Accepted Manuscript

Title: Nano-WO₃-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst

Author: Ali Amoozadeh Salman Rahmani

PII: DOI: Reference:	S1381-1169(14)00423-3 http://dx.doi.org/doi:10.1016/j.molcata.2014.09.020 MOLCAA 9281
To appear in:	Journal of Molecular Catalysis A: Chemical
Received date:	19-6-2014
Revised date:	13-9-2014
Accepted date:	16-9-2014

Please cite this article as: A. Amoozadeh, Nano-WO₃-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst, *Journal of Molecular Catalysis A: Chemical* (2014), http://dx.doi.org/10.1016/j.molcata.2014.09.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Nano-WO₃-supported sulfonic acid has been reported.
- The n-WSA works very well for different organic reactions with excellent yields.
- The advantages of n-WSA are high efficiently, reusability and operational simplicity.
- The n-WSA was easily separated and reused for several runs without loss activity.

A color and a colo

Nano-WO₃-supported sulfonic acid: New, efficient and high recyclable

heterogeneous nano catalyst

Ali Amoozadeh* and Salman Rahmani*

Department of Chemistry, Semnan University, Semnan, Zip Code: 35131-19111, Iran, Fax: +98 (233) 3354110, Tel.: +98 (233) 3366177, e-mail: aamozadeh@semnan.ac.ir, salmanrahmani64@yahoo.com

Nano-WO₃-supported sulfonic acid:New, efficient and high reusable heterogeneous nanocatalyst

Ali Amoozadeh* and Salman Rahmani*

Department of Chemistry, Semnan University, Semnan, Zip Code: 35131-19111, Iran, Fax: +98 (233) 3354110, Tel.: +98 (233) 3366177, e-mail: aamozadeh@semnan.ac.ir,salmanrahmani64@yahoo.com

Abstract

Nano-WO₃-supported sulfonic acid [n-WO₃-SO₃H (n-WSA)]is easily prepared from the reaction of nanoWO₃ with chlorosulfonic acid as sulfonating agent. This new catalystis characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy, thermal gravimetric analysis (TGA), pH analysis and Hammett acidity function. Nano-WO₃-supported sulfonic acid is used as an efficient and recyclable catalyst forsome organic reactions such as synthesis of1,8-dioxo-octahydroxanthene, tetrahydrobenzoxanthene and benzimidazoloquinazolinone derivatives. All of the reactions are very fast and the yields are excellent. The used catalyst was easily separated and reused for 10 runs without appreciable loss of its catalytic activity.

Keywords: Nano-WO₃-supported sulfonic acid, Heterogeneous nano catalyst, Multi component reaction, Green chemistry.

1. Introduction

The "green chemistry" principles of chemical reactions have encouraged the use of reusable strong solid acids as alternatives for such unrecyclable "liquid acids" catalysts such as sulfuric acid, nitric acid, *etc*. Though the use of new solid acid catalystshas been widely developed, there is still a need to discover new methodologies for the immobilization of sulfonic acid. These solid acids are suitable options economically and industrially because of their special properties such as using less toxicity and readily available

precursors, simple and non-energy-intensive methods for recovery and reuse of catalyst[1]. In this context, the use of nanoparticles as heterogeneous catalysts has attracted considerable attention because of the interesting structural features and high levels of catalytic activity associated with these materials [2]. Furthermore, nanoparticle materials are considered to be a bridge between homogeneous and heterogeneous catalysts[3]. In addition, the application of transition metal nanoparticles as catalysts for organic reactions has been attracting wide interest as nanoparticle-based catalytic systems can exhibit superior catalytic activities than the corresponding bulk materials. Transition metal oxides have been efficiently played an important role as catalysts in organic reactions. These high reactivities are due to high surface areas combined with unusually reactive morphologies.

Among various transition metals, tungsten is one of the important metals on our globe, and consequently, one of the most economical and environmentally well-suited ones. Moreover, tungsten is not toxic and additionally, the tungsten trioxide is commercially available.

The tungsten trioxide (WO₃) is commonly regarded as a material for many promising applications, in several research fields, due to their multiple potential applications such as catalytic activity for water purification[4], metathesis between ethene and 2-butene[5], esterification of propionic acid[6], photocatalytic activity[7], NO₂ sensing[8], photocatalytic O₂ production[9], oxidation of cyclopentene to glutaraldehyde[10], gas sensing properties [11] and adsorption of methylene blue from water [12] and other application such as heterogeneous catalysts, chromogenic devices, solar-energy devices, field electron emission. In spite of the aforementioned advantages, unpredictably, in comparison with some other transition metals until lately, tungsten has been comparatively unheeded as a catalyst in the organic synthesis.

Based on the mentioned facts, it has been decided to improve the catalytic properties of nano-WO₃ by reacting it with chlorosulfonic acid to produce nano-WO₃-supported sulfonic acid (n-WSA) (Scheme 1).Sulfonation with chlorosulfonic acid is convenient, fast and efficient method for heterogenization of homogeneous catalysts[13-15] that has attracted more much attention after Zolfigol's report on the preparation of silica sulfuric acid (SSA) [16].

Scheme 1. Preparation of nano-WO₃-SO₃H (n-WSA).

2. Experimental

2.1. Materials and Instruments

Chemicals were purchased from the Merck chemical companies. Thin-Layer Chromatography (TLC) on commercial plates of silica gel 60 F254 was used to monitor the progress of reactions. The products were characterized by FT-IR spectra, ¹HNMR, ¹³CNMR and CHN analyzer. ¹H and ¹³CNMR spectra which were recorded on Bruker Advance Spectrometer 400 & 500 MHz using CDCl₃-*d* and DMSO-*d*₆ as solvent. The chemical shifts are expressed in parts per million (ppm) and tetramethylsilane (TMS) was used as an internal reference. Elemental analyses were performed by Perkin Elmer CHN analyzer, 2400 series II. Melting points were recorded on a THERMO SCIENTIFIC 9100 apparatus.

2.2. Characterization methods of nano-WO₃-SO₃H (n-WSA)

2.2.1. X-ray diffraction spectrum

Wide angle X-ray diffraction spectrum for the n-WSA powder sample was obtained using a Siemens D5000 (Siemens AG, Munich, Germany) X-ray diffractometer using Cu-Ka radiation of wavelength 1.54 Å.

2.2.2. Filed emission scanning electron microscopy

A particle size study of n-WSA sample was carried out using Philips XL30 field emission scanning electron microscope (Royal Philips Electronics, Amsterdam, The Netherlands) instrument operating at 10 kV. The sample was mounted on a double sided adhesive carbon disk and sputter-coated with a thin layer of gold to prevent sample charging problems.

2.2.3. Infrared spectra

The n-WSA sample was mixed with KBr powder and compressed into a pellet, wherein, the n-WSA powder was evenly dispersed. Fourier transform infrared spectrum was recorded on Shimadzo FT-IR 8400 instrument.

2.2.4. Thermo gravimetric analyses

Thermo gravimetric analyses (TGA) were conducted on a Du Pont 2000 thermal analysis apparatus under air atmosphere at a heating rate of 5 °C/min.

2.3. Preparation of nano-WO₃

10 mL of ammonia solution (25 wt%) was added to the CTAB solutions while stirring. After getting a homogenous solution, 0.117 mol of WCl₆ 1000 mL⁻¹ of CTAB solution was added with vigorous stirring. After stirring for 4 h, the products were aged at ambient temperature for 72 h. The final product was filtered, washed with deionized water and absolute ethanol in order to remove surfactant, residual reactants and by products and then calcinated at 500°C for 2 h[17].

2.4. Preparation of nano-WO₃-SO₃H (n-WSA)

A suction flask equipped with a constant-pressure dropping funnel and a gas inlet tube for conducting HCl gas over an adsorbing solution (i.e., water) was used, charged with the nano-WO₃ (4 g, 17 mmol) in dry CH_2Cl_2 (20 ml). Then chlorosulfonic acid (1 ml, 15 mmol) (CAUTION: a highly corrosive and water absorbant. Be careful when using this liquid. Protective gloves, protective clothing and eye and face protection equipment are also needed.)was added dropwisely over a period of 30 min at room temperature. HCl gas immediately evolved from the reaction vessel. Stirring was continueduntilHCl evolution was seized. After the addition was completed, the mixture was shaken for 30 min. A darkgreen powder of nano-tungsten trioxide-supported sulfonic acid was obtained. Then, the CH_2Cl_2 was removed under reduced pressure and the solid powder was washed with ethanol (10 mL) and dried at 70 °C.

The prepared n-WSA stored in vacuum desiccator over anhydrous silica gel, then, was dried in 120 °C for 6 hours. The mmol of H^+ per gram of catalyst (3.7 mmol/ gram of n-WSA) was determined by the titration of 0.1 gram of sample with a standard solution of NaOH (0.1 N). For this purpose, the surface acidic protons of nano-WO₃-SO₃H (100 mg) were ion-exchanged with a standard solution of NaCl (10 mL) by sonication.

This process was repeated twice more, yielding 30 mL of proton-exchanged brine solution. Therefore, to determine the loading of acid sites on the synthesized catalyst, the obtained solution was titrated by NaOH (0.1 M) solution in presence of phenol red indicator solution or pH meter.

2.5. General procedure for synthesis of 1,8-dioxo-octahydroxanthene derivatives

In a typical experiment, various aromatic aldehyde (1 mmol), 1,3-cyclic diketon (2mmol) and catalyst (0.019 g) in solvent free condition were taken in a 25 ml round bottomed flask. The flask was stirred at 100 °C for an appropriate time. The reaction mixture was cooled, eluted with hot ethanol (5 mL), centrifuged and filtrated to collect the formed precipitate. The crude product was recrystallized from ethanol to yield pure 1,8-dioxo-octahydroxanthene derivatives.

2.6. General procedure for synthesis of tetrahydrobenzoxanthene derivatives

In a typical experiment, various aromatic aldehyde (1 mmol), 1,3-cyclic diketon (1 mmol), β -naphtol (1 mmol) and catalyst (0.019 g) in solvent free condition were taken in a 25 ml round bottomed flask. The flask was stirred at 100 °C for an appropriate time. The reaction mixture was cooled, eluted with hot ethanol (5 mL), centrifuged and filtrated to collect the formed precipitate. The crude product was recrystallized from ethanol to yield pure tetrahydrobenzoxanthene derivatives.

2.7. General procedure for synthesis of benzimidazoloquinazolinone derivatives

In a typical experiment, different aromatic aldehyde (1 mmol), 1,3-cyclic diketon (1 mmol), 2-aminobenzimidazole (1 mmol) and catalyst (0.019 g) in solvent free condition were taken in a 25 ml round bottomed flask. The flask was stirred at 100 °C for an appropriate time. The reaction mixture was cooled, eluted with hot ethanol (5 mL), centrifuged and filtrated to collect the formed precipitate. The crude product was recrystallized from ethanol to yield pure benzimidazoloquinazolinone derivatives.

3. Results and Discussion

3.1. Characterization of nano-WO₃-SO₃H

3.1.1. X-ray diffraction spectra

The nano-WO₃ powder can be easily synthesized by reported procedure[17].Fig. 1a shows the XRD patterns of nano-WO₃ powder before modification.The following peak signals with miler indices (001),

(020), (200), (120), (111),(021), (201), (220), (221), (320), (131), (002), (040), (400), (140), (022), (202), (240), (420), (222), (240) and (430) in Fig. 1a confirm the formation ofnano tungsten trioxide crystal phase which coincides with JCPD 201324 standard. The crystal size of the nanoWO₃ powder was also determined from X-ray pattern using the Debye-Scherrer formula given as t= $0.9\lambda/B_{1/2}\cos\theta$, that t is the average crystal size, λ the X-ray wavelength used (1.54 Å), B_{1/2} the angular line width at half maximum intensity and θ the Bragg's angle. The average crystal size of the nano-WO₃ powder for2 θ = 24.32 °is calculated to be around 21.67nm.Fig.1b illustrates XRD patterns of the samples of modifiednanoWO₃. As shown in Fig.1b, the peak intensities of nano-WO₃-SO₃H (n-WSA) are almost the same as those ofnanoWO₃(Fig. 1a) and sulfonate modification dose not change the phase ofnanoWO₃.

Fig.1. The X-ray diffraction pattern of (a) the nano-WO₃ powder and (b) n-WSA.

3.1.2. Field emission scanning electron microscopy

The field emission scanning electron microscopy (FE-SEM) images of nano-WO₃ powder reveals thespherical nano-WO₃ powder with average particle sizes of about75-80 nm(Fig.2).

Fig.2. The FE-SEM image of nano-WO₃.

It was revealed by the FE-SEM images of n-WSAthat the spherical n-WSA powder average particle sizes was about60-75 nm (Fig. 3). Compared to Fig. 2, as shown in Fig. 3, its cleared that the surface of the assynthesized n-WSA are not smoothed indicating that the modification process has performed successfully.

Fig.3. The FE-SEM image of n-WSA.

3.1.3. FT-IR spectra

The FT-IR spectra of nano-WO₃ powder and n-WSA are shown in Figure4. In the graph **a** of Fig. 4, the absorbance bands at around 777 and 838 cm⁻¹ is due to W-O-W vibration, 1629 cm⁻¹ W-OH vibrationand the absorbance bands at around 3400-3500 cm⁻¹ was certified to the adsorbed water (Fig. 4, graph a and b) which is consistent with the reported IR spectra for nano-WO₃[7]. In the graph **b** of Fig. 4, the absorption range in 1177-1284 and 1012-1070 cm⁻¹ was certified the O=S=O asymmetric and symmetric stretching modes lies respectively and the S-O stretching mode lies in 577-615 cm⁻¹ showing the presence of sulfonic acid functional group which is consistent with the reported IR spectra for -SO₃H[18].

Fig. 4. The FT-IR spectra of (a) The nano WO₃ powder and (b) n-WSA.

3.1.4. Thermo gravimetric analysis

Thermo gravimetric analysis (TGA) of n-WSA in comparison with nano WO₃ is shown in Fig. 5. The TGA curve of WO₃ (Fig. 5a) displays a weight loss (5 wt.%) below 100 °C which corresponds to the loss of the physically adsorbed water. Also, there is a slight weight loss (1 wt.%) between 100 °C and 800 °C, which possibly corresponds to the dehydroxylation of WO₃.

In the TGA curve of n-WSA (Fig. 5b) exist two regions corresponding to different mass lose ranges. In the first region, a mass loss approximately 4% weight occurred below 140 °C that displayed that was attributable to the loss of trapped water from the catalyst. A mass loss of approximately 16% weight occurred between 140 and 250 °C that was related to the sudden mass loss of SO₃H groups[18, 19]. Also, from the TGA, it can be understood that n-WO₃-SO₃H has a greater thermal stability (up 150 °C) confirming that it could be safely used in organic reactions at temperatures in the range of 80-130 °C.

Fig.5. TGA cure of (a) nano-WO₃ and (b) n-WSA.

3.1.5. Surface acidity studies

The Hammett acidity function (H_0) can effectively express the acidity strength of an acid in organic solvents[20]. It can be calculated using the following equation:

$$H_0 = pK(I)_{aq} + log([I]_s/[IH^+]_s),$$

Here, 'I' represents the indicator base (mainly substituted nitroanilines) and $[IH^+]_s$ and $[I]_s$ are respectively the molar concentrations of the protonated and unprotonated forms of the indicator. The pK(I)aq values are already known (for example the pK(I)aq value of 4-nitroaniline is 0.99) and can be obtained from many references. According to the Lambert-Beerlaw, the value of $[I]_s/[IH^+]_s$ can be determined and calculated using the UV-visible spectrum. In this experiment, 4-nitroaniline was chosen as the basic indicator, and CCl₄ was chosen as the solvent because of its aprotic property. The maximal absorbance of the unprotonated form of 4-nitroaniline was observed at 329 nm in CCl₄. As Fig. 6 shows, the absorbance of the unprotonated form of the indicator in n-WO₃-SO₃H was weak as compared to the sample of the indicator in CCl₄, which indicated that the indicator was partially in the form of [IH⁺].

Fig.6. Absorption spectra of (a) 4-nitroaniline (indicator) and (b) n-WSA (catalyst) in CCl₄.

The obtained results are listed in Table 1, which shows the acidity strength of nano-WO₃-SO₃H. These results of the Hammett acidity function (H_0) also confirm the synthesis of nano-WO₃-SO₃H with a high density of acid sites (-SO₃H groups) on the surface of nano-WO₃-SO₃H (Table 1).

Table 1. Calculation of Hammett acidity function (H ₀) of n-WSA.								
Entry	Catalyst	A _{max}	[I] _s (%)	$[\mathrm{IH}^{+}]_{\mathrm{s}}$ (%)	H ₀			
1	÷	1.83	100	0	-			
2	n-WSA	0.512	27.17	72.83	1.13			
Conditio	on for UV-vi	sible spec	etrum measu	rement: solven	t, CCl ₄ ;			

indicator, 4-nitroaniline (pK(I)_{ac}= 0.99), $1.44*10^{-4}$ mol/L; catalyst, n-WSA (20 mg), 25 °C.

To compoare the relative acidity of n-WSA, Hammet acidity of various amount of n-WSA (0-25 mg) was compared with sulfuric acid at 50 mM concentration (by the methodology described in the literature [21]). The obtained results were shown in the Fig. 7. From Fig. 7 it is clear that the n-WSA prossess similar acidity as sulfuric acid. Also, from the obtained results, we can investigated the contributed supported sulfonic acid for reactions.

Fig. 7. Comparison of Hammett functions of various amount of n-WSA in water with Sulfuric Acid (50 mM) (4nitroaniline (44.8 mM) as indicator pK_a= 0.99, A_{max}= 380 nm).

The obtained results of characterization methods showed that the nano-WO₃-supported sulfonic acid is prepared and different characterization methodsalso show that the sulfunic acid groups (-SO₃H) have been supported on the surface of nano-WO₃. Indeed, nano-WO₃ functions as a Lewis acid and sulfonic acids functions as the Brønsted. Brønsted acids could usually provide a hydrogen bond which can initiate the catalytic procedure. In our new solid acid supported catalyst, we have conserved both of these properties.Based on the obtained results,we expected better catalytic activity for nano-WO₃-supported sulfonic acid is tested in some of organic reactions.

3.2. Using nano-WO₃-SO₃H in some organic reactions

In continuation of our studies on developing inexpensive and environmentally benign methodologies for organic reactions [22, 23],nano-titania-supported sulfonic acid[13]as heterogeneous solid acid nano catalyst was studied where the results were also very satisfactory.

In thepresent work, nano-WO₃-supported sulfonic acid was easily prepared andused as a highly efficient, heterogeneous, reusable and inexpensive solid acid catalystfor synthesis of 1,8-dioxo-octahydroxanthene, tetrahydro-benzoxanthene and benzimidazolo-quinazolinone derivatives.

3.2.1. Synthesis of 1,8-dioxo-octahydroxanthene derivatives

The synthesis of xanthenes, especially dioxo-octahydroxanthenes, has emerged as a powerful tool in organic synthesis due to their broad applications in different fields[24-27]. The prepared n-WSA has been tested for the synthesis of 1,8-dioxo-octahydroxanthene derivatives by condensation between *para*-chlorobenzaldehyde (1) (1 mmol) and dimedone (2) (2 mmol) under solvent free condition as a model reaction (Scheme 2).

To justify the efficiency of the n-WSA, the model reaction was carried out in presence of different amount of n-WSA in solvent free condition at 90 °C and compared it by nano-WO₃ (Table 2).

I able	2.Optimizati	ion of catalyst amount f	or the synthesis of 1,0-thom	0-00tanyur0xantin
	Entry	Catalyst	Amount of catalyst (g)	Yield ^b (%)
	1		-	21
	2	Nano-WO ₃ -SO ₃ H	0.011	49
		Nano-WO ₃ -SO ₃ H	0.013	62
	3	Nano-WO ₃ -SO ₃ H	0.015	75
	4	Nano-WO ₃ -SO ₃ H	0.017	81
	5	Nano-WO ₃ -SO ₃ H	0.019	89
	6	Nano-WO ₃ -SO ₃ H	0.021	89
	7	Nano-WO ₃	0.019	25

Table 2. Optimization of catalyst amount for the synthesis of 1,8-dioxo-octahydroxanthene^a.

^aReaction condition: **1** (1 mmol), **2** (2mmol), reaction time: 1 h, under solvent free condition at 90 °C. ^bIsolated yield.

The obtained results showed that n-WSA performed well to give desired product within 60 min in 89% yield at 90 °C under solvent free condition (Table 2, entry 5) and is a more suitable option than tungsten trioxide (Table 2, entry 7). The greater catalytic activity of n-WSA was most likely related to the SO₃H groups of the catalyst, which could provide efficient acidic sites.

In the next step, the effect of temperature in presence of 0.019 g of n-WSA was investigated. The results showed that the best temperature was 100 °C (Table 3, entry 7). By increasing the temperature to 110 °C, the achieved yield was decreased to 92% (Table 3, entry 8), so the experiences were followed at 100°C.

Entry	Temperature (°C)	Solvent	Yield ^b (%)	
1	RT	-	Trace	
2	40	-	21	
3	60	-	39	
4	70	-	64	
5	80	-	83	
6	90	-	89	
7	100	-	93	
8	110	-	92	
9	100	EtOH	58	
10	100	PEG	63	
11	100	MeOH	50	
12	100	CH ₃ CN	42	
13	100	Toluen	37	
14	100	CH ₂ Cl ₂	21	
15	100	H ₂ O	12	

Table 3.Optimization of other conditions for the synthesis of 1,8-dioxo-octahydroxanthene^a.

^aReaction condition: **1** (1 mmol), **2** (1 mmol), n-WSA (0.019 g), reaction time: 1 h. ^bIsolated yield.

Eventually to making sure that the solvent free condition is appropriate, it has been decided to investigate the effect of different classical solvents such as EtOH, PEG, MeOH, CH_3CN , Toluene, CH_2Cl_2 and H_2O at 100 °C (Table 3, entries 9-15). As it is shown in Table 3, using these solvents gave significantly lower yields and longer reaction times. Increasing the reaction times did not improve the yields. So the best yield of product was provided in solvent free conditions.

After optimizing the conditions, the scope of method was successfully studied by using a various aromatic aldehydes (including aldehydes with electron-releasing substituents, electron-withdrawing substituents and halogens on the aromatic ring) and cyclic 1,3-diketone compounds. The results aresummarized in Table 4.

	Table 4. Sym	nesis or	1,8-0102	xo-octanyur	oxanthene	derivative	s by n-w SA	•
Entry	٨r	D ¹	D ²	Product	Time	Yield ^b	Melting	g point (°C)
Entry	AI	K	К	Tioduct	(h)	(%)	Found	Reported
1	-C ₆ H ₅	Н	Н	3 a	1.05	90	213-215	[28]
2	$4-O_2N-C_6H_4$	Н	Н	3b	0.85	94	234-236	[28]
3	$4-Br-C_6H_4$	Н	Н	3c	0.9	92	222-225	-
4	$4-H_3C-C_6H_4$	Н	Н	3d	1.05	89	244-246	-
5	$4-H_3CO-C_6H_4$	Н	Η	3e	1.1	88	190-191	190-192[29]

Table 4. Synthesis of 1,8-dioxo-octahydroxanthene derivatives by n-WSA^a.

$-C_6H_5$	CH ₃	CH ₃	4 a	1.1	92	203-204	205-206 [30]
$2-O_2N-C_6H_4$	CH_3	CH_3	4 b	0.85	90	244-245	246-248 [31]
$3-O_2N-C_6H_4$	CH_3	CH_3	4 c	0.8	93	168-169	167-168 [30]
$4-O_2N-C_6H_4$	CH_3	CH_3	4d	0.8	94	222-224	221-223 [30]
$4-F-C_6H_4$	CH_3	CH_3	4e	0.9	92	206-207	208-209 [31]
$4-Cl-C_6H_4$	CH_3	CH_3	4f	1	93	237-239	236-237 [32]
$4-Br-C_6H_4$	CH_3	CH_3	4g	1	91	264-267	263-265 [33]
$2-H_3C-C_6H_4$	CH ₃	CH ₃	4h	1.2	89	230-232	
$4-H_3C-C_6H_4$	CH_3	CH_3	4i	1.25	89	212-214	216-217 [33]
$4-H_3CO-C_6H_4$	CH_3	CH_3	4j	1.3	90	242-244	241-243 [33]
$4-HO-C_6H_4$	CH ₃	CH ₃	4 k	1.25	87	246-247	246-248 [31]
2-Naphtaldehyde	CH_3	CH_3	4 1	1.05	92	234	234-235 [34]
2-OH-5-BrC ₆ H ₃	CH ₃	CH ₃	4 m	1.3	86	268-271	
C ₆ H ₅ -CH=CH-	CH ₃	CH ₃	4 n	1.25	85	256-258	-
$-C_6H_5$	Н	Ph	5a	1.2	91	196-198	-
$4-H_3C-C_6H_4$	Н	Ph	5b	1.25	90	204-208	-
$4-H_3CO-C_6H_4$	Η	Ph	5c	1.25	90	212-215	-
$4-Cl-C_6H_4$	Η	Ph	5d	1.05	93	234-236	-
	$\begin{array}{r} -C_{6}H_{5}\\ 2-O_{2}N-C_{6}H_{4}\\ 3-O_{2}N-C_{6}H_{4}\\ 4-O_{2}N-C_{6}H_{4}\\ 4-P_{7}-C_{6}H_{4}\\ 4-F_{7}-C_{6}H_{4}\\ 4-Br_{7}-C_{6}H_{4}\\ 2-H_{3}C-C_{6}H_{4}\\ 4-H_{3}C-C_{6}H_{4}\\ 4-H_{3}CO-C_{6}H_{4}\\ 4-HO-C_{6}H_{4}\\ 2-Naphtaldehyde\\ 2-OH-5-BrC_{6}H_{3}\\ C_{6}H_{5}-CH=CH-\\ -C_{6}H_{5}\\ 4-H_{3}C-C_{6}H_{4}\\ 4-H_{3}CO-C_{6}H_{4}\\ 4-H_{3}CO-C_{6}H_{4}\\ 4-H_{3}CO-C_{6}H_{4}\\ 4-H_{3}CO-C_{6}H_{4}\\ 4-C_{1}-C_{6}H_{4}\\ 4-C_{1}-C_{6}H_{4}\\ \end{array}$	$\begin{array}{ccccc} -C_6H_5 & CH_3 \\ 2-O_2N-C_6H_4 & CH_3 \\ 3-O_2N-C_6H_4 & CH_3 \\ 4-O_2N-C_6H_4 & CH_3 \\ 4-F-C_6H_4 & CH_3 \\ 4-F-C_6H_4 & CH_3 \\ 4-Br-C_6H_4 & CH_3 \\ 4-Br-C_6H_4 & CH_3 \\ 2-H_3C-C_6H_4 & CH_3 \\ 4-H_3C-C_6H_4 & CH_3 \\ 4-H_3C-C_6H_4 & CH_3 \\ 4-HO-C_6H_4 & CH_3 \\ 2-OH-5-BrC_6H_3 & CH_3 \\ 2-OH-5-BrC_6H_3 & CH_3 \\ C_6H_5-CH=CH- & CH_3 \\ -C_6H_5 & H \\ 4-H_3CO-C_6H_4 & H \\ 4-H_3CO-C_6H_4 & H \\ 4-H_3CO-C_6H_4 & H \\ 4-Cl-C_6H_4 & H \\ 4-Cl-C_6H_4 & H \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^aReaction conditions: aromatic aldehyde (1 mmol), cyclic-diketone (2mmol), n-WSA (0.019 g)under solvent-free at 100 °C. ^bIsolated yield.

The present method not only affords the products in excellent yields but also avoids the problems associated with catalyst cost, handing, safety and pollution.

As indicated in Table 4, the reaction works easily for a vast variety of aromatic aldehydes with both electron-donating and electron-withdrawing groups and different cyclic diketone to give corresponding 1,8-dioxo-octahydroxanthene derivatives in good to excellent yields. In almost all cases, the reactions proceeded smoothly within 50-80 min. However, it is notable that substituted aromatic aldehydes with electron-withdrawing groups increase the rate of reaction (Table 2 entries **2**, **3**, **7-12** and **23**) probably by activating the carbonyl group as electrophile center. Contrarily in the case of electron-donating groups, the reaction was more slowly (Table 2, entries **3**, **5**, **13-19**, **21** and **22**).

A plausible mechanism for the synthesis of 1,8-dioxo-octahydroxanthenesin presence of n-WSA as catalystis shown in Fig. 8.

Fig. 8.Possible mechanism for the synthesis of 1,8-dioxo-octahydroxanthene derivatives in presence of n-WSA as catalyst.

In the proposed mechanism, initially, the carbonyl group of aromatic aldehyde is activated by SO_3H groups of nano-WO₃-SO₃H to give intermediate**II**. Then, 1,3-cyclic diketone attacks activated aldehyde and affords intermediate **III**. Following, by removing H₂O from intermediate **III**, the **IV** as a Mickel acceptor is prepared. One more time, the SO₃H group of nano-WO₃-SO₃H activates intermediate **IV**. Then, Michael addition of dimedone with intermediate **IV** gives **V**. Intermediate **V** changes to **VI** after ring closing reaction and removing catalyst. Finally by removing H₂O from compound **VI**, final 1,8-dioxo-octahydroxanthene derivatives**VII** is produced. The proposed mechanism illustrate clearelythe catalytic role of nano-WO₃SO₃H. As indicated in the Figure 8, the SO₃H groups play important role in the catalytic activity of nano-WO₃-SO₃H.

Reusability of the catalyst was checked by recovered n-WSA and reused for eight consecutive reactions and obtained the yield 90-93%. This indicates that as $-SO_3H$ groups has fixed on the surface of nano-WO₃, it does not lose its activity and could be recycled 10 times(Fig. 9).Further, pH analysis of the recovered catalyst showed loading of 3.35 mmol H⁺/g. This result suggests that the nature of the catalyst remains intact after each run and leaching of the acid species did not occur during the course of the reaction.

Fig. 9. Reusability of n-WSA for the synthesis of 1,8-dioxo-octahydroxanthenes, Reaction conditions: *para*-chlorobenzaldehyde (1 mmol), dimedone (2mmol), reaction time: 1 h at 100 °C in solvent free condition.

Various methods have been reported for the synthesis of 1,8-dioxo-octahydroxanthenes, including, condensation of aromatic aldehydes and 1,3-cyclic diketones in presence of different catalysts. A comparison between the result of the proposed catalyst and some of the recently used catalysts for synthesis of octahydroxanthene derivatives is summarized in Table 5.

	Table 5. Comparison of the characteristic of new synthesized cataryst with some reported catarysts.							
Entry	Catalyst	Amount of Catalyst	Time (h)	Condition	Solvent	Yield (%)		
1	Nano-ZnO	10 mol%	2	100 °C	-	Trace		
2	Nano-NiO	10 mol%	2	100 °C	-	Trace		
3	[CMIM][HSO ₄] [35]	10 mol%	2.5	70	H_2O	95		
4	NaHSO ₄ .SiO ₂ [36]	0.1 g	6.5	Reflux	CH ₃ CN	90		
5	MCM-41-SO ₃ H [32]	0.2 g	1	Ultrasonic	H_2O	95		
6	[Hmim]TFA [37]	0.1 g	3	80 °C	-	91		
7	[cmmim][BF ₄][38]	0.2 g	2.5	80 °C	-	87		
8	CAN/HY-Zeolite [39]	0.1 g	1.5	80 °C	-	88		
9	Dowex-50W [40]	0.4 g	1.5	100 °C	-	78		
10	Amberlyst-15 [41]	0.2 g	5	Reflux	CH ₃ CN	92		
11	Fe ⁺³ -montmorillonite [42]	0.05 g	6	100 °C	Et-OH	94		
12	Proposed catalyst	0.019 g	1	100 °C	-	93		

Table 5. Comparison of the characteristic of new synthesized catalyst with some reported catalysts

Although, some of these methods have convenient protocols with good to high yields, the majority of these methods suffer at least from one of the following disadvantages such as the use of toxic organic solvents, excess reagents, long reaction time and harsh reaction conditions. Table 5 shows that the heterogeneous solid acid catalyst of nano-WO₃-SO₃H is the best in comparison to the other mentioned catalysts. The proposed new catalyst has some advantages in comparison with the other catalyst including shorter reaction time, easy separation, low consumption of organic solvents, reusability and ability to perform reactions in solvent free conditions. It is a stable solid acid catalyst with high densities of sulfuric acid groups that can be easily synthesized in the laboratory and can be reused for several times.

3.2.2. Synthesis of tetrahydrobenzoxanthene derivatives

As Xanthenes and compounds based on these core templates are important heterocycles that are known to possess multiple biological, pharmaceutical and other activities [43, 44], it was decided to develope the catalytic activity of n-WSA by investigating their synthesis. For this purpose, tetrahydrobenzoxanthene was synthesized by condensation between benzaldehyde (1) (1 mmol), dimedone (2) (1 mmol) and β -naphtole (6) (1 mmol) under solvent free condition as a model reaction (Scheme 3).

In table 6, the activity of n-WSA is compared with the nano-WO₃ and other catalyst.

	Tuble of Comparison	er nune mege	o jii with boin	ereporteu	eatarysts.	
Entry	Catalyst	Amount of	Condition	Time	Solvent	Yield
- 5		Catalyst		(min)		(%)
1	-	-	100 °C	90	-	15
2	Nano-WO ₃	0.019 g	100 °C	85	-	31
3	Nano-WO ₃ -SO ₃ H	0.019 g	100 °C	85	-	91
4	Nano-ZnO	10 mol%	100 °C	85	-	Trace
5	Nano-NiO	10 mol%	100 °C	85	-	Trace
6	Trityl Chloride [45]	7 mol%	110 °C	50	-	89
7	CeCl ₃ .7H ₂ O-NaI [46]	5 mol%	50 °C	120	CH ₃ OH	93

Table 6. Comparison of nano-WO₃-SO₃H with some reported catalysts

8	NH ₂ SO ₃ H [47]	20 mol%	120 °C	150	-	85
9	$H_{14}[NaP_5W_{30}O_{110}][48]$	0.4 mol%	120 °C	120	-	88
10	TCT [49]	5 mol%	80 °C	60	-	92
11	InCl ₃ [50]	30 mol%	120 °C	30	-	84
12	$P_2O_5[50]$	20 mol%	120 °C	40	-	76
13	HClO ₄ -SiO ₂ [51]	0.1 g	80 °C	60	-	95
14	$Sr(OTf)_2[52]$	10 mol%	80 °C	300	ClCH ₂ CH ₂ Cl	85
15	pTSA/[bmim]BF ₄ [53]	10 mol%	80 °C	180	-	90

The obtained results showed that the n-WSA (91%,yield) was a more suitable option rather than the nano-WO₃ (31%, yield).In comparison with the other mentioned catalysts, the presence new catalyst has some advantages including shorter reaction time, easy preparation and separation, low consumption of organic solvents, lower temperature of reaction and amount of catalyst, reusability and ability to perform reactions in solvent free conditions and high yield of products. It is a useful solid acid nanocatalyst with high densities of sulfuric acid groups that can be easily prepareded.

To examine the limitation and the scope of the reaction, the synthesis of different tetrahydrobenzoxanthene derivatives heve been investigated. The obtained results are summarized in Table 7.

Entry	٨r	\mathbf{p}^1	\mathbf{P}^2	Droduct	Time	Yield ^b	Meltin	g point (°C)
Linu y	Al	К	K	Tioduct	(min)	(%)	Found	Reported
1	$-C_6H_5$	Н	Н	7a	90	90	190-192	192-193 [54]
2	$4-H_3C-C_6H_4$	Н	H	7b	95	88	205-207	206-207 [54]
3	$4-H_3CO-C_6H_4$	Н	Н	7c	100	89	182-184	181-182 [54]
4	$2-Cl-C_6H_4$	Н	Н	7d	88	90	244-246	243-245 [54]
5	$4-Cl-C_6H_4$	Н	Н	7e	85	91	207-209	208-209 [54]
6	4-F-C ₆ H ₄	Н	Н	7f	85	92	208-210	209-211 [54]
7	$4-Br-C_6H_4$	Н	Н	7g	85	91	212-214	214-215 [54]
8	$3-O_2N-C_6H_4$	Н	Н	7h	80	94	235-236	234-235 [54]
9	$4-O_2N-C_6H_4$	Н	Н	7i	80	94	237-238	236-237 [54]
10	2-Naphtyl	Н	Н	7j	80	87	190-191	-
11	$-C_6H_5$	CH_3	CH_3	8a	85	91	148-150	151-153 [55]
12	$2-Cl-C_6H_4$	CH_3	CH_3	8b	80	92	178-180	179-180 [55]
13	$2 - O_2 N - C_6 H_4$	CH_3	CH_3	8c	80	92	222-224	223-225[55]
14	$3-O_2N-C_6H_4$	CH_3	CH_3	8d	75	93	169-171	168-170 [55]
15	$4-O_2N-C_6H_4$	CH_3	CH_3	8e	75	94	177-179	178-180 [55]
16	4-F-C ₆ H ₄	CH_3	CH_3	8f	80	93	182-184	184-185 [56]
17	$4-Cl-C_6H_4$	CH_3	CH_3	8g	80	92	180-181	180-182 [55]
18	$4-Br-C_6H_4$	CH_3	CH_3	8h	80	92	186-188	186-187 [57]
19	$4-H_3C-C_6H_4$	CH_3	CH_3	8i	85	88	177-178	176-188 [55]
20	$4-H_3CO-C_6H_4$	CH_3	CH_3	8j	90	86	202-204	204-205[55]
21	$4-HO-C_6H_4$	CH_3	CH_3	8k	90	85	222-225	223-225[55]
22	2-Naphtyl	CH_3	CH_3	81	80	83	228-230	228-230 [56]
23	$-C_6H_5$	Н	Ph	9a	85	88	118-124	-
24	$4-F-C_6H_4$	Н	Ph	9b	80	90	181-183	-
25	$4-Cl-C_6H_4$	Н	Ph	9c	80	90	234-235	-

Table 7. Synthesis of tetrahydrobenzoxanthene derivatives by n-WSA^a.

26	$4 - O_2 N - C_6 H_4$	Н	Ph	9d	75	92	183-186	_	
27	$4-H_3C-C_6H_4$	Н	Ph	9e	85	85	198-200	-	
28	$4-H_3CO-C_6H_4$	Н	Ph	9f	85	83	191-192	-	

^aReaction conditions: **1** (1 mmol), **2** (1mmol), **6** (1 mmol) and n-WSA (0.019 g) in solvent-free at 100 °C. ^bIsolated yield.

As indicated in Table 7, the new conditions are very suitable for a vast varity of tetrahydrobenzoxanthene

derivatives.

A plossible mechanism for thesynthesis of tetrahydrobenzoxanthenes is shown in Fig. 10.

Fig. 10. Proposed mechanism for the synthesis of tetrahydrobenzoxanthenes in presence n-WSA.

In the possible mechanism (Fig. 10), initially, activated carbonyl group of aromatic aldehyde (**II**) is attacked by B naphtol (i) to afford intermediate **III**.Dehydration of **III**, provides chalkon**IV** as a Mickel acceptor. The intermediate **IV** is activated by SO₃H groups of nano-WO₃-SO₃H. Then, Michael addition of dimedone (V) with intermediate **IV** gives intermediate**VI** which could be changed to **VII** after ring closing reaction and removing catalyst. Finally by removing H_2O from **VII**, product **VIII** is produced. The proposed mechanism illustrate the catalytic role of nano-WO₃SO₃H. As indicated in the Figure 9, the SO₃H groups of nano-WO₃-SO₃H plays principal role in the catalytic activity of nano-WO₃-SO₃H.

The recyclability of the catalyst was tested with five consecutive synthesis of tetrahydrobenzoxanthene by using recovered n-WSA and desired product obtained in 89-91% yield(Fig.11).

Fig. 11. Reusability of n-WSA for the synthesis of tetrahydrobenzoxanthenes, Reaction conditions:benzaldehyde (1 mmol), dimedone (1 mmol), β -naphtole (1 mmol), reaction time: 85 min at 100 °C in solvent free condition.

3.2.3. Synthesis of benzoimidazoloquinazolinone derivatives

As benzoimidazoloquinazolinones are important because of their wide range of biological activities, application in medicinal chemistry, agrochemicals and pharmaceutical industry as herbicides and active pharmaceuticals[58-60] and to explore the efficiency of n-WSA, it wastested it for their synthesis by condensation between benzaldehyde (1) (1 mmol), dimedone (2) (1 mmol) and 2-amino benzimidazole (10) (1 mmol) under solvent free condition as a model reaction (Scheme 4).

Scheme 4. Synthesis of 3,3-dimethyl-12-phenyl-3,4,5,12-tetrahydrobenzo[4,5]imidazo[2,1-b]quinazolin-1(2H)-one derivatives.

One more time the activity of n-WSA was compared with the nano-WO3 and some other catalyst (Table

8).

	1	5 5		1 7	
Entry	Catalyst	Condition	Time (min)	Solvent	Yield (%)
1	-	100 °C	15	-	12
2	Nano-WO ₃	100 °C	15	-	34
3	Nano-WO ₃ -SO ₃ H	100 °C	15	-	94
4	Nano-ZnO	100 °C	15	-	Trace
5	Nano-NiO	100 °C	15	-	Trace
6	- [61]	Reflux	360	DMF	64
7	$I_2[62]$	Reflux	10	CH ₃ CN	84.6
8	Silica gel [63]	Microwave 120 °C-100 psi	3	-	95
9	SBA-Pr-SO ₃ H [64]	-	10	-	90
10	$H_6P_2W_{18}O_{62}[65]$	Reflux	15	CH ₃ CN	91
11	NH ₂ SO ₃ H [66]	Reflux	20	CH ₃ CN	90
12	Ionic Liquid [67]	Heating	360		84
13	- [68, 69]	Reflux	5	DMF	58
14	- [61]	Microwave	5	DMF	89

Labic 0. Companyon of name $\sqrt{0}$ and $\sqrt{10}$	Table 8.	Comparison	of nano-WO	3-SO3H with so	me reported catalysts
--	----------	------------	------------	----------------	-----------------------

The obtained results showed that the n-WSA (94%, yield) works better than the nano-WO₃ (34%, yield).One more time, our new catalyst has some advantages in comparison with the other catalyst such as easy preparationand separation, low consumption of organic solvents, recoverability and reusability, operational simplicity and solvent free conditions.

To examine the limitation and the scope of the reaction, the synthesis of benzoimidazoloquinazolin derivatives have been investigated. The obtained results are summarized in Table 9.

Tuble 2. Synthesis of benzonnadzoroquinazonnadrivatives by n visit .											
Entry	Ar	\mathbf{R}^1 \mathbf{R}^2	P ²	Product	Time (min)	Yield ^b (%)	Melting point (°C)				
			ĸ				Found	Reported			
1	$-C_6H_5$	CH ₃	CH ₃	11a	15	94	318-319	>300[62]			
2	$4-H_3C-C_6H_4$	CH ₃	CH ₃	11b	18	92	328-330	330-332 [61]			
3	$4-H_3CO-C_6H_4$	CH_3	CH_3	11c	20	90	317-318	318-320[61]			
4	$4-O_2N-C_6H_4$	CH_3	CH_3	11d	12	95	334-336	>300 [62]			
5	4-F-C ₆ H ₄	CH_3	CH_3	11e	12	94	324-326	-			
6	$4-Cl-C_6H_4$	CH_3	CH_3	11f	14	95	337-339	340 [61]			
7	$4-Br-C_6H_4$	CH_3	CH_3	11g	14	95	312-314	>300 [62]			
8	$4-HO-C_6H_4$	CH_3	CH_3	11h	16	91	332-334	330-332 [64]			
9	$-C_6H_5$	Н	Н	12	15	92	312-313	-			
10	$-C_6H_5$	Н	Ph	13	15	93	335-336	-			

Table 9. Synthesis of benzoimidazoloquinazolinderivatives by n-WSA^a.

^aReaction conditions: **1** (1 mmol), **2** (1mmol), 2-amino benzimidazole (1 mmol), n-WSA (0.019 g)under solvent-free conditions at 100 °C.

^bIsolated yield.

As showed in Table 8, fortunately the new catalyst also works very well for a vast varity of benzoimidazoloquinazolin derivatives.

A proposed mechanism for the synthesis of benzoimidazoloquinazolins is shown in Fig. 12.

Fig. 12. Proposed Mechanism for the synthesis of benzoimidazoloquinazolins by n-WSA.

The reusability of the catalyst was tested with five consecutive synthesis of benzoimidazoloquinazolin by using recovered n-WSA and desired product obtained in 91-94% yield(Fig.13).

Fig.13.Reusability of n-WSA for the synthesis of benzimidazoloquinozoline, Reaction conditions: benzaldehyde (1 mmol), dimedone (1mmol), 2-amino benzimidazole (1 mmol), reaction time: 15 min at 100 °C in solvent free condition.

4. Conclusion

In summary, for the first timenano-WO₃-supported sulfonic acid was introduced as a new heterogeneous solid acid nano catalyst. This new catalyst has been efficiently used for the synthesis of 1,8-dioxo-octahydroxanthenes, tetrahydrobenzoxanthene and benzoimidazoloquinazolinin multi component reactions under solvent-free conditions. Allthe reactions works easily for a variety of aldehydes with both electron-donating and electron-withdrawing groups to give corresponding products in excellent yields. The catalyst was reused for 10 consecutive cycles with consistent activity. The excellent catalytic performance, easy preparation and separation of the catalyst make it a good heterogeneous solid acid nano catalyst for organic synthesis and transformations.

Acknowledgements

We gratefully acknowledge the department of chemistry of Semnan University for supporting this work.

References

- [1] P.W. Davies, Annu. Rep. R. Soc. Chem. Sect. B. Org. Chem., 105 (2009) 93-112.
- [2] N. Koukabi, E. Kolvari, M.A. Zolfigol, A. Khazaei, B.S. Shaghasemi, B. Fasahati, Adv. Synth. Catal., 354 (2012) 2001-2008.
- [3] J. Deng, L.-P. Mo, F.-Y. Zhao, L.-L. Hou, L. Yang, Z.-H. Zhang, Green Chem., 13 (2011) 2576-2584.
- [4] M.A. Gondal, M.A. Dastageer, A. Khalil, Catal. Commun., 11 (2009) 214-219.
- [5] H. Liu, S. Huang, L. Zhang, S. Liu, W. Xin, L. Xu, Catal. Commun., 10 (2009) 544-548.
- [6] M. Nasouh Alaya, M.A. Rabah, Arab. J. Chem., (2012) In Press.
- [7] Z. Lixia, Z. Qin, L. Qingcheng, J. Rare Earths, 24 (2006) 60-66.
- [8] D. Menga, N.M. Shaalan, T. Yamazaki, T. Kikuta, Sensors and Actuators B, 169 (2012) 113-120.
- [9] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, J. Solid State Chem., 194 (2012) 250-256.
- [10] G. Lu, X. Li, Z. Qu, Q. Zhao, H. Li, Y. Shen, G. Chen, Chem. Engineer. J., 159 (2010) 242-246.
- [11] Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, Y. Du, Sensors and Actuators B: Chemical, 186 (2013) 734-740.

- [12] J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Appl. Surface Sci., 287 (2013) 270-275.
- [13] S. Rahmani, A. Amoozadeh, E. Kolvari, Catal. Commun., 56 (2014) 184-188.
- [14] M. Arslan, C. Faydali, M. Zengin, M. Küçükislamoğlu, H. Demirhan, Turk. J. Chem., 33 (2009) 769-774.
- [15] A. Shaabani, A. Rahmati, Z. Badri, Catal. Commun., 9 (2008) 13-16.
- [16] M.A. Zolfigol, Tetrahedron Lett., 57 (2001) 9509-9511.
- [17] N. Asim, S. Radiman, M.A. Yarmo, Am. J. Applied. Sci., 6 (2009) 1424-1428.
- [18] H.R. Shaterian, M. Ghashang, M. Feyzi, Appl. Catal. A: General, 345 (2008) 128-133.
- [19] M.A. Zolfigol, V. Khakyzadeh, A.R. Moosavi-Zare, G. Chehardoli, F. Derakhshan-Panah, A. Zare, O. Khaledian, Scientia Iranica, 19 (6) (2012) 1584-1590.
- [20] H. Xing, T. Wang, Z. Zhou, Y. Dai, J. Mol. Catal. A: Chem., 264 (2007) 53-59.
- [21] P. Elavarasan, K.V. Krishna Kishore, S. Upadhyayula, Bull. Catal. Soc. Ind., 8 (2009) 107-113.
- [22] A. Amoozadeh, S. Rahmani, F. Nemati, Heterocycl. Commun., 19(1) (2013) 69-73.
- [23] A. Amoozadeh, M. Ahmadzedeh, E. Kolvari, J. Chem., 2013 (2013) 1-6.
- [24] R. Giri, J.R. Goodell, C. Xing, Bioorg. Med. Chem., 18 (2010) 1456–1463.
- [25] N. Mulakayala, P.V.N.S. Murthy, D. Rambabu, Bioorg. Med. Chem. Lett., 22 (2012) 2186-2191.
- [26] D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Cancer J. Clin., 55 (2005) 74-108.
- [27] A.N. Dadhania, V.K. Patel, D.K. Raval, J. Braz. Chem. Soc., 22 (2011) 511-516.
- [28] J.-C. Xu, W.-M. Li, H. Zheng, Y.-F. Lai, P.-F. Zhang, Tetrahedron, 67 (2011) 9582-9587.
- [29] I. Devi, P.J. Bhuyan, Tetrahedron lett., 45 (2004) 8625-8627.
- [30] K. Venkatesan, S.S. Pujari, R.J. Lahoti, K.V. Srinivasan, Ultra. Sonochem., 15 (2008) 548-553.
- [31] T.S. Jin, J.S. Zhang, A.Q. Wang, T.S. Li, Ultra. Sonochem., 13 (2006) 220-224.
- [32] S. Rostamizadeh, A.M. Amani, G.H. Mahdavinia, G. Amiri, H. Sepehrian, Ultra. Sonochem., 17 (2010) 306-309.
- [33] S. Kantevari, R. Bantu, L. Nagarapu, J. Mol. Catal. A: Chem., 269 (2007) 53-57.

- [34] S. Gowravaram, K. Arundhathi, K. Sudhakar, B.S. Sastry, J.S. Yadav, Synth. Commun., 38 (2008) 3439-3446.
- [35] P.P. Salvi, A.M. Mandharea, A.S. Sartape, D.K. Pawar, S.H. Han, S.S. Kolekar, C. R. Chimie, 14 (2011) 883-886.
- [36] B. Das, P. Thirupathi, K. Ravinder Reddy, B. Ravikanth, L. Nagarapu, Catal. Commun., 8 (2007) 535-538.
- [37] M. Dabiri, M. Baghbanzadeh, E. Arzroomchilar, Catal. Commun., 9 (2008) 939-942.
- [38] A.N. Dadhania, V.K. Raval, D.K. Raval, J. Saudi Chem. Soc., In Press (2014).
- [39] P. Sivaguru, A. Lalitha, Chin. Chem. Lett., 25 (2014) 321-323.
- [40] G. Imani Shakibaei, P. Mirzaei, A. Bazgir, Appl. Catal. A: General, 325 (2007) 188-192.
- [41] B. Das, P. Thirupathi, I. Mahender, V. Saidi Reddy, Y.K. Rao, J. Mol. Catal. A: Chem., 247 (2006) 233-239.
- [42] G. Song, B. Wang, H. Luo, L. Yang, Catal. Commun., 8 (2007) 673-676.
- [43] C.G. Knight, T. Stephens, Biochem. J., 258 (1989) 683-687.
- [44] O. Siirkecioglu, N. Talini, A. Akar, J. Chem. Res. Synop., (1995) 502-506.
- [45] A. Khazaei, M.A. Zolfigol, Catal. Commun., 20 (2012) 54-57.
- [46] M. Kidwai, A. Jahan, N.K. Mishra, C. R. Chimie, 15 (2012) 324-330.
- [47] M. Heravi, H. Alinejhad, K. Bakhtiari, H.A. Oskooie, Mol. Divers, 14 (2010) 621-626.
- [48] M. Heravi, H. Alinejhad, H.A. Oskooie, F. Bamoharram, Bull. Chem. Soc. Ethiop., 25 (3) (2011) 399-406.
- [49] Z.-H. Zhang, P. Zhang, S.-H. Yang, H.-J. Wang, J. Deng, J. Chem. Sci., 122 (2010) 427–432.
- [50] G. Chandra Nandi, S. Samai, R. Kumar, M.S. Singh, Tetrahedron, 65 (2009) 7129-7134.
- [51] L.-P. Mo, H.-L. Chen, J. Chin. Chem. Soc., 57 (2010) 157-161.
- [52] J. Li, W. Tang, L. Lu, W. Su, Tetrahedron lett., 49 (2008) 7117-7120.
- [53] J.M. Khurana, D. Magoo, Tetrahedron lett., 50 (2009) 4777-4780.
- [54] L.P. Mo, H.L. Chen, J. Chin. Chem. Soc., 57 (2010) 157-161.

- [55] G.C. Nandi, S. Samai, R. Kumar, M.S. Singh, Tetrahedron, 65 (2009) 7129-7134.
- [56] S. Gao, C.H. Tsai, C.F. Yao, Synlett, 6 (2009) 949-954.
- [57] Z.H. Zhang, P. Zhang, S.H. Yang, H.J. Wang, J. Deng, J. Chem. Sci., 122 (2010) 427-432.
- [58] V. Alagarsamy, Pharmazie, 59 (2004) 3753-3755.
- [59] V. Alagarsamy, V.R. Solomon, M. Murugan, Bioorg. Med. Chem., 15 (2007) 4009-4015.
- [60] M.J. Hour, L.J. Huang, S.C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.H. Lee, J. Med. Chem., 43 (2000) 4479–4487.
- [61] A.-F. Mourad, A. Aly, H. Farag, E. Beshr, Beilstein J. Org. Chem., 3:11 (2007) 1-4.
- [62] R.G. Puligoundla, S. Karnakanti, R. Bantu, N. Kommu, S. Babu Kondra, L. Nagarapu, Tetrahedron Lett., 54 (2013) 2480-2483.
- [63] G. Krishamurty, K.V. Jagannath, J. Chem. Sci., 125 (2013) 807-811.
- [64] G. Mohammadi Ziarani, A. Badiei, Z. Aslani, N. Lashgari, Arab. J. Chem., (2011) In Press.
- [65] M.M. Heravi, H.A. Oskooie, L. Ranjbar, F. Derikvand, B. Alimadadi, F. Bamoharram, Mol. Diversity, 12 (2008) 181.
- [66] M. Heravi, F. Derikvand, L. Ranjbar, Synth. Commun., 40 (2010) 677.
- [67] C. Yao, S. Lei, C. Wang, T. Li, C. Yu, X. Wang, S. Tu, J. Heterocycl. Chem., 47 (2010) 26.
- [68] V.V. Lipson, S.M. Desenko, M.G. Shirobokova, V.V. Borodina, Chem. Heterocycl. Compd., 39 (2003) 1213.
- [69] V.V. Lipson, S.M. Desenko, S.V. Shishkina, M.G. Shirobokova, O.V. Shishkin, V.D. Orlov, Chem. Heterocycl. Compd., 39 (2003) 1041.

29