white

 solid; m.p. 82-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.8 Hz, 1 H), 7.55 (d, J = 8.3 Hz, 1 H), 7.37 (t, J = 7.3 Hz, 1 H), 7.26 (m, 2 H), 2.41 (s, 3 H), 2.29 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.3, 155.7, 154.4, 150.0, 127.6, 126.9, 123.5, 121.9, 112.1, 109.9, 19.7, 13.4. HRMS (EI) calcd for C₁₂H₁₁NO₃ [M+H]⁺: 218.0817; Found: 218.0819.

General Procedure for the Synthesis of Allenoates (2). A mixture of the corresponding basified ylied (31 mmol) and CH₃I (5.7 g, 40 mmol) in 50 mL chloroform was stirred at reflux for 25 h. After cooled to ambient temperature, the mixture was evaporated all the volatiles under reduced pressure. 50 mL CH₂Cl₂ and Et₃N (6.3 g, 62 mmol) were then added with stirring, and followed by slow addition of acetyl chloride (2.9 g, 37 mmol) at 0 °C over half an hour. The reaction mixture was allowed to warm up to ambient temperature and stirred overnight. After evaporated all the volatiles under reduced pressure, the resulting residue was dissolved in 100 mL petroleum ether (60-90 °C), stirred for 2 h, and filtered. The filtrate was evaporated all the volatiles under reduced pressure and purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ether = 20:1, v/v) to afford **2**.

Propyl 2-methylbuta-2,3-dienoate (2b): 2.4 g, 57% yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.04 (q, J = 3.2 Hz, 2 H), 4.08 (t, J = 6.7 Hz, 2 H), 1.85 (t, J = 3.2 Hz, 3 H), 1.65 (m, 2 H), 0.92 (t, J = 7.4 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 214.1, 167.7, 95.6, 77.8, 66.6, 22.1, 14.8, 10.4. HRMS (EI) calcd for C₈H₁₂O₂ [M+H]⁺: 141.0916; Found: 141.0915.

Isopropyl 2-methylbuta-2,3-dienoate (**2***c*): 2.8 g, 67% yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 5.00 (m, 3 H), 1.82 (t, *J* = 3.2 Hz, 3 H), 1.21 (d, *J* = 6.3 Hz, 6 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 214.0, 167.1, 95.8, 77.7, 68.3, 21.8, 14.8. HRMS (EI) calcd for C₈H₁₂O₂ [M+H]⁺: 141.0916; Found: 141.0913.

tert-Butyl 2-methylbuta-2,3-dienoate (2e): 1.6 g, 52% yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.99 (q, J = 3.2 Hz, 2 H), 1.82 (t, J = 3.2 Hz, 3 H), 1.46 (s, 9 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 214.0, 167.0, 96.9, 80.9, 77.4, 28.2, 14.8. HRMS (EI) calcd for C₉H₁₄O₂ [M+H]⁺: 155.1072; Found: 155.1073.

A Typical Procedure for the Synthesis of 3 and 4 – *Synthesis of Ethyl* 2-(1-Methylisoquinolin-3-yl)propanoate (3a): A mixture of 1a (53 mg, 0.3 mmol), allenoate 2a (76 mg, 0.6 mmol), $[Cp*RhCl_2]_2$ (3.7 mg, 0.006 mmol), AgSbF₆ (10.3 mg, 0.03 mmol), and PivOH (6.1 mg, 0.06 mmol) in 3 mL 1,2-dichloroethane (DCE) was stirred at 60 °C for 24 h under a nitrogen atmosphere. After cooled to ambient temperature, the mixture was evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 10:1, v/v) to afford 3a as a colorless liquid (63 mg, 86%).

Ethyl 2-(1-methylisoquinolin-3-yl)propanoate (3a): 62 mg, 86% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 1), 7.74 (d, J = 8.2 Hz, 1 H), 7.61 (t, J = 7.1 Hz, 1 H), 7.52 (m, 1 H), 7.46 (s, 1 H), 4.17 (qd, J = 7.1, 2.3 Hz, 2 H), 4.04 (q, J = 7.2 Hz, 1 H), 2.92 (s, 3 H), 1.62 (d, J = 7.2 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). ¹³C{¹H}</sup> NMR (100 MHz, CDCl₃) δ 174.4, 158.5, 152.6, 136.6, 130.0, 127.3,

126.7, 126.5, 125.6, 116.2, 60.8, 47.8, 22.4, 17.8, 14.2. HRMS (EI) calcd for C₁₅H₁₇NO₂ [M+H]⁺: 244.1338; Found: 244.1337.

Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)propanoate (3b): 75 mg, 92% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 9.2 Hz, 1 H), 7.45 (s, 1 H), 7.18 (dd, *J* = 9.2, 2.5 Hz, 1 H), 7.03 (d, *J* = 2.4 Hz, 1 H), 4.16 (m, 3 H), 3.91 (s, 3 H), 2.94 (s, 3 H), 1.60 (d, *J* = 7.2 Hz, 3 H), 1.19 (t, *J* = 7.1 Hz, 3 H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 174.4, 160.6, 157.8, 153.2, 138.7, 127.4, 122.1, 119.4, 115.6, 104.9, 60.8, 55.4, 47.8, 22.2, 17.8, 14.2. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443; Found: 274.1443.

Ethyl 2-(5-methoxy-1-methylisoquinolin-3-yl)propanoate (3c): 43 mg, 52% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1 H), 7.61 (d, *J* = 8.5 Hz, 1 H), 7.42 (t, *J* = 8.1 Hz, 1 H), 6.94 (d, *J* = 7.7 Hz, 1 H), 4.17 (m, 2 H), 4.05 (q, *J* = 7.2 Hz, 1 H), 3.97 (s, 3 H), 2.91 (s, 3 H), 1.62 (d, *J* = 7.2 Hz, 3 H), 1.21 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 157.8, 154.9, 152.3, 129.2, 127.2, 126.6, 117.4, 110.6, 107.3, 60.7, 55.6, 48.0, 22.7, 17.8, 14.2. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443; Found: 274.1442.

Ethyl 2-(7-methoxy-1-methylisoquinolin-3-yl)propanoate (3c): 28 mg, 35% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.9 Hz, 1 H), 7.40 (s, 1 H), 7.28 (m, 2 H), 4.16 (m, *J* = 7.1, 3.0 Hz, 2 H), 4.00 (q, *J* = 7.2 Hz, 1 H), 3.93 (s, 3 H), 2.88 (s, 3 H), 1.60 (d, *J* = 7.2 Hz, 3 H), 1.21 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.6, 158.1, 156.7, 150.7, 132.2, 128.9, 127.5, 122.7, 116.0, 103.6, 60.8, 55.5, 47.6, 22.5, 17.9, 14.3. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443;

Found: 274.1446.

Ethyl 2-(8-methoxy-1-methylisoquinolin-3-yl)propanoate (3d): 35 mg, 43% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, *J* = 8.0 Hz, 1 H), 7.36 (s, 1 H), 7.29 (d, *J* = 8.1 Hz, 1 H), 6.83 (d, *J* = 7.8 Hz, 1 H), 4.17 (q, *J* = 7.1 Hz, 2 H), 3.99 (m, 4 H), 3.07 (s, 3 H), 1.60 (d, *J* = 7.2 Hz, 3 H), 1.22 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 158.4, 158.2, 152.7, 139.6, 130.3, 119.6, 119.4, 115.8, 106.0, 60.8, 55.5, 47.7, 28.8, 17.7, 14.3. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443; Found: 274.1441.

Ethyl 2-(1,6-dimethylisoquinolin-3-yl)propanoate (3e): 68 mg, 88% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.6 Hz, 1 H), 7.51 (s, 1 H), 7.35 (m, 2 H), 4.17 (m, 2 H), 4.02 (q, J = 7.2 Hz, 1 H), 2.89 (s, 3 H), 2.50 (s, 3 H), 1.61 (d, J = 7.2 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 158.1, 152.6, 140.2, 137.0, 128.9, 126.2, 125.4, 124.9, 115.8, 60.8, 47.8), 22.3, 21.9, 17.8, 14.2. HRMS (EI) calcd for C₁₆H₁₉NO₂ [M+H]⁺: 258.1494; Found: 258.1490.

Ethyl 2-(6-ethyl-1-methylisoquinolin-3-yl)propanoate (**3***f*): 73 mg, 90% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 1 H), 7.53 (s, 1 H,), 7.38 (m, 2 H), 4.17 (m, 2 H), 4.02 (q, J = 7.2 Hz, 1 H), 2.89 (s, 3 H), 2.80 (q, J = 7.6Hz, 2 H), 1.61 (d, J = 7.2 Hz, 3 H), 1.30 (t, J = 7.6 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 158.0, 152.6, 146.3, 137.0, 127.9, 125.5, 125.1, 124.9, 115.9, 60.7, 47.8, 29.1, 22.3, 17.8, 15.2, 14.2. HRMS (EI) calcd for C₁₇H₂₁NO₂ [M+H]⁺: 272.1651; Found: 272.1648.

Ethyl 2-(6-fluoro-1-methylisoquinolin-3-yl)propanoate (3g): 48 mg, 62% yield;

 colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 9.2, 5.5 Hz, 1 H), 7.41 (s, 1 H), 7.35 (dd, J = 9.4, 2.5 Hz, 1 H), 7.28 (td, J = 8.8, 2.9 Hz, 1 H), 4.18 (m, 2 H), 4.01 (q, J = 7.2 Hz, 1 H), 2.91 (s, 3 H), 1.60 (d, J = 7.2 Hz, 3 H), 1.22 (t, J = 7.1 Hz, 3 H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 174.2, 163.15 (d, J = 251.8 Hz), 158.4 (d, J = 0.9 Hz), 153.8, 138.4 (d, J = 10.3 Hz), 128.7 (d, J = 9.6 Hz), 123.7, 117.0 (d, J = 25.1 Hz), 116.0 (d, J = 5.0 Hz), 110.5 (d, J = 20.5 Hz), 60.9, 47.8, 22.5, 17.7, 14.3. HRMS (EI) calcd for C₁₅H₁₆FNO₂ [M+H]⁺: 262.1243; Found: 262.1245.

Ethyl 2-(6-chloro-1-methylisoquinolin-3-yl)propanoate (3h): 53 mg, 64% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 1 H), 7.69 (d, J = 2.1 Hz, 1 H), 7.41 (dd, J = 8.9, 2.1 Hz, 1 H), 7.35 (s, 1 H), 4.16 (m, 2 H), 4.00 (q, J = 7.2 Hz, 1 H), 2.87 (s, 3 H), 1.59 (d, J = 7.2 Hz, 3 H), 1.20 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.1, 158.6, 153.9, 137.6, 136.2, 127.7, 127.4, 126.0, 124.7, 115.5, 60.9, 47.8, 22.4, 17.7, 14.3. HRMS (EI) calcd for C₁₅H₁₆ClNO₂ [M+H]⁺: 278.0948; Found: 278.0950.

Ethyl 2-(6-bromo-1-methylisoquinolin-3-yl)propanoate (3i): 61 mg, 64% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 5.3, 3.4 Hz, 2 H), 7.59 (dd, J = 9.0, 1.8 Hz, 1 H), 7.36 (s, 1 H), 4.17 (m, 2 H), 4.02 (q, J = 7.2 Hz, 1 H), 2.90 (s, 3 H), 1.60 (d, J = 7.2 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.1, 158.7, 153.9, 137.9, 130.3, 129.4, 127.4, 125.0, 124.8, 115.4, 61.0, 47.9, 22.4, 17.7, 14.3. HRMS (EI) calcd for C₁₅H₁₆BrNO₂ [M+H]⁺: 322.0443; Found: 322.0443.

Methyl 3-(1-ethoxy-1-oxopropan-2-yl)-1-methylisoquinoline-6-carboxylate (3j):

46 mg, 51% yield; white solid; m.p. 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1 H), 8.10 (m, 2 H), 7.54 (s, 1 H), 4.17 (q, *J* = 7.0 Hz, 2 H), 4.03 (m, 4 H), 2.94 (s, 3 H), 1.62 (d, *J* = 7.2 Hz, 3 H), 1.22 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.1, 166.6, 158.7, 153.6, 136.0, 131.2, 130.1, 128.0, 126.2, 126.0, 117.2, 60.9, 52.6, 47.8, 22.5, 17.7, 14.3. HRMS (EI) calcd for C₁₇H₁₉NO₄ [M+H]⁺: 302.1392; Found: 302.1394.

Ethyl 2-(1,6,7-trimethylisoquinolin-3-yl)propanoate (**3k**): 68 mg, 84% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1 H), 7.49 (s, 1 H), 7.34 (s, 1 H), 4.17 (m, 2 H), 4.01 (q, J = 7.2 Hz, 1 H), 2.88 (s, 3 H), 2.43 (s, 3 H), 2.41 (s, 3 H), 1.60 (d, J = 7.2 Hz, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.5, 157.3, 151.8, 140.2, 136.5, 135.6, 126.7, 125.8, 125.0, 115.3, 60.7, 47.8), 22.3, 20.5, 20.4, 17.8, 14.2. HRMS (EI) calcd for C₁₇H₂₁NO₂ [M+H]⁺: 272.1651; Found: 272.1654.

Ethyl 2-(5,8-dimethoxy-1-methylisoquinolin-3-yl)propanoate (**31**): 63 mg, 69% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1 H), 6.81 (d, J = 8.5 Hz, 1 H), 6.69 (d, J = 8.5 Hz, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 4.02 (q, J = 7.2 Hz, 1 H), 3.89 (d, J = 13.7 Hz, 6 H), 3.06 (s, 3 H), 1.60 (d, J = 7.2 Hz, 3 H), 1.20 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 157.8, 152.6, 151.8, 148.4, 131.3, 119.6, 109.9, 107.4, 105.1, 60.7, 55.8, 55.7, 47.9, 28.6, 17.6, 14.2. HRMS (EI) calcd for C₁₇H₂₁NO₄ [M+H]⁺: 304.1549; Found: 304.1549.

Ethyl 2-(1-methylbenzo[g]isoquinolin-3-yl)propanoate (3m): 70 mg, 80% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1 H), 8.25 (s, 1 H), 8.02 (d, *J* =

 8.3 Hz, 1 H), 7.94 (d, J = 8.4 Hz, 1 H), 7.49 (m, 3 H), 4.22 (q, J = 7.1 Hz, 2 H), 4.08 (q, J = 7.1 Hz, 1 H), 3.05 (s, 3 H), 1.68 (d, J = 7.2 Hz, 3 H), 1.25 (t, J = 7.1 Hz, 3 H).
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.5, 160.1, 150.3, 134.0, 132.9, 131.9, 129.1, 127.8, 127.3, 125.8, 125.5, 125.3, 125.0, 115.5, 60.8, 47.7, 22.8, 17.6, 14.3. HRMS (EI) calcd for C₁₉H₁₉NO₂ [M+H]⁺: 294.1494; Found: 294.1494.

Ethyl 2-(1-methyl-10H-indeno[1,2-g]isoquinolin-3-yl)propanoate (**3n**): 79 mg, 80% yield; pale yellow solid; m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1 H), 7.99 (s, 1 H), 7.87 (m, 1 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.39 (m, 2 H), 4.22 (m, 2 H), 4.08 (q, J = 7.2 Hz, 1 H), 3.99 (s, 2 H), 2.93 (s, 3 H), 1.67 (d, J = 7.2 Hz, 3 H), 1.26 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.5, 157.9, 152.0, 144.3, 144.1, 142.0, 140.2, 136.3, 128.5, 127.2, 125.8, 125.4, 121.2, 121.0, 116.8, 116.5, 60.8, 47.7, 36.6, 22.6, 17.8, 14.3. HRMS (EI) calcd for C₂₂H₂₁NO₂ [M+H]⁺: 332.1651; Found: 332.1652.

Ethyl 2-(1-ethylisoquinolin-3-yl)propanoate (**3***o*): 60 mg, 78% yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 1 H), 7.76 (d, *J* = 8.2 Hz, 1 H), 7.61 (m, 1 H), 7.52 (m, 1 H), 7.45 (s, 1 H), 4.18 (q, *J* = 7.1 Hz, 2 H), 4.05 (q, *J* = 7.2 Hz, 1 H), 3.30 (q, *J* = 7.5 Hz, 2 H), 1.63 (d, *J* = 7.2 Hz, 3 H), 1.41 (t, *J* = 7.6 Hz, 3 H), 1.22 (t, *J* = 7.1 Hz, 3 H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 162.9, 152.7, 137.0, 129.8, 127.5, 126.6, 125.6, 125.2, 116.1, 60.7, 47.8, 28.4, 17.7, 14.3, 13.7. HRMS (EI) calcd for C₁₆H₁₉NO₂ [M+H]⁺: 258.1494; Found: 258.1496.

Ethyl 2-(1-phenylisoquinolin-3-yl)propanoate (3p): 62 mg, 68% yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 1 H), 7.85 (d, J = 8.2 Hz, 1

 H), 7.68 (m, 4 H), 7.52 (m, 4 H), 4.21 (m, 3 H), 1.69 (d, J = 7.2 Hz, 3 H), 1.25 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 160.3, 153.0, 139.6, 137.7, 130.2, 130.1, 128.6, 128.4, 127.6, 127.1, 126.9, 125.7, 117.0, 60.9, 47.9, 18.0, 14.3. HRMS (EI) calcd for C₂₀H₁₉NO₂ [M+H]⁺: 306.1494; Found: 306.1495.

Ethyl 2-(8,9-dihydro-7H-benzo[de]quinolin-2-yl)propanoate (3q): 67 mg, 83% yield; pale yellow solid; m.p. 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 2 H), 7.42 (s, 1 H), 7.25 (d, *J* = 6.7 Hz, 1 H), 4.18 (m, 2 H), 4.03 (q, *J* = 7.2 Hz, 1 H), 3.22 (m, 2 H), 3.07 (t, *J* = 6.1 Hz, 2 H), 2.16 (m, 2 H), 1.61 (d, *J* = 7.2 Hz, 3 H), 1.21 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 160.1, 152.6, 138.7, 136.8, 130.0, 124.6, 124.4, 124.2, 115.8, 60.8, 47.9, 34.4, 30.5, 23.3, 17.8, 14.2. HRMS (EI) calcd for C₁₇H₁₉NO₂ [M+H]⁺: 270.1494; Found: 270.1496.

Ethyl 2-(4-methylthieno[3,4-c]pyridin-6-yl)propanoate (3r): 59 mg, 79% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1 H), 7.39 (s, 2 H), 4.15 (m, 2 H), 4.01 (q, *J* = 7.2 Hz, 1 H), 2.80 (s, 3 H), 1.58 (d, *J* = 7.2 Hz, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.2, 153.6, 153.0, 148.0, 133.5, 126.3, 122.0, 112.7, 60.9, 48.0, 22.8, 18.0, 14.2. HRMS (EI) calcd for C₁₃H₁₅NO₂S [M+H]⁺: 250.0902; Found: 250.0903.

Propyl 2-(6-methoxy-1-methylisoquinolin-3-yl)propanoate (4a): 80 mg, 93% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.2 Hz, 1 H), 7.36 (s, 1 H), 7.14 (dd, J = 9.2, 2.5 Hz, 1 H), 7.00 (d, J = 2.5 Hz, 1 H), 4.07 (m, 2 H), 4.01 (q, J = 7.2 Hz, 1 H), 3.90 (s, 3 H), 2.86 (s, 3 H), 1.60 (m, 5 H), 0.84 (t, J = 7.4 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.5, 160.6, 157.7, 153.3, 138.7, 127.4, 122.1,

 119.4, 115.7, 104.9, 66.4, 55.5, 47.8, 22.2, 22.0, 17.8, 10.3. HRMS (EI) calcd for C₁₇H₂₁NO₃ [M+H]⁺: 288.1600; Found: 288.1598.

Isopropyl 2-(6-methoxy-1-methylisoquinolin-3-yl)propanoate (4b): 77 mg, 90% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 9.2 Hz, 1 H), 7.36 (s, 1 H), 7.14 (dd, J = 9.2, 2.6 Hz, 1 H), 7.01 (d, J = 2.5 Hz, 1 H), 5.06 (hept, J = 6.3 Hz, 1 H), 3.96 (q, J = 7.2 Hz, 1 H), 3.91 (s, 3 H), 2.86 (s, 3 H), 1.58 (d, J = 7.2 Hz, 3 H), 1.23 (d, J = 6.3 Hz) and 1.16 (d, J = 6.2 Hz) (3:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.0, 160.6, 157.7, 153.5, 138.7, 127.4, 122.1, 119.4, 115.6, 104.9, 68.0, 55.5, 47.9, 22.3, 21.9, 21.7, 17.9. HRMS (EI) calcd for C₁₇H₂₁NO₃ [M+H]⁺: 288.1600; Found: 288.1599.

Benzyl 2-(6-*methoxy-1-methylisoquinolin-3-yl)propanoate* (4*c*): 91 mg, 91% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 9.2 Hz, 1 H), 7.29 (m, 6 H), 7.16 (dd, J = 9.1, 2.4 Hz, 1 H), 6.96 (d, J = 2.4 Hz, 1 H), 5.19 (m, 2 H), 4.09 (q, J = 7.2 Hz, 1 H), 3.91 (s, 3 H), 2.87 (s, 3 H), 1.64 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.2, 160.6, 157.8, 153.0, 138.7, 136.3, 128.4, 128.0, 128.0, 127.4, 122.1, 119.4, 115.8, 104.9, 66.4, 55.5, 47.8, 22.3, 17.7. HRMS (EI) calcd for C₂₁H₂₁NO₃ [M+H]⁺: 336.1600; Found: 336.1599.

tert-Butyl 2-(6-methoxy-1-methylisoquinolin-3-yl)propanoate (4d): 73 mg, 81% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.2 Hz,1 H), 7.35 (s, 1 H), 7.12 (dd, J = 9.2, 2.5 Hz, 1 H), 7.00 (d, J = 2.5 Hz, 1 H), 3.90 (m, 4 H), 2.85 (s, 3 H), 1.54 (d, J = 7.2 Hz, 3 H), 1.42 (s, 9 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.8, 160.5, 157.5, 153.8, 138.7, 127.4, 122.0, 119.3, 115.4, 104.8, 80.5, 55.4, 48.6,

28.1, 22.2, 17.9. HRMS (EI) calcd for C₁₈H₂₃NO₃ [M+H]⁺: 302.1756; Found: 302.1759.

 Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)butanoate (4e): 67 mg, 78% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.2 Hz, 1 H), 7.40 (s, 1 H), 7.13 (dd, J = 9.2, 2.5 Hz, 1 H), 7.01 (d, J = 2.4 Hz, 1 H), 4.16 (m, 2 H), 3.89 (s, 3 H), 3.78 (m, 1 H), 2.86 (s, 3 H), 2.15 and 2.00 (m each, 1:1 H), 1.21 (t, J = 7.1 Hz, 3 H), 0.95 (t, J = 7.4 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.9, 160.6, 157.7, 152.0, 138.6, 127.4, 122.2, 119.4, 116.2, 104.8, 60.7, 55.5, 55.4, 26.2, 22.3, 14.3, 12.3. HRMS (EI) calcd for C₁₇H₂₁NO₃ [M+H]⁺: 288.1600; Found: 288.1601.

Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)hexanoate (4f): 75 mg, 79% yield; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 9.2 Hz, 1 H), 7.41 (s, 1 H), 7.13 (dd, *J* = 9.2, 2.5 Hz, 1 H), 7.01 (d, *J* = 2.5 Hz, 1 H), 4.15 (m, 2 H), 3.90 (s, 3 H), 3.85 (dd, *J* = 8.2, 7.1 Hz, 1 H), 2.86 (s, 3 H), 2.13 and 1.96 (m each, 1:1 H), 1.32 (m, 4 H), 1.21 (t, *J* = 7.1 Hz, 3 H), 0.87 (t, *J* = 7.0 Hz, 3 H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 174.0, 160.6, 157.7, 152.2, 138.6, 127.4, 122.2, 119.4, 116.1, 104.8, 60.7, 55.4, 53.9, 32.7, 30.0, 22.7, 22.3, 14.3, 14.0. HRMS (EI) calcd for C₁₉H₂₅NO₃ [M+H]⁺: 316.1913; Found: 316.1911.

Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)octanoate (**4g**): 66 mg, 64% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 9.2 Hz, 1 H), 7.41 (s, 1 H), 7.14 (dd, J = 9.2, 2.4 Hz, 1 H), 7.01 (d, J = 2.4 Hz, 1 H), 4.16 (m, 2 H), 3.91 (s, 3 H), 3.86 (m, 1 H), 2.86 (s, 3 H), 2.12 and 1.95 (m each, 1:1 H), 1.27 (m, 11 H), 0.85 (t, J = 6.8 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.1, 160.6, 157.7, 152.2, 138.7,

 127.4, 122.2, 119.4, 116.2, 104.9, 60.7, 55.5, 53.9, 33.0, 31.7, 29.2, 27.7, 22.7, 22.3, 14.3, 14.2. HRMS (EI) calcd for C₂₁H₂₉NO₃ [M+H]⁺: 344.2226; Found: 344.2224.

Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)-5-methylhexanoate (4h): 57 mg, 57% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 9.2 Hz, 1 H), 7.41 (s, 1 H), 7.14 (dd, *J* = 9.2, 2.5 Hz, 1 H), 7.02 (d, *J* = 2.5 Hz, 1 H), 4.16 (m, 2 H), 3.91 (s, 3 H), 3.82 (dd, *J* = 8.3, 6.9 Hz, 1 H), 2.87 (s, 3 H), 2.13, 1.96 (m each, 1:1 H), 1.57 (m, 1 H), 1.22 (m, 5 H), 0.87 (dd, *J* = 6.6, 5.2 Hz, 6 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.1, 160.6, 157.7, 152.2, 138.7, 127.4, 122.2, 119.4, 116.2, 104.9, 60.7, 55.5, 54.2, 36.9, 31.0, 28.1, 22.6, 22.3, 14.3. HRMS (EI) calcd for C₂₀H₂₇NO₃ [M+H]⁺: 330.2069; Found: 330.2067.

Ethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)-3-phenylpropanoate (**4i**): 90 mg, 86% yield; pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 9.2 Hz, 1 H), 7.39 (s, 1 H), 7.23 (m, 4 H), 7.17 (m, 2 H), 7.00 (d, J = 2.5 Hz, 1 H), 4.21 (m, 1 H), 4.10 (m, 2 H), 3.91 (s, 3 H), 3.47 (dd, J = 13.8, 8.9 Hz) and 3.34 (dd, J = 13.8, 6.6 Hz) (1:1 H), 2.90 (s, 3 H), 1.12 (t, J = 7.1 Hz, 3 H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 173.1, 160.6, 157.9, 151.2, 139.5, 138.6, 129.1, 128.3, 127.4, 126.3, 122.2, 119.5, 116.7, 104.9, 60.8, 55.5, 55.4, 38.7, 22.3, 14.1. HRMS (EI) calcd for C₂₂H₂₃NO₃ [M+H]⁺: 350.1756; Found: 350.1754.

Diethyl 2-(6-methoxy-1-methylisoquinolin-3-yl)succinate (4j): 81 mg, 78% yield; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 9.2 Hz, 1 H), 7.35 (s, 1 H), 7.13 (dd, *J* = 9.2, 2.5 Hz, 1 H), 6.98 (d, *J* = 2.5 Hz, 1 H), 4.34 (dd, *J* = 9.4, 5.6 Hz, 1 H), 4.16 (m, 4 H), 3.89 (s, 3 H), 3.26 and 2.92 (m each, 1:1 H), 2.83 (s, 3 H), 1.20 (td, *J* =

7.1, 4.7 Hz, 6 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.6, 171.9, 160.7, 158.1, 150.3, 138.5, 127.3, 122.2, 119.6, 116.8, 104.8, 61.1, 60.6, 55.4, 49.4, 36.8, 22.2, 14.2, 14.1. HRMS (EI) calcd for C₁₉H₂₃NO₅ [M+H]⁺: 346.1654; Found: 346.1655.

Ethyl 4-ethyl-6-methoxy-1-methylisoquinoline-3-carboxylate (4k): 41 mg, 50% yield; pale yellow solid; m.p. 77-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 9.1 Hz, 1 H), 7.30 (d, *J* = 2.4 Hz, 1 H), 7.25 (dd, *J* = 9.1, 2.4 Hz, 1 H), 4.48 (q, *J* = 7.1 Hz, 2 H), 3.95 (s, 3 H), 3.12 (q, *J* = 7.5 Hz, 2 H), 2.88 (s, 3 H), 1.43 (t, *J* = 7.1 Hz, 3 H), 1.35 (t, *J* = 7.5 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.2, 160.9, 156.2, 141.8, 136.9, 131.3, 128.2, 123.7, 119.8, 103.1, 61.7, 55.5, 22.5, 21.8, 15.0, 14.4. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443; Found: 274.1444.

Ethyl 2-(6-methoxy-1,4-dimethylisoquinolin-3-yl)acetate (4k'): 35 mg, 43% yield; yellow solid; m.p. 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.5, 1.0 Hz, 1 H), 7.16 (m, 2 H), 4.17 (q, J = 7.1 Hz, 2 H), 4.02 (s, 2 H), 3.94 (s, 3 H), 2.84 (s, 3 H), 2.49 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.3, 160.6, 155.3, 144.8, 138.1, 128.0, 123.1, 122.1, 118.4, 102.1, 60.9, 55.4, 42.3, 22.1, 14.3, 14.3. HRMS (EI) calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1443; Found: 274.1442.

Ethyl 6-methoxy-1-methyl-4-phenethylisoquinoline-3-carboxylate (41): 88 mg, 84% yield; pale yellow solid; m.p. 90-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 9.1 Hz, 1 H), 7.26 (m, 7 H), 4.47 (q, J = 7.1 Hz, 2 H), 3.91 (s, 3 H), 3.41 and 3.01 (m each, 2:2 H), 2.90 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.9, 161.0, 156.4, 141.9, 137.1, 129.4, 128.6, 128.4, 128.2, 126.2, 123.7, 120.0, 103.0, 61.7, 55.4, 36.8, 30.6, 22.5, 14.4. HRMS (EI) calcd for C₂₂H₂₃NO₃

[M+H]⁺: 350.1756; Found: 350.1757.

Ethyl 2-(4-benzyl-6-methoxy-1-methylisoquinolin-3-yl)acetate (41): 15 mg, 14% yield; yellow solid; m.p. 76-78°C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 9.1 Hz, 1 H), 7.17 (m, 8 H), 4.38 (s, 2 H), 4.11 (q, *J* = 7.1 Hz, 2 H), 4.00 (s, 2 H), 3.75 (s, 3 H), 2.90 (s, 3 H), 1.21 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.4, 160.7, 156.6, 146.3, 139.6, 138.1, 128.7, 128.2, 128.0, 126.3, 125.1, 122.6, 118.6, 103.0, 61.0, 55.4, 42.2, 34.1, 22.4, 14.3. HRMS (EI) calcd for C₂₂H₂₃NO₃ [M+H]⁺: 350.1756; Found: 350.1758.

Benzyl 2-(6-methoxy-1-methylisoquinolin-3-yl)acetate (4m): 42 mg, 44% yield; pale yellow solid; m.p. 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 9.2 Hz, 1 H), 7.32 (m, 6 H), 7.17 (dd, J = 9.2, 2.5 Hz, 1 H), 6.98 (d, J = 2.5 Hz, 1 H), 5.20 (s, 2 H), 3.97 (s, 2 H), 3.92 (s, 3 H), 2.88 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.2, 160.8, 158.0, 147.1, 138.7, 136.1, 128.6, 128.3, 128.2, 127.5, 122.1, 119.6, 118.1, 104.8, 66.7, 55.5, 43.7, 22.3. HRMS (EI) calcd for C₂₀H₁₉NO₃ [M+H]⁺: 322.1443; Found: 322.1440.

6-*Methoxy-1-methyl-3-(1-phenylethyl)isoquinoline (4n)*: 39 mg, 47% yield; white solid; m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 9.1 Hz, 1 H), 7.40 (d, J = 7.4 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.23 (dd, J = 14.1, 6.8 Hz, 1 H), 7.13 (m, 2 H), 6.94 (d, J = 2.5 Hz, 1 H), 4.42 (q, J = 7.2 Hz, 1 H), 3.89 (s, 3 H), 2.90 (s, 3 H), 1.78 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.5, 158.5, 157.5, 145.5, 138.7, 128.4, 128.1, 127.4, 126.2, 121.8, 119.0, 115.5, 104.8, 55.4, 47.2, 22.5, 21.4. HRMS (EI) calcd for C₁₉H₁₉NO [M+H]⁺: 278.1545; Found: 278.1544.

Gram-Scale Preparation of the Target Products: *Synthesis of Ethyl* 2-(6-methoxy-1-methylisoquinolin-3-yl)propanoate (3b): A mixture of 1b (0.83 g, 4 mmol), allenoate 2a (1.01 g, 8 mmol), [Cp*RhCl₂]₂ (49 mg, 0.08 mmol), AgSbF₆ (137 mg, 0.4 mmol), and PivOH (81 mg, 0.8 mmol) in 3 mL 1,2-dichloroethane (DCE) was stirred at 60 °C for 24 h under a nitrogen atmosphere. After cooled to ambient temperature, the mixture was evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 20:1, v/v) to afford 3b as a pale yellow oil (1.00 g, 92%).

A Typical Procedure for the Synthesis of 5 – Synthesis of 2-(1-Methylisoquinolin-3-yl)propan-1-ol (5a): A mixture of 3a (73 mg, 0.3 mmol) and LiAlH₄ (23 mg, 0.6 mmol) in 2 mL THF was stirred at 25 °C for 30 min under an argon atmosphere. The resulting mixture was poured into ice water (25 mL) and extracted with CH₂Cl₂ (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 1:1, v/v) to afford 5a as a colorless liquid (37 mg, 62%).

2-(1-Methylisoquinolin-3-yl)propan-1-ol (**5a**): 37 mg, 62% yield; colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1 H), 7.74 (d, *J* = 8.2 Hz, 1 H), 7.64 (m, 1 H), 7.53 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1 H), 7.35 (s, 1 H), 3.99 (dd, *J* = 10.6, 3.6 Hz) and 3.86 (dd, *J* = 10.6, 6.7 Hz) (1:1 H), 3.16 (m, 1 H), 2.92 (s, 3 H), 1.41 (d, *J*

 = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.9, 157.1, 136.8, 130.3, 127.1, 126.6, 126.2, 125.7, 116.0, 68.0, 41.3, 22.5, 17.1. HRMS (EI) calcd for C₁₃H₁₅NO [M+H]⁺: 202.1232; Found: 202.1230.

2-(6-Methoxy-1-methylisoquinolin-3-yl)propan-1-ol (**5b**): 44 mg, 64% yield; white solid; m.p. 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 9.1 Hz, 1 H), 7.26 (s, 1 H), 7.15 (m, 1 H), 7.00 (d, *J* = 2.1 Hz, 1 H), 3.97 (m) and 3.83 (dd, *J* = 10.5, 6.7 Hz) (4:1 H), 3.12 (m, 1 H), 2.86 (s, 3 H), 1.39 (d, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.9, 157.8, 157.1, 138.9, 127.5, 121.8, 119.3, 115.4, 104.7, 68.1, 55.5, 41.1, 22.4, 17.1. HRMS (EI) calcd for C₁₄H₁₇NO₂ [M+H]⁺: 232.1338; Found: 232.1335.

H/D Exchange in acetophene *O*-acetyl oxime (1a): A mixture of 1a (35 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (2.5 mg, 0.004 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and PivOD (41 mg, 0.4 mmol) in 2 mL 1,2-dichloroethane (DCE) was stirred at 60 °C for 4 h under a nitrogen atmosphere. After cooled to ambient temperature, the mixture was evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 20:1, v/v). The H/D exchange was determined by ¹H NMR analysis.

Kinetic isotope effect (KIE) experiments: The reactions with 1a or its deuterated form $1a-d_5$ were carried out in a parallel manner under the standard conditions as follows. A mixture of 1a (35 mg, 0.2 mmol) or $1a-d_5$ (36 mg, 0.2 mmol), 2a (50 mg, 0.4 mmol), [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and PivOH (4.1 mg, 0.04 mmol) in 2 mL 1,2-dichloroethane (DCE) was

stirred at 60 °C under a nitrogen atmosphere. The reaction was then quenched by water (5 mL) and the mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and evaporated all the volatiles under reduced pressure, and the resultant residue was subjected to proton NMR analysis with 1,3,5-trimethyloxylbenzene as the internal standard. The $k_{\rm H}/k_{\rm D}$ value was calculated according to the yields of **3a** from the reactions at 5 min, 10 min, and 15 min.

ASSOCIATED CONTENT

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jo-2018-03092p.

Experimental procedures for the starting materials **1** and **2**, NMR spectra of the substrates and products, and X-ray crystallographic analysis for compound **3a** (PDF)

Crystal data for compound 3a (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zkyu@dicp.ac.cn (Z.K.Y.)

ORCID

Quannan Wang: 0000-0002-4136-0016

Jiang Lou: 0000-0002-5653-1359

Zilong Huang: 0000-0001-5350-8308

Zhengkun Yu: 0000-0002-9908-0017

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

We are grateful to the National Natural Science Foundation of China (21871253 and 21472185) and the National Basic Research Program of China (2015CB856600) for support of our research.

REFERENCES

(1) (a) Chrzanowska, M.; Grajewska, A.; Rozwadowska, M. D. Asymmetric
Synthesis of Isoquinoline Alkaloids: 2004–2015. *Chem. Rev.* 2016, *116*, 12369-12465.
(b) Gurram, M.; Gyimóthy, B.; Wang, R. F.; Lam, S. Q.; Ahmed, F.; Herr, R. J.
Concise Enantiospecific, Stereoselective Syntheses of (+)-Crispine A and Its
(-)-Antipode. *J. Org. Chem.* 2011, *76*, 1605-1613. (c) Jiang, J.-K.; Thomas, C. J.;
Neumann, S.; Lu, X.; Rice, K. C.; Gershengorn, M. C. 1-(Phenyl)isoquinoline
Carboxamides: A Novel Class of Subtype Selective Inhibitors of ThyrotropinReleasing Hormone (TRH) Receptors. *Bioorg.Med. Chem. Lett.* 2005, *15*, 733-736. (d)
Feldman, K. S.; Cutarelli, T. D. Alkynyliodonium Salts in Organic Synthesis.
Application to the Total Synthesis of the Tropoloisoquinoline Alkaloid Pareitropone. *J. Am. Chem. Soc.* 2002, *124*, 11600-11601.

(2) (a) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Mild

Metal-Catalyzed C–H Activation: Examples and Concepts. *Chem. Soc. Rev.* **2016**, *45*, 2900-2936. (b) Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Bond Functionalizations. *Acc. Chem. Res.* **2014**, *47*, 281-295. (c) He, R. Y.; Huang, Z. T.; Zheng, Q. Y.; Wang, C. Y. Isoquinoline Skeleton Synthesis *via* Chelation-Assisted C–H Activation. *Tetrahedron Lett.* **2014**, *55*, 5705-5713.

(3) (a) Huang, H. W.; Ji, X. C.; Wu, W. Q.; Jiang, H. F. Transition Metal-Catalyzed
C-H Functionalization of *N*-Oxyenamine Internal Oxidants. *Chem. Soc. Rev.* 2015, 44, 1155-1171. (b) Song, G. Y.; Wang, F.; Li, X. W. C-C, C-O and C-N Bond
Formation *via* Rhodium(III)-Catalyzed Oxidative C-H Activation. *Chem. Soc. Rev.* 2012, 41, 3651-3678.

(4) (a) Feng, R. K.; Ning, H. Q.; Su, H.; Gao, Y.; Yin, H. T.; Wang, Y. D.; Yang, Z.; Qi, C. Z. Selective Synthesis of Alkynylated Isoquinolines and Biisoquinolines via Rh^{III} Catalyzed C-H Activation/1,3-Diyne Strategy. J. Org. Chem. 2017, 82, 10408-10417. (b) Wang, H.; Koeller, J.; Liu, W. P.; Ackermann, L. Cobalt(III)-Catalyzed C-H/N-O Functionalizations: Isohypsic Access to Isoquinolines. Chem.-Eur. J. 2015, 21, 15525-15528. (c) Hyster, T. K.; Rovis, T. Pyridine Synthesis from Oximes and Alkynes via Rhodium(III) Catalysis: Cp* and Cpt Provide Complementary Selectivity. Chem. Commun. 2011, 47, 11846-11848. (d) Zhang, X. P.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A. Q.; Li, X. W. Synthesis of Isoquinolines via Rhodium(III)-Catalyzed Dehydrative C-C and C-N Coupling between Oximines and Alkynes. Adv. Synth. Catal. 2011, 353, 719-723. (e) Too, P. C.;

Chua, S. H.; Wong, S. H.; Chiba, S. Synthesis of Azaheterocycles from Aryl Ketone *O*-Acetyl Oximes and Internal Alkynes by Cu–Rh Bimetallic Relay Catalysts. *J. Org. Chem.* 2011, 76, 6159-6168. (f) Too, P. C.; Wang, Y. F.; Chiba, S.
Rhodium(III)-Catalyzed Synthesis of Isoquinolines from Aryl Ketone *O*-Acyloxime
Derivatives and Internal Alkynes. *Org. Lett.* 2010, *12*, 5688-5691.

(5) (a) Sun, B.; Yoshino, T.; Kanai, M.; Matsunag, S. Cp*CoIII Catalyzed Site-Selective C–H Activation of Unsymmetrical *O*-Acyl Oximes: Synthesis of Multisubstituted Isoquinolines from Terminal and Internal Alkynes. *Angew. Chem., Int. Ed.* 2015, *54*, 12968-12972. (b) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Ruthenium-Catalyzed Highly Regioselective Cyclization of Ketoximes with Alkynes by C–H Bond Activation: A Practical Route to Synthesize Substituted Isoquinolines. *Org. Lett.* 2012, *14*, 3032-3035.

(6) (a) Chu, H. K.; Sun, S.; Yu, J.-T.; Cheng, J. Rh-Catalyzed Sequential Oxidative C–H Activation/Annulation with Geminal-Substituted Vinyl Acetates to Access Isoquinolines. *Chem. Commun.* **2015**, *51*, 13327-13329. (b) Zhao, D. B.; Lied, F.; Glorius, F. Rh(III)-Catalyzed C–H Functionalization/Aromatization Cascade with 1,3-Dienes: A Redox-Neutral and Regioselective Access to Isoquinolines. *Chem. Sci.* **2014**, *5*, 2869-2873.

(7) Shi, Z. Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorius, F. Rh(III)-Catalyzed Synthesis of Multisubstituted Isoquinoline and Pyridine *N*-Oxides from Oximes and Diazo Compounds. *J. Am. Chem. Soc.* **2013**, *135*, 12204-12207.

(8) (a) Ye, J. T.; Ma, S. M. Palladium-Catalyzed Cyclization Reactions of Allenes

 in the Presence of Unsaturated Carbon–Carbon Bonds. *Acc. Chem. Res.* **2014**, *47*, 989-1000. (b) Yu, S. C.; Ma, S. M. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. *Angew. Chem., Int. Ed.* **2012**, *51*, 3074-3112. (c) Ma, S. M. Electrophilic Addition and Cyclization Reactions of Allenes. *Acc. Chem. Res.* **2009**, *42*, 1679-1688.

(9) Koschker, P.; Breit, B. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes. *Acc. Chem. Res.* 2016, *49*, 1524-1536.

(10) (a) Nakanowatari, S.; Ackermann, L. Ruthenium(II)-Catalyzed C–H
Functionalizations with Allenes: Versatile Allenylations and Allylations. *Chem.-Eur. J.* 2015, *21*, 16246-16251. (b) Zeng, R.; Wu, S. Z.; Fu, C. L.; Ma, S. M.
Room-Temperature Synthesis of Trisubstituted Allenylsilanes *via* Regioselective C–H
Functionalization. *J. Am. Chem. Soc.* 2013, *135*, 18284-18287.

(11) (a) Lei, C.; Peng, L. J.; Ding, K. Manganese-Catalyzed C–H Annulation of Ketimines with Allenes: Stereoselective Synthesis of 1-Aminoindanes. *Adv. Synth. Catal.* 2018, 360, 2952-2958. (b) Tran, D. N.; Cramer, N. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Racemic Allenes by the [3+2] Annulation of Aryl Ketimines. *Angew. Chem., Int. Ed.* 2013, 52, 10630-10634. (c) Tran, D. N.; Cramer, N. *syn*-Selective Rhodium(I)-Catalyzed Allylations of Ketimines Proceeding through a Directed C–H Activation/Allene Addition Sequence. *Angew. Chem., Int. Ed.* 2010, 49, 8181-8184. (d) Chen, S.-Y.; Li, Q. J.; Liu, X.-G.; Wu, J. Q. Zhang, S.-S.; Wang, H. G. Polycyclization Enabled by Relay Catalysis: One-Pot Manganese-Catalyzed C–H Allylation and Silver-Catalyzed Povarov Reaction.

ChemSusChem 2017, 10, 2360-2364.

(12) (a) Chen, S.-Y.; Han, X.-L.; Wu, J.-Q.; Li, Q. J.; Chen, Y. Y.; Wang, H. G. Manganese(I)-Catalyzed Regio- and Stereoselective 1,2-Diheteroarylation of Allenes: Combination of C-H Activation and Smiles Rearrangement. Angew. Chem., Int. Ed. (b) 2017, 56, 9939-9943. Wang, C. M.; Wang, A.; Rueping, M. Manganese-Catalyzed C-H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift. Angew. Chem., Int. Ed. 2017, 56, 9935-9938.

(13) (a) Lan, T. L.; Wang, L. G.; Rao, Y. Regioselective Annulation of Aryl Sulfonamides with Allenes through Cobalt-Promoted C–H Functionalization. *Org. Lett.* 2017, *19*, 972-975. (b) Li, T. L.; Zhang, C.; Tan, Y. H.; Pan, W. D.; Rao, Y. Cobalt-Catalyzed C–H Activation and Regioselective Intermolecular Annulation with Allenes. *Org. Chem. Front.* 2017, *4*, 204-209.

(14) Mo, J. Y.; Müller, T.; Oliveira, J. C. A.; Ackermann, L. 1,4-Iron Migration for Expedient Allene Annulationsthrough Iron-Catalyzed C–H/N–H/C–O/C–H Functionalizations. *Angew. Chem., Int. Ed.* **2018**, *57*, 7719-7723.

(15) (a) Thrimurtulu, N.; Nallagonda, R.; Volla, C. M. R. Cobalt-Catalyzed Aryl
C–H Activation and Highly Regioselective Intermolecular Annulation of
Sulfonamides with Allenes. *Chem. Commun.* 2017, *53*, 1872-1875. (b) Thrimurtulu,
N.; Dey, A.; Maiti, D.; Volla, C. M. R. Cobalt-Catalyzed sp²-C–H Activation:
Intermolecular Heterocyclization with Allenes at Room Temperature. *Angew. Chem., Int. Ed.* 2016, *55*, 12361-12365.

 (16) Wang, H. G.; Glorius, F. Mild Rhodium(III)-Catalyzed C–H Activation and Intermolecular Annulation with Allenes. *Angew. Chem., Int. Ed.* **2012**, *51*, 7318-7322.

(17) Boobalan, R.; Kuppusamy, R.; Santhoshkumar, R.; Gandeepan, P.; Cheng,
C.-H. Access to Isoquinolin-1(2*H*)-ones and Pyridones by Cobalt-Catalyzed
Oxidative Annulation of Amides with Allenes. *ChemCatChem* 2017, *9*, 273-277.

(18) (a) Wu, S. Z.; Zeng, R.; Fu, C. L.; Yu, Y. H.; Zhang, X.; Ma, S. M. Rhodium-Catalyzed C–H Functionalization-Based Approach to Eight-Membered Lactams. *Chem. Sci.* 2015, *6*, 2275-2285. (b) Zeng, R.; Fu, C. L.; Ma, S. M. Highly Selective Mild Stepwise Allylation of *N*–Methoxybenzamides with Allenes. *J. Am. Chem. Soc.* 2012, *134*, 9597-9560.

(19) (a) Zhai, S. X.; Qiu, S. X.; Chen, X. M.; Tao, C.; Li, Y.; Cheng, B.; Wang, H.
F.; Zhai, H. B. Trifunctionalization of Allenes *via* Cobalt-Catalyzed MHP-Assisted
C-H Bond Functionalization and Molecular Oxygen Activation. *ACS Catal.* 2018, *8*, 6645-6649. (b) Ji, C.; Xu, Q.; Shi, M. Rhodium(III)-Catalyzed Controllable C-H
Bond Functionalization of Benzamides and Vinylidenecyclopropanes: A Directing
Group Determined Reaction Pathway. *Adv. Synth. Catal.* 2017, *359*, 974-983. (c) Xia, X.-F.; Wang, Y.-Q.; Zhang, L.-L.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M.
Palladium-Catalyzed C-H Activation and Intermolecular Annulation with Allenes. *Chem.-Eur. J.* 2014, *20*, 5087-5091.

(20) Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. Synthesis of 1,2-Dihydroquinolines by Co(III)-Catalyzed [3+3] Annulation of Anilides with Benzylallenes. *ACS Catal.* **2018**, *8*, 1880-1883.

(21) (a) Jiang, Q. B.; Guo, T. L.; Wu, K. K.; Yu, Z. K. Rhodium(III)-Catalyzed sp² C-H Bond Addition to CF₃-Substituted Unsaturated Ketones. Chem. Commun. 2016, 52, 2913-2915. (b) Yang, X. G.; Liu, Z. Q.; Sun, C. L.; Chen, J. P.; Yu, Z. K. Palladium-Catalyzed Oxidative Cross-Coupling of α -Cyanoketene Dithioacetals with Olefins. Chem.-Eur. J. 2015, 21, 14085-14094. (c) Yu, H. F.; Jin, W. W.; Sun, C. L.; Chen, J. P.; Du, W. M.; He, S. B.; Yu, Z. K. Palladium-Catalyzed Cross-Coupling of Internal Alkenes with Terminal Alkenes to Functionalized 1,3-Butadienes Using C-H Bond Activation: Efficient Synthesis of Bicyclic Pyridones. Angew. Chem., Int. Ed. **2010**, 49, 5792-5797. (d) Luo, N.; Yu, Z. K. RuCl₃·xH₂O-Catalyzed Direct Arylation of Arenes with Aryl Chlorides in the Presence of Triphenylphosphine. Chem.-Eur. J. 2010, 16, 787-791. (e) Jin, W. W.; Yu, Z. K.; He, W.; Ye, W. J.; Xiao, W.-J. Efficient Rh(I)-Catalyzed Direct Arylation and Alkenylation of Arene C-H Bonds via Decarbonylation of Benzoic and Cinnamic Anhydrides. Org. Lett. 2009, 11, 1317-1320. (f) Zhao, X. D.; Yu, Z. K. Rhodium-Catalyzed Regioselective C-H Functionalization via Decarbonylation of Acid Chlorides and C-H Bond Activation under Phosphine-Free Conditions. J. Am. Chem. Soc. 2008, 130, 8136-8137.

(22) Yang, H.-B.; Selander, N. A. Redox-Economical Synthesis of Trifluoromethylated Enamides with the Langlois Reagent. Org. Biomol. Chem. 2017, 15, 1771-1775.

(23) Zhu, Z. Z.; Tang, X. D.; Li, J. X.; Li, X. W.; Wu, W. Q.; Deng, G. H.; Jiang, H.
F. Iron-Catalyzed Synthesis of 2*H*-Imidazoles from Oxime Acetates and Vinyl Azides under Redox-Neutral Conditions. *Org. Lett.* 2017, *19*, 1370-1373.

(24) Yang, X. F.; Liu, S.; Yu, S. J.; Kong, L. H.; Yu, L.; Li, X. W. Redox-Neutral Access to Isoquinolinones *via* Rhodium(III)-Catalyzed Annulations of *O*-Pivaloyl Oximes with Ketenes. *Org. Lett.* **2018**, *20*, 2698-2701.

(25) Wang, G.; Liu, X. H.; Chen, Y. S.; Yang, J.; Li, J.; Lin, L. L.; Feng, X. M. Diastereoselective and Enantioselective Alleno-aldol Reaction of Allenoates with Isatins to Synthesis of Carbinol Allenoates Catalyzed by Gold. *ACS Catal.* **2016**, *6*, 2482-2486.

(26) Liu, J. W.; Nie, M.; Zhou, Q. H.; Gao, S.; Jiang, W. H.; Chung, L. W.; Tang,
W. J.; Ding, K. L. Enantioselective Palladium-Catalyzed Diboration of 1,1-Disubstituted Allenes. *Chem. Sci.* 2017, *8*, 5161-5165.