

Subscriber access provided by UNIV OF NEW ENGLAND

Palladium-Catalyzed One-pot Highly Regioselective 6-Endo Cyclization and Alkylation of Enynoates: Synthesis of 2-Alkanone Pyrones

Tanveer Ahmad, Sheng-Qi Qiu, Yun-He Xu, and Teck-Peng Loh

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02198 • Publication Date (Web): 15 Oct 2018

Downloaded from http://pubs.acs.org on October 16, 2018

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

4

5 6

7

8 9

10 11

12 13 14

15

16

17

18

19 20 21

22

23

24

25

26 27

28

29

30

Palladium-Catalyzed One-pot Highly Regioselective 6-*End*o Cyclization and Alkylation of Enynoates: Synthesis of 2-Alkanone Pyrones

Tanveer Ahmad,[†]Sheng-Qi Qiu,[†] Yun-He Xu*,[†] and Teck-PengLoh*,[†],[‡]

[†]Department of Chemistry, University of Science and Technology of China, Hefei, China, 230026.

^{*}Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Supporting Information

ABSTRACT:Pd(II)-catalyzed one-pot tandem cyclization/alkylation reactions of enyanoates with allylic alcohols has been demonstrated. In this reaction, an innovative protocol proceeded well through Pd-catalyzed intramolecular selective *6-endo* cyclization, insertion of allylic alcohols into the Pd-C bond of vinylpalladium species generated *in situ*, and β -hydrogen elimination processes. This conversion provides a convenient and efficient methodology for the synthesis of 2-alkanone pyronesin moderate to good yields.

INTRODUCTION

Pyrones are fundamental structural motifs in numerous natural products 1 and also versatile building blocks for the synthesis of various biologically active heterocyclic compounds.² As a result, considerable attention has been devoted to preparing diverse pyrone compounds by employing differentmethods.³ Owing to the limitation of traditional methods, thegroupsof Rossi,⁴ Larock,⁵ and Burton, et al.⁶ have developed more convenient approaches4b, 7by using different electrophiles such as I₂, NIS, ICl, PhSeCletcfor the cyclization of enynoates to form pyrone derivatives. Recently, Loh,⁸Pardasani, et al.⁹ studied the palladium-catalyzed difunctionalization reaction of internal alkynes of enynoatesvia6-endo cyclization and using different coupling partners such as electron-deficient olefins to capture the vinylpalladium species generated in situ.¹⁰Despite the fact these methods made processes more facile and efficient, there still need to develop a new methodology to broaden the diversity of the pyrone compounds.¹¹Therefore, we selected allylic alcohol as an alkylating agent in order to develop a convenient and dominant protocol for the synthesis of multisubstitutedpyrones through the Heck-type C-C bond formation.¹²Allylic alcohols exhibiting several advantages like abundant in nature, easy preparation, inexpensive and as a simple starting material offer synthetic applications.¹³ It has been extensively utilized in transition metal catalyzed reactions in three different ways such as nucleophilic substitution of -OH groups,14 formations of C=C bonds15 and as a carbonyl alkylating agent.¹⁶ To the best of our knowledge, rare examples of the palladium-catalyzed oxidative cross

coupling reactions between internal alkynes and allylic alcohols have been developed (Scheme 1).^{17,13a,18}Inspired by the previous work, we became interested to discover the application of vinyl-Pd species produced *in situ* during cross coupling reaction¹⁹ for the synthesis of 2-alkanonepyrone compounds using enynoate.

Scheme 1.Reported Methods forAlkylationwith Allylic Alcohols.

RESULTS AND DISCUSSION

The Z-envnoate1a and allylic alcohol 2a were employed as model substrates. Recently, we found that the combination of Pd(II) catalyst with an oxidant favored such cyclization/coupling reactions. So our investigation began with 5 mol % of PdCl₂, 10 mol % Cu(OAc)₂ and O₂ in DMSO at 30°C (Chart 1). Pleasingly, the desired 5-(3-oxobutyl)-6phenyl-2H-pyran-2-one 3a could be obtained but in a low yield (25%). For the optimization of the reaction condition, an extensive screening of solvents, to our delight, the desired product **3a** was obtained in 62% yield in 2-butanone (Chart 1, entry 7). Cyclohexanone was also an

Chart 1. Optimization of Reaction Conditions.^{a,b}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24 25 26

27

28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

						Me	•
	Ph-=	• С ОН	Pd(PhCN Cu(OA) ₂ Cl ₂ (5 mol %) c) ₂ (20 mol %)	Ph		
	EtO ₂ Ć 1a	Me 2a	Cyclohexa	none, O ₂ , 30 °C		3a	
entry	catalyst (05 mol %) oxidant (20	mol %)	solvent ter	mp (°C)	time (h)	/ield (%)
1	PdCl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	DMSO	30	24	25
2	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	DMSO	30	30	40
3	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	CH ₃ CN	30	32	<5
4	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	1,4-Dioxane	30	30	28
5	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10)	+ O ₂ (1 atm)	DCE	30	36	34
6	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	Acetone	30	24	58
7	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	2-Butanone	30	32	62
8	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (10) +	O ₂ (1 atm)	Cyclohexanone	30	36	68
9	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	30	24	76
10	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (30) +	O ₂ (1 atm)	Cyclohexanone	30	26	71
11	PdCl ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	30	36	72
12	Pd(MeCN) ₂ Cl ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	30	32	60
13	Pd(OAc) ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	30	36	N.R
14	Pd(dba) ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	30	36	N.R
15	Pd(PhCN) ₂ Cl ₂	BQ (20) + O ₂ (1	atm)	Cyclohexanone	30	36	17
16	Pd(PhCN) ₂ Cl ₂	K ₂ S ₂ O ₈ (20) + C	0 ₂ (1 atm)	Cyclohexanone	30	30	10
17	Pd(PhCN) ₂ Cl ₂	CuCl ₂ (20) + O ₂	(1 atm)	Cyclohexanone	30	30	53
18	Pd(PhCN) ₂ Cl ₂	Ag ₂ O(20) + O ₂ (1 atm)	Cyclohexanone	30	30	N.R
19	Pd(PhCN) ₂ Cl ₂	AgOAc(20) + O ₂	2 (1 atm)	Cyclohexanone	30	24	N.R
20	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (20) +	Air (1 atm)	Cyclohexanone	30	24	49
21	Pd(PhCN) ₂ Cl ₂	Cu(OAc) ₂ (20) +	O ₂ (1 atm)	Cyclohexanone	50	24	64

^{*a*}Reaction conditions: A mixture of**1a** (0.2 mmol), **2a** (0.6 mmol, 3 equiv), Pd(PhCN)₂Cl₂ (0.01 mmol, 0.05 equiv), Cu(OAc)₂ (0.04 mmol, 0.2 equiv), and oxidant in solvent (1mL) were stirred at 30 °C for 24 h. ^{*b*}Isolated yields.

Chart 2. Scope of Allylic Alcohol

^{*a*}Reaction conditions: Unlessotherwise specified, the reactions were performed with**1a** (0.2 mmol), **2** (0.6 mmol, 3 equiv), Pd(PhCN)₂Cl₂ (0.01 mmol, 0.05 equiv), Cu(OAc)₂ (0.04 mmol, 0.2 equiv), and O₂ (1 atm) in cyclohexanone(1 mL) were stirred at 30 °C for 24-40 h. ^{*b*}Isolated yields. ^{*c*}With use

ofmethyl (Z)-5-phenylpent-2-en-4-ynoate(**1a'**). ^{*d*}With use of *n*-butyl (Z)-5-phenylpent-2-en-4-ynoate (**1a''**).

effective solvent as compared to the other tested solvents, and the product 3a was obtained in 68 % yield (entry 8). The reaction was also run with various Pd(II) catalysts, except for Pd(OAc)₂ and Pd(dba)₂ (entries 13, 14), other Pd(II) catalysts gave comparable results. Next screening the combined oxidant system such as Cu(OAc)₂ with oxygen, CuCl₂ with oxygen and Cu(OAc)₂ in the air could afford the desired product in acceptable yield, while the silver salt, BQ, and $K_2S_2O_8$ with oxygen were not effective. After screening the reaction conditions it was revealed that chlorine anion, oxidant acetate anion, O_2 (atm) and solvent as well had a significant influence on the yield and efficiency of the reaction. Especially, a good vield of the desired product was obtained when Pd(PhCN)₂Cl₂ and $Cu(OAc)_2$ as an oxidant with O_2 (atm) were applied in this reaction. Moreover, it was found that higher temperature decreased the product yield (entries 21). Finally, it was found that increasing the oxidant loading to 20 mol% could afford the desired product **3a** in 76% yield (entry 9).

Chart 3. Substrate Scope of Enynoate.^{a,b}

^{*a*}Reaction conditions: Unless otherwise specified, all the reactions were carried out with **1** (0.2 mmol), **2a** (0.6 mmol, 3 equiv), Pd(PhCN)₂Cl₂ (0.01 mmol, 0.05 equiv), Cu(OAc)₂ (0.04 mmol, 0.2 equiv), and O₂ (1 atm) in cyclohexanone(1 mL) were stirred at 30 °C for 24-40 h. ^{*b*}Isolated yields.^{*c*}The reaction was run on 0.5 mmol scale.

After concluding optimization of the reaction conditions, we next probed the generality of different allylic alcohols as coupling partner and the results are summarized in Chart 2. The but-3-en-2-ol (2a) was first investigated with differentenynoates(1a, 1a' and 1a''). Among them, the enynoate 1a gave the corresponding product (3a) in good yield

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41

42 43

44

45

46 47

48

49

50

51

52

53

54

55

56

57 58

59

60

with short reaction time. Then the enynoatelawas selected as substrate for the synthesis of products(3b-3h). When an alkyl chain was increased and/or branched on allylic alcohols, the corresponding products were obtained (3b-3d) in moderate to good yield. Additionally, the phenyl and benzyl group were well tolerated to afford the desired products3e and 3f in good yields, respectively. Furthermore, the bromo substituted phenyl group was transformed into the product (3g) in 42% yield. It shows that the steric effect is very significant as it prolongs the reaction time to obtain the desired products (Chart 2, 3e-3f, 3g). Finally, the simplest allyl alcohols were successfully converted into an active aldehyde (3h) in 50 % yield.

We next tested the substrate scope of this highly regioselective 6-endo cyclization and alkylation (Chart 3). In general, the phenyl ring bearing methyl group at meta and *para*-position could afford the desired product in moderate to good vield (4a-4b). However, the presence of a methyl group at the ortho-position of the aryl ring prolonged the reaction time due to steric effect (4c). The electron-donating group substituted phenyl ring and bulky substituents such as naphthyl and fluorenyl all favored this transformation under the standard conditions (Chart 3, 4d-4f). The substrates with the electron-withdrawing group or halides on the phenyl ring were also compatible with the reaction system by prolonging the reaction time (4g-4i). Additionally, the cyclohexyl, cyclohexenyl, and aliphatic substituted envnoates were all well tolerated. The corresponding products obtained in moderate to good yields (4j-4q). Moreover, thioenyl and indole-substituted enynoate were utilized with the allylic alcohols, the desired products 4r and 4s could be obtained in 58% and 61% yield, respectively.

^aReaction conditions: Unless otherwise specified, the reacions were performed with1(0.2 mmol), 2a (0.6 mmol, 3 equiv),

Pd(PhCN)₂Cl₂ (0.01 mmol, 0.05 equiv), Cu(OAc)₂ (0.04 mmol, 0.2 equiv), and O₂ (1 atm) in cyclohexanone(1mL) were stirred at 30 °C for 32-60 h. ^{*b*}Isolated yields. ^{*c*}The reaction was run on 0.5 mmol scale.

Finally, we proceeded to examine the substrates with β substituent of enynoates achieving good to excellent yield (Chart 4). It was observed that the substrates with methyl or propyl at β -position led to the corresponding product in highyield (70%-82%, **5a-5f**). The structure **5a** was clearly confirmed by the X-ray crystallography (CCDC: 1836656, Chart 4). In addition, a series of substrates with a phenyl group at β -position were also converted to the desired products in moderate to good yields (**5g-5l**). In this case, due to the bulkiness of the phenyl group at the β -position, prolonging the reaction time is necessary.

The proposed reaction mechanism for the Pd(II)catalyzed regioselective 6-*endo* cyclization and alkylation of enynoate is illustrated in Scheme 2.²⁰ First, the carbonyl oxygen of ester moiety attacks the Pd(II) activated alkyne of enyanoate to afford the vinylpalladium intermediate **A**, *via6endo* cyclization. Subsequently, an allylic alcohol will insert into the C-Pd bond of vinylpalladium species to form thealkylpalladium species **C**, which is followed by β -hydrogen elimination to form the enol product **D** and then produces the final product **3a**. The released Pd(0) species will be oxidized into Pd(II) in the presence of the oxidants Cu(OAc)₂, O₂ and utilized in the next catalytic cycle.

Scheme 2. Proposed Mechanism

CONCLUSION

In conclusion, we have reported the palladium catalyzed highly regioselective *6-endo* cyclization and alkylation. The corresponding products were obtained in good yields. This work provides a simple and general approach for the synthesis of highly substituted pyronealkanones from readily available nonbiased allylic alcoholsunder mild and efficient reaction condition.

EXPERIMENTAL SECTION General Information

Pd(PhCN)₂Cl₂ Cu(OAc)₂ and some of allylic alcohols were purchased from commercial suppliers used as received unless otherwise noted. All Commercial solvents and reagents were employed without further purification. Reactions were monitored through analytical thin layer chromatography (SiO₂ 60 F-254 plates). The spots visualization were performed under UV radiation (254 nm), further visualization was possible using a basic solution of potassium permanganate. Flash chromatography was carried out using 200-300 mesh silica gel (SiO₂ 60) with distilled solvents. Proton nuclear magnetic resonance (¹H NMR) and Carbon nuclear magnetic resonance (13C NMR) spectra were recorded at 25 °C on Bruker Advance 400M NMR spectrometers. Chloroform-d was used as the solvent and Si(CH₃)₄(TMS) as an internal standard. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00 ppm) and relative to the signal of chloroform-d (δ 7.260 ppm, singlet). Multiplicities are recorded as: s (singlet); d (doublet); t (triplet); q (quartet); dd(doublets of doublet); m (multiplets). Coupling constants are expressed as a J value in Hz. ¹³C NMR are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00 ppm) and relative to the signal of chloroform-d (δ 77.03 ppm, triplet). Notable, splitting signals of the ¹³C nucleus was difficult to differentiate and ¹³C NMR signals were reported as a singlet. High resolution mass spectral analysis (HRMS) spectra were recorded on Water XEVO-G2 Q-TOF (Waters Corporation). IR spectra were recorded on a FTIR spectrophotometer.

Preparation of (Z)-Enynoates:

(*Z*)-Enynoates**1a-1t** were prepared according to the reported literature .^{2, 4a, 8, 21}

28 MethodA: In an oven dried 50 mL round bottom flask with a 29 mixture of (Z)-ethyl 3-iodoacrylate(P1)(1.13 g, 5 mmol, 1.0 30 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 31 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 32 corresponding alkyne (5.5 mmol, 1.1 equiv.). The mixture was stirred at 50 °C under an inert argon atmosphere until the 33 starting material was completely disappeared (monitored by 34 TLC). Then the reaction mixture was cooled to room 35 temperature and diluted with diethyl ether (Et₂O, 10 mL). 36 Then the solution was washed with saturated ammonium 37 chloride (NH₄Cl, 10 mL) twice. The aqueous phase was 38 extracted with Et₂O (10 mL). The combined organic phase 39 was dried over anhydrous sodium sulfate (Na2SO4) and 40 concentrated under reduced pressure to give the crude product, 41 which was purifiedby flash column chromatography using 42 petroleum ether/ethyl acetate (97:3) as eluent afforded the 43 desired products (1a-1t).

44 The Enynoate 1a' and 1a'' were prepared by using (Z)-methyl 45 3-iodoacrylate (P₂) and(Z)-n-butyl 3-iodoacrylate (P₃) 46 respectively according to the Method A. The P₁, P₂ and P₃ were 47 also prepared according to the reported literatures.²

Preparation of β -substituted(Z)-Enynoates:

The β -substituted(Z) enynoates(**1aa-1al**) were prepared according to the reported literatures.^{2, 4a, 8, 21}

50 Method B:In an oven dried 50 mL round bottom flask with a 51 mixture of ethyl (Z)-3-iodobut-2-enoate (P₄),(1.13 g, 5 mmol, 52 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI 53 (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the corresponding alkyne (5.5 mmol, 1.1 equiv.). The 54 mixture was stirred at 50 °C under an inert argon atmosphere 55 until the starting material was completely disappeared 56 (monitored by TLC). Then the reaction mixture was cooled to 57

room temperature and diluted with $Et_2O(10 \text{ mL})$. Then the solution was washed with saturated NH_4Cl (10 mL) twice. The aqueous phase was extracted with Et_2O (10 mL). The combined organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give the crude product which was purified by flash column chromatography using petroleum ether/ethyl acetate (97:3 - 95:5) as eluent afforded the desired products (**1aa** and **1ac-1af**). The ethyl (Z)-3-iodohex-2-enoate (P₅) was used to synthesis the **1ab**. The **1ag-1ak** were synthesized by using ethyl (Z)-3-iodo-3-phenylacrylate(P₆) while the ethyl (Z)-3-(4-chlorophenyl)-3-iodoacrylate (P₇)was used to prepare the **1al**.

The ¹H NMR, ¹³C NMR, HRMS and FTIRcharacterization dataof newly synthesized β -substituted(Z) enynoates (1ad, 1ae, 1af, 1ai, 1aj, 1ak, 1al) are given below (for spectral data see supporting information), while the β -substituted(Z) enynoates (1aa-1ac, 1agand1ah) are previously reported in literatures. The P₄, P₅, P₆ and P₇ were prepared according to the reported literature.All the Allylic alcohols wereprepared according to the reported literatures.²²(2c-2h).

Ethyl(Z)-5-(4-chlorophenyl)-3-methylpent-2-en-4-

vnoate (1ad). To a mixture of ethyl (Z)-3-iodobut-2-enoate (P₄) (1.2 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-chloro-4-ethynylbenzene (0.75 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 18 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method B to give the product 1ad (0.87 g, 3.5 mmol, 70 % yield) as light green oil; $R_{f} = 0.45$ (petroleum ether/ethyl acetate = 95:5);FTIR (KBr neat) υ_{max}2204, 1722, 1620, 1489,1188 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 6.05 (s, 1H), 4.22 (q, J = 7.2 Hz, 2H), 2.13 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm;¹³C{¹H}NMR (101 MHz, CDCl₃):δ165.0, 135.1, 134.3, 133.2, 128.7, 124.7, 121.2, 98.8, 89.2, 60.1, 25.1, 14.3 ppm;HRMS (EI): m/z Calcd. for C14H13ClO2Na [M+Na]+: 271.0502, found: 271.0499.

Ethyl(Z)-5-(4-methoxyphenyl)-3-methylpent-2-en-4ynoate (**1ae**). To a mixture of ethyl (Z)-3-iodobut-2-enoate (P_4) (1.2 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-ethynyl-4-methoxybenzene (0.73 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 18 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method B to give the product (1ae)(0.91 g, 3.7 mmol, 74% yield) as light brown oil; R_{f} = 0.44(petroleum ether/ethyl acetate = 95:5);FTIR (KBr neat) v_{max}2197, 1719, 1616, 1511, 1194, 825 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 5.99 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 2.13 (s, 3H), 1.31 (t, J = 7.0 Hz, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): 8 165.3, 160.3, 135.0, 133.5, 123.5, 114.9, 114.0, 100.8, 87.6, 60.0, 55.3, 25.3, 14.4 ppm; HRMS (EI): m/z Calcd. for C₁₅H₁₇O₃ [M+H]⁺: 245.1178, found: 245.1182. Ethyl(Z)-5-(4-acetylphenyl)-3-methylpent-2-en-4-

ynoate (**1af**). To a mixture of ethyl (Z)-3-iodobut-2-enoate (P₄) (1.2 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-(4-ethynylphenyl)ethan-1-one (0.79 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 18 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method B to give the product

58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 (1af)(0.92 g, 3.6mmol, 72 %yield) as light yellow solid;R_j= 0.40 (petroleum ether/ethyl acetate = 95:5); FTIR (KBr neat) $v_{max}2204$, 1720, 1684, 1616, 1556, cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 6.08 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 2.15 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 197.3, 164.9, 136.7, 134.0, 132.1, 128.2, 127.6, 125.5, 98.7, 91.1, 60.2, 26.7, 25.0, 14.3 ppm;HRMS (EI): m/z Calcd. for C₁₆H₁₆O₃Na [M+Na]⁺: 279.0997, found: 279.1001. Ethyl(Z)-5-(4-chlorophenyl)-3-phenylpent-2-en-4-

(1ai). To a mixture of ethyl (Z)-3-iodo-3vnoate phenylacrylate(P₆) (1.5 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-chloro-4ethynylbenzene (0.75 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 24 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method Bto give the product (1ai) (0.93 g, 2.96 mmol, 62 % yield) as brown solid; $R_{=}=0.39$ (petroleum ether/ethyl acetate = 95:5); FTIR (KBr neat) v_{max} 2192, 1720, 1609,1559, 1497, 1101 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.79-7.74 (m, 2H), 7.56 (d, J = 8.4Hz, 2H), 7.44-7.41 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H), 6.60 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H) ppm; $^{13}C{^{1}H}NMR$ (101 MHz, CDCl₃): δ 165.3, 137.0, 136.1, 135.4, 133.3, 130.0, 128.8, 128.7, 127.2, 123.1, 121.2, 100.7, 87.8, 60.5, 14.4 ppm; HRMS (EI): m/z Calcd. for C₁₉H₁₅ClO₂ [M+H]⁺: 311.0839, found: 311.0840.

Ethyl(*Z*)-5-(4-methoxyphenyl)-3-phenylpent-2-en-4ynoate (1aj). To a mixture of ethyl (Z)-3-iodo-3phenylacrylate(P₆) (1.5 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-ethynyl-4methoxybenzene (0.73 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 24 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method B to give the product(1aj) (1.03 g, 3.36mmol, 7% yield) as light brown solid; $R_f = 0.39$ (petroleum ether/ethyl acetate = 95:5); FTIR (KBr neat) v_{max}2191, 1715, 1608, 1561, 1511, 1160, 771 cm⁻ ¹;¹H NMR (400 MHz, CDCl₃): δ 7.81-7.77 (m, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.43-7.40 (m, 3H), 6.90 (d, J = 8.5 Hz, 2H), 6.54 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 165.6, 160.5, 137.4, 136.7, 133.8, 129.8, 128.6, 127.2, 121.8, 114.8, 114.1, 102.8, 86.2, 60.3, 55.4, 14.4 ppm; HRMS (EI): m/z Calcd. for C₂₀H₁₉O₃ [M+H]⁺: 307.1334, found: 307.1337.

Ethyl(Z)-5-(4-acetylphenyl)-3-phenylpent-2-en-4vnoate (1ak). To a mixture of ethyl (Z)-3-iodo-3phenylacrylate(P₆) (1.5 g, 5 mmol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the 1-(4ethynylphenyl)ethan-1-one (0.79 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 24 h at 50 °C under an inert argon atmosphere and dealt with according to the similar Method B to give the product (1ak) (1.0 g, 3.14mmol, 63 % yield) as light yellow solid; R_f = value 0.36(petroleum ether/ethyl acetate = 95:5);FTIR (KBr neat) v_{max} 2192, 1715, 1687,1605, 1510, 1462, 771 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.9 Hz, 2H), 7.80-7.76 (m, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.46-7.42 (m, 3H), 6.64 (s, 1H), 4.31 (q, J = 7.2 Hz, 2H), 2.63 (s, 3H), 1.36 (t, J = 7.0 Hz, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 197.3, 165.2, 136.9, 136.8, 135.9, 132.2, 130.1, 128.8, 128.3, 127.5, 127.2, 123.8, 100.6, 89.6, 60.6, 26.7, 14.4

ppm; HRMS (EI): m/z Calcd. for $C_{21}H_{19}O_3$ [M+H]⁺: 319.1334, found: 319.1335.

Ethyl(Z)-3-(4-chlorophenyl)-5-phenylpent-2-en-4ynoate (1al). To a mixture of ethyl (Z)-3-(4-chlorophenyl)-3iodoacrylate (P7) (1.7 g, 5 mmol, 1.0 eq.), Pd(PPh3)2Cl2 (35.6 mg, 0.05 mmol, 1.0 mol%), CuI (4.9 mg, 0.025 mmol, 0.5 mol%), and Et₃N (20 mL) was added the ethynylbenzene (0.56 g, 5.5 mmol, 1.1 equiv.). The mixture was stirred for 24 h at 50 °C under an inert argon atmosphere and dealt with according to the Method B to give the product1al(0.90 g, 2.90 mmol, 58 % yield) as brown solid; $R_{\tau} = 0.39$ (petroleum) ether/ethyl acetate = 95:5);FTIR (KBr neat) v_{max} 2202, 1719, 1601, 1563, 1490, 1093 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.74-7.71 (m, 2H), 7.64-7.60 (m, 2H), 7.41-7.37 (m, 5H), 6.56 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H) ppm; $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃): δ 165.2, 136.0, 135.6, 135.1, 132.1, 131.5, 130.5, 129.4, 129.1, 128.9, 128.5, 128.3, 127.9, 122.9, 122.5, 102.4, 86.5, 60.5, 14.4 ppm; HRMS (EI): m/z Calcd. for $C_{19}H_{16}ClO_2$ [M+H]⁺: 311.0839, found: 311.0836.

Procedure forthe synthesis of2-alkanone pyrones(3a-3h), (4a-4s), (5a-5l). An oven dried 10 mL schlenk tube charged with a stir bar, cyclohexanone (1.0 mL) was added to a mixture of Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) under O₂ atmosphere. The mixture was stirred for 5 minutes and then enynoate1(0.2 mmol, 1.0 equiv.) and corresponding allylic alcohols2 (0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The reaction mixture was stirred at 30 °C until the starting material 1 was completely disappeared (Monitored by TLC). The reaction mixture was diluted with ethyl acetate and washed with water (10 mL \times 2) and brine (5 mL). The organic laver was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the corresponding 2-alkanones pyrone.

5-(3-oxobutyl)-6-phenyl-2*H*-pyran-2-one(3a)

Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) andPd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) wereadded in cyclohexanone (1.0 mL) under O₂ atmosphere.Afterstirring for5 minutes,1a (40 mg, 0.2 mmol, 1.0 equiv.) and 3-buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °Cfor 24 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2- 7:3) to afford the pure product(3a)as a light green oil (37 mg, 0.15 mmol, Yield: 76%); $R_{f} = 0.44$ (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) v_{max}1725, 1706,1631, 1540cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (m, 2H), 7.44-7.48 (m, 3H), 7.35 (d, J =9.5 Hz, 1H), 6.30 (d, J = 9.5 Hz, 1H), 2.74 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 2.12 (s, 3H) ppm, ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃): δ 206.7, 161.9, 158.6, 146.8, 132.2, 130.1, 128.6, 114.9, 114.8, 43.4, 29.9, 23.4 ppm; HRMS (EI): m/z Calcd. for C₁₅H₁₄O₃Na [M+Na]⁺: 265.0841, found: 265.0858.

5-(3-oxopentyl)-6-phenyl-2H-pyran-2-one(**3b**)Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring

for 5 minutes, 1a (40 mg, 0.2 mmol, 1.0 equiv.) and pent-1-en-3-ol 2b (52 mg, 0.6 mmol, 3.0 equiv.)were subsequently added to the mixture. The system was stirring at 30 °C for 24 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2- 7:3) to afford the pure product(3b)as a light green oil (37 mg, 0.14 mmol, Yield: 72%); $R_f = 0.44$ (petroleum ether/ethyl acetate = 7:3); FTIR (KBr neat) v_{max} 1735, 1713,1633, 1545cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.50-7.54 (m, 2H), 7.44-7.49 (m, 3H), 7.36 (d, J = 9.5 Hz, 1H), 6.30 (d, J = 9.5 Hz, 1H), 2.75 (t, J = 7.3 Hz, 2H), 2.60 (t, J = 7.4 Hz, 2H), 2.39 (q, J = 7.2 Hz, 2H), 1.03 (t, J = 7.3 Hz, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 209.5, 162.0, 158.5, 146.9, 132.2, 130.1, 128.6, 115.0, 114.9, 42.1, 36.0, 23.5, 7.7 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₆O₃Na [M+Na]⁺: 279.0997, found: 279.0999.

5-(4-methyl-3-oxopentyl)-6-phenyl-2H-pyran-2-one (3c).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O2 atmosphere. After stirringfor 5 minutes1a (40 mg, 0.2 mmol, 1.0 equiv.) and 4-methylpent-1-en-3-ol2c (60 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °Cfor 30 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to afford the pure product(3c) as a light green oil (35 mg, 0.13 mmol, Yield: (65%); R_t= 0.45(petroleum ether/ethyl acetate = 7:3); FTIR (KBr neat) v_{max} 1730, 1709,1628, 1545 cm^{-1,-1}H NMR (400 MHz, CDCl₃): δ 7.50-7.55 (m, 2H), 7.43-7.48 (m, 3H), 7.36 (d, J = 9.5 Hz, 1H), 6.30 (d, J = 9.5 Hz, 1H), 2.75 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 2.57-2.50 (m, 1H), 1.06 (d, J = 6.9 Hz, 6H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 212.8, 162.0, 158.5, 147.0, 132.2, 130.1, 128.6, 115.1, 114.8, 41.0, 40.0, 23.5, 18.1 ppm; HRMS (EI): m/z Calcd. for C₁₇H₁₉O₃ [M+H]+: 271.1334, found: 271.1321.

5-(3-oxoheptyl)-6-phenyl-2H-pyran-2-one

39 (3d).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and 40 Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in 41 cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring 42 for 5 minutes1a (40 mg, 0.2 mmol, 1.0 equiv.) and hept-1-en-43 3-ol 2d (68 mg, 0.6 mmol, 3.0 equiv.) were subsequently 44 added to the mixture. The system was stirring at 30 °Cfor 36 45 h.The reaction mixture was diluted with ethyl acetate washed 46 with water and brine. The organic layer was dried over 47 Na₂SO₄, filtered, concentrated in vacuo. The residue was 48 purified by flash column chromatography on silica gel using 49 as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the 50 pure product(3d)as a light brown oil (31.5 mg, 0.11 mmol, 51 Yield: 55%; R= 0.46(petroleum ether/ethyl acetate = 7:3); 52 FTIR (KBr neat) v_{max} 1732, 1709, 1630, 1541 cm⁻¹;¹H NMR 53 (400 MHz, CDCl₃): δ 7.53-7.44 (m, 5H), 7.35 (d, J = 9.5 Hz, 1H), 6.30 (d, J = 9.5 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 2.59 (t, 54 J = 7.4 Hz, 2H), 2.36 (t, J = 7.5 Hz, 2H), 1.56-1.47 (m, 2H), 55 1.32-1.22 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H) ppm; ¹³C{¹H} 56 NMR (101 MHz, CDCl₃): δ 209.2, 162.0, 158.5, 146.9, 132.2, 57

130.1, 128.6, 115.0, 114.8, 42.6, 42.4, 25.9, 23.4, 22.3, 13.8ppm;HRMS (EI): m/z Calcd. for $C_{18}H_{20}O_3$ [M+H]+: 285.1491, found: 285.1488.

5-(3-oxo-3-phenylpropyl)-6-phenyl-2H-pyran-2-one (3e). Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1a (40 mg, 0.2 mmol, 1.0 equiv.) and 1phenylprop-2-en-1-ol 2e (80 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °Cfor 38 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to afford the pure product (3e) as a brown solid (39 mg, 0.13 mmol, Yield: 64%; R = 0.42 (petroleum ether/ethyl acetate = 7:3);mp 60-61°C; FTIR (KBr neat) v_{max}1731, 1685, 1636,1590, 1548 cm⁻¹;1H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 7.9 Hz, 2H), 7.59-7.53 (m, 3H), 7.48 – 7.40 (m, 6H), 6.32 (d, J = 9.5 Hz, 1H), 3.16 (t, J = 7.5 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 198.2, 162.0, 158.7, 147.0, 136.3, 133.45, 132.2, 130.1, 128.7, 128.6, 128.0, 115.0, 114.9, 38.6, 24.0 ppm; HRMS (EI): m/z Calcd. for C₂₀H₁₇O₃ [M+H]+: 305.1178, found: 305.1184.

5-(3-oxo-4-phenylbutyl)-6-phenyl-2H-pyran-2-one (3f). Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirringfor 5 minutes1a (40 mg, 0.2 mmol, 1.0 equiv.) and 1phenylbut-3-en-2-ol 2f (88 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °Cfor 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to afford the pure product(3f) as a white solid (35 mg, 0.11 mmol, Yield: 55%); $R_f = 0.41$ (petroleum ether/ethyl acetate = 7:3);mp 63-64°C; FTIR (KBr neat) v_{max} 1735, 1709, 1636,1560, 1540 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.42 (s, 5H), 7.35-7.27 (m, 3H), 7.25 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 7.0 Hz, 2H), 6.23 (d, J = 9.5 Hz, 1H), 3.64 (s, 2H), 2.70 (t, J = 7.1 Hz, 2H), 2.62 (t, J = 7.0 Hz, 2H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.4, 161.9, 158.5, 146.8, 133.6, 132.1, 130.1, 129.3, 128.9, 128.6, 128.6, 127.3, 114.7, 50.3, 41.4, 23.5 ppm; HRMS (EI): m/z Calcd. for C₂₁H₁₉O₃ [M+H]⁺: 319.1334, found: 319.1336.

5-(3-(4-bromophenyl)-3-oxopropyl)-6-phenyl-2Hpyran-2-one (**3g**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1a (40 mg, 0.2 mmol, 1.0 equiv.) and 1-(4bromophenyl)prop-2-en-1-ol 2g (127 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °Cfor 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product (3g) as a light green solid (32)

58

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

mg, 0.08 mmol, Yield: 42%; R_f = 0.40(petroleum ether/ethyl 1 acetate = 7:3);mp77-78°C; FTIR (KBr neat) v_{max} 1729, 1681, 2 1635, 1582, 1550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, 3 J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.55-7.51 (m, 2H), 4 7.46 (d, J = 5.0 Hz, 3H), 7.41 (d, J = 9.5 Hz, 1H), 6.33 (d, J = 5 9.5 Hz, 1H), 3.11 (t, J = 7.4 Hz, 2H), 2.92 (t, J = 7.4 Hz, 2H) 6 ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 197.1, 161.9, 158.8, 146.8, 135.0, 132.2, 132.1, 130.2, 129.5, 128.7, 128.6, 115.0, 7 114.8, 38.6, 23.9 ppm; HRMS (EI): m/z Calcd. for C₂₀H₁₆BrO₃ 8 [M+H]⁺: 383.0283, found: 383.0294. 9 5-(3-oxopropyl)-6-phenyl-2H-pyran-2-one 10

(**3h**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1a (35 mg, 0.2 mmol, 1.0 equiv.) and prop-2-en-1-ol 2h (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleumether/ethyl acetate (8:2) to afford the pure product **3h** as a light brown oil (23 mg, 0.10 mmol, Yield: 50%;R_t= 0.36(petroleum ether/ethyl acetate = 8:2);FTIR (KBr neat) v_{max} 1738, 1730, 1627, 1544 cm⁻¹;¹H NMR (400 MHz,CDCl₃): δ 9.75 (s, 1H), 7.52-7.45 (m, 5H), 7.35 (d, J =9.5 Hz, 1H), 6.32 (d, J = 9.5 Hz, 1H), 2.80 (t, J = 7.3 Hz, 2H), 2.68 (t, J = 7.4 Hz, 2H) ppm; ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃): § 200.0, 161.8, 158.8, 146.5, 132.1, 130.2, 128.7, 128.6, 115.1, 114.3, 43.8, 21.9 ppm; HRMS (EI): m/z Calcd. for C₁₄H₁₂O₃Na [M+Na]⁺: 251.0684, found: 251.0688. 5-(3-oxobutyl)-6-(p-tolyl)-2H-pyran-2-one

(4a)Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1b (43 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 28 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product (4a) as a light brown oil (38 mg, 0.15 mmol, Yield: 74%);R₇=0.44 (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) U_{max} 1728, 1713, 1632, 1550, cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 9.5 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 6.27 (d, J = 9.4 Hz, 1H), 2.74 (t, J = 7.3 Hz, 2H), 2.62 (t, J =7.4 Hz, 2H), 2.41 (s, 3H), 2.12 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): § 206.8, 162.1, 158.8, 146.9, 140.4, 129.4, 129.3, 128.5, 114.5, 114.5, 43.5, 30.1, 23.5, 21.4 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₇O₃ [M+H]⁺: 257.1178, found: 257.1183.

5-(3-oxobutyl)-6-(m-tolyl)-2*H*-pyran-2-one

(4b).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1c (43 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 26 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The was purified flash residue by column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4b) as a light brown oil (37 mg, 0.14 mmol, Yield: 72%;R_f= 0.44 (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) v_{max} 1733, 1712, 1636, 1553 cm^{-1,-1}H NMR (400 MHz, CDCl₃): δ 7.36-7.25 (m, 5H), 6.29 (d, J = 9.4 Hz, 1H), 2.74 (t, J = 7.2 Hz, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.40 (s, 3H), 2.12 (s, 3H) ppm; ${}^{13}C{}^{1}H{}(101 \text{ MHz, CDCl}_3)$: δ 207.2, 162.5, 159.3, 147.4, 139.0, 132.6, 131.4, 129.8, 128.9, 126.1, 115.2, 44.0, 30.5, 23.9, 21.9 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₇O₃ [M+H]⁺: 257.1178, found: 257.1174. 5-(3-oxobutyl)-6-(o-tolyl)-2H-pyran-2-one

(4c).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1d (43 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. was The residue purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to obtaine the pure product(4c)as a light brown oil (36.5 mg, 0.14 mmol, Yield: 71%;R_f=0.44 (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) u_{max} 1734, 1711, 1634, 1551 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.38-7.33 (m, 2H), 7.31-7.18 (m, 3H), 6.30 (d, J = 9.5 Hz, 1H), 2.53-2.43 (m, 4H), 2.27 (s, 3H), 2.07(s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.8, 162.2, 159.4, 146.5, 137.2, 131.7, 130.8, 130.2, 129.4, 125.9, 115.7, 115.2, 43.2, 30.0, 23.3, 19.6 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₇O₃ [M+H]⁺: 257.1178, found: 257.1183. 6-(naphthalen-2-yl)-5-(3-oxobutyl)-2H-pyran-2-one

 $(4d).Cu(OAc)_2\ (7.2$ mg, 0.04 mmol, 20 mol%) and $Pd(PhCN)_2Cl_2\ (3.8$ mg, 0.01 mmol, 5 mol%) were added

in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1e (50 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 36 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4d) as a brown solid (38 mg, 0.13 mmol, Yield: 65%;R_t=0.40 (petroleum ether/ethyl acetate = 7:3);mp 70-71°C; FTIR (KBr neat) Umax1727, 1710, 1628, 1535, 1169,828 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.89 (m, 3H), 7.57 (m, 3H), 7.39 (d, J = 9.5 Hz, 1H), 6.33 (d, J= 9.5 Hz, 1H), 2.82 (t, J = 7.4 Hz, 2H), 2.65 (t, J = 7.4 Hz, 2H), 2.10 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.7, 162.0, 158.5, 147.0, 133.7, 132.7, 129.5, 128.9, 128.6, 128.4, 127.8, 127.6, 126.9, 125.2, 115.2, 114.9, 43.4, 30.0, 23.5 ppm; HRMS (EI): m/z Calcd. for C₁₉H₁₇O₃ [M+H]⁺: 293.1178, found: 293.1180.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

6-(9H-fluoren-2-yl)-5-(3-oxobutyl)-2H-pyran-2-one (4e).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1f (57 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4e) as a light vellow solid (33 mg, 0.10 mmol, Yield: 50%;R= 0.36 (petroleum ether/ethyl acetate = 7:3);mp 128-129°C; FTIR (KBr neat) u_{max}1730, 1701, 1633, 1549, 1056 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.83-7.81 (m, 2H), 7.73 (s, 1H), 7.58 (d, J = 7.1 Hz, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.43-7.34 (m, 3H), 6.30 (d, J = 9.4 Hz, 1H), 3.95 (s, 2H), 2.82 (t, *J* = 7.3 Hz, 2H), 2.65 (t, *J* = 7.3 Hz, 2H), 2.12 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.7, 162.1, 159.0, 147.0, 143.8, 143.6, 143.5, 140.6, 130.3, 127.7, 127.4, 127.0, 125.4, 125.2, 120.5, 119.8, 114.7, 114.5, 43.4, 37.0, 30.0, 23.6 ppm; HRMS (EI): m/z Calcd. for C₂₂H₁₉O₃ [M+H]⁺: 331.1334, found: 331.1335.

6-(4-methoxyphenyl)-5-(3-oxobutyl)-2H-pyran-2one (4f).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1g (46 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 28 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. purified The residue was by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolated the pure product(4f) was obtained as a brown oil (36 mg, 0.13 mmol, Yield: 67%; R_f= 0.43 (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) u_{max}1726, 1708, 1635, 1545 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 8.5 Hz, 2H), 7.33 (d, J= 9.5 Hz, 1H), 6.96 (d, J = 8.5 Hz, 2H), 6.25 (d, J = 9.5 Hz, 1H), 3.86 (s, 3H), 2.75 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 2.13 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.8, 162.2, 160.9, 158.56, 147.0, 130.1, 124.6, 114.2, 114.1, 114.0, 55.4, 43.4, 30.0, 23.5 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₇O₄ [M+H]⁺: 273.1127, found: 273.1125.

6-(4-chlorophenyl)-5-(3-oxobutyl)-2H-pyran-2-one (4g).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1h (47 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 36 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product (4g) as a light brown oil (29.5 mg, 0.11 mmol, Yield: 53%;R_f= 0.43 (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) v_{max}1724, 1700, 1630, 1540, 1090 cm⁻¹;¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 7.48 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4Hz, 2H), 7.34 (d, J = 9.5 Hz, 1H), 6.31 (d, J = 9.5 Hz, 1H), 2.72 (t, J = 7.1 Hz, 2H), 2.63 (t, J = 7.2 Hz, 2H), 2.13 (s, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.5, 161.6, 157.3, 146.6, 136.3, 130.6, 130.0, 128.9, 115.2, 115.1, 43.2, 30.0, 23.3 ppm; HRMS (EI): m/z Calcd. for $C_{15}H_{14}O_3Cl$ [M+H]⁺: 277.0631, found: 277.0631.

6-(4-bromophenyl)-5-(3-oxobutyl)-2H-pyran-2-one (**4h**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added

58

59

60

in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1i (56 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified flash by column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(**4h**) as a light brown oil (31.5 mg, 0.10 mmol, Yield: 49%;R_f = 0.40 (petroleum ether/ethyl acetate = 7:3); FTIR (KBr neat) v_{max}1728, 1701, 1628, 1542, 1060 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.4Hz, 2H), 7.34 (d, J = 9.5 Hz, 1H), 6.31 (d, J = 9.5 Hz, 1H), 2.72 (t, J = 7.2 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 2.13 (s, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 206.5, 161.6, 157.3, 146.6, 131.9, 131.0, 130.2, 124.7, 115.3, 115.1, 43.2, 30.0, 23.3 ppm; HRMS (EI): m/z Calcd. for $C_{15}H_{13}O_3B_rNa$ [M+Na]⁺: 342.9946, found: 342.9946.

6-(4-methoxycarbonyl)phenyl-5-(3-oxobutyl)-2Hpyran-2-one (4i).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1j (41 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4i)as a white solid (30 mg, 0.10 mmol, Yield: 50%;R_f= 0.38 (petroleum ether/ethyl acetate = 7:3); mp 68-69°C; FTIR (KBr neat) u_{max}1738, 1723, 1703, 1634, 1546 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 9.5 Hz, 1H), 6.34 (d, J =9.5 Hz, 1H), 3.95 (s, 3H), 2.74 (t, J = 6.9 Hz, 2H), 2.64 (t, J = 7.1 Hz, 2H), 2.13 (s, 3H) ppm; ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃): δ 206.3, 166.2, 161.4, 157.2, 146.6, 136.2, 131.5, 129.8, 128.7, 115.7, 115.6, 52.4, 43.2, 30.0, 23.3 ppm; HRMS (EI): m/z Calcd. for $C_{17}H_{17}O_5$ [M+H]⁺: 301.1076, found: 301.1081. 6-(cyclohex-1-en-1-yl)-5-(3-oxobutyl)-2H-pyran-2-

one (4j). Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O_2 atmosphere. After

stirring for 5 minutes followed by the addition of 1k (41 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. purified The residue was by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product (4j) as a light green oil (26 mg, 0.13 mmol, Yield: 64%); R_{f} 0.37(petroleum ether/ethyl acetate = 8:2);FTIR (KBr neat) U_{max}1719, 1706, 1630, 1610, 1531 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.25-7.23 (d, J = 9.5 Hz, 1H), 6.17 (d, J = 9.5Hz, 1H), 5.97 (s, 1H), 2.69-2.61 (m, 4H), 2.68-2.61 (m, 4H), 2.17 (s, 3H), 1.78-1.65 (m, 4H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.9, 162.1, 161.4, 146.9, 132.9, 130.8, 114.0, 113.5, 43.9, 30.0, 26.6, 25.3, 23.6, 22.2, 21.5 ppm; HRMS (EI): m/z Calcd. for $C_{15}H_{19}O_3$ [M+H]⁺: 247.1334, found: 247.1338.

6-cyclohexyl-5-(3-oxobutyl)-2H-pyran-2-one (4k).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1I (36 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. was purified The residue by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4k) as a light green oil (29 mg, 0.14 mmol, Yield: 71%;R_f= 0.39(petroleum ether/ethyl acetate = 8:2); FTIR (KBr neat) v_{max}1721, 1703, 1628, 1549, 1463 cm⁻¹;¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 7.19 (d, J = 9.5 Hz, 1H), 6.12 (d, J = 9.4Hz, 1H), 2.65 – 2.56 (m, 5H), 2.17 (s, 3H), 1.88-1.81 (m, 2H), 1.75 - 1.64 (m, 5H), 1.36 - 1.24 (m, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.8, 165.8, 162.7, 147.1, 113.3, 112.5, 43.9, 39.6, 30.2, 26.0, 25.5, 22.9 ppm; HRMS (EI): m/z Calcd. for C₁₅H₂₁O₃ [M+H]⁺: 249.1491, found: 249.1500. 6-butyl-5-(3-oxobutyl)-2*H*-pyran-2-one

(4I).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of **1m** (36 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol **2a** (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C

for 30 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2)to isolatethe pure product, (41) as a light green oil (30 mg, 0.13 mmol, Yield: 67%);R= 0.40 (petroleum ether/ethyl acetate = 8:2); FTIR (KBr neat) υ_{max}1723, 1707, 1630, 1373, 821cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, J = 9.3 Hz, 1H), 6.14 (d, J = 9.5 Hz, 1H), 2.65-2.56 (m, 4H), 2.51 (t, J = 7.7 Hz, 2H), 2.17 (s, 3 H), 1.68-1.60 (m, 2H), 1.42-1.34 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 206.8, 162.6, 162.5, 146.8, 113.8, 113.5, 43.5, 30.6, 30.1, 29.7, 22.9, 22.4, 13.8 ppm; HRMS (EI): m/z Calcd. for $C_{13}H_{19}O_3$ [M+H]⁺: 223.1334, found: 223.1339.

6-(3-chloropropyl)-5-(3-oxobutyl)-2H-pyran-2-one (4m).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1n (40 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue purified was by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4m) was obtained as a light brown oil (29 mg, 0.12 mmol, Yield: 61%); $R_f = 0.37$ (petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) v_{max}1725, 1708, 1628, 1173,678 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 9.5 Hz, 1H), 6.17 (d, J= 9.4 Hz, 1H), 3.59 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 7.3 Hz, 2H), 2.69-2.59 (m, 4H), 2.21-2.13 (m, 5H) ppm; ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ 206.7, 162.2, 160.3, 146.7, 114.8, 114.1, 44.0, 43.3, 30.1, 29.8, 27.7, 22.9 ppm; HRMS (EI): m/z Calcd. for C₁₂H₁₆ClO₃ [M+H]⁺: 243.0788, found: 243.0793. 6-(3-cyanopropyl)-5-(3-oxobutyl)-2H-pyran-2-one

(4n).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 10 (38 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified column by flash

chromatography on silica gel using as eluent petroleum

ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(**4n**) as a white solid (26 mg, 0.11 mmol, Yield: 56%);mp 54-55°C;R_/= 0.36(petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) $v_{max}2245$, 1724, 1702, 1634cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 9.5 Hz, 1H), 6.19 (d, J = 9.5 Hz, 1H), 2.75 (t, J = 7.5 Hz, 2H), 2.68 (t, J = 6.7 Hz, 2H), 2.61 (t, J = 6.8 Hz, 2H), 2.46 (t, J = 6.9 Hz, 2H), 2.17 (s, 3H), 2.11-2.04 (m, 2H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 206.6, 161.9, 159.2, 146.6, 118.9, 115.0, 114.5, 43.0, 30.1, 29.1, 22.8, 22.7, 16.7 ppm; HRMS (EI): m/z Calcd. for C₁₃H₁₅NO₃Na [M+Na]⁺: 256.0950, found: 256.0953.

6-(2-(benzyloxy)ethyl)-5-(3-oxobutyl)-2H-pyran-2one(40).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1p (52 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(40) was obtained as a light green oil (34.5 mg, 0.11 mmol, Yield: 54%); $R_{f} = 0.38$ (petroleum ether/ethyl acetate = 7:3);IR (KBr neat) v_{max} 1726, 1708, 1631, 1540, 1250 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.34 -7.25 (m, 5H), 7.21 (d, J = 9.5 Hz, 1H), 6.16 (d, J = 9.5 Hz, 1H), 4.48 (s, 2H), 3.79 (t, J = 6.1 Hz, 2H), 2.80 (t, J = 6.0 Hz, 2H), 2.64-2.52 (m, 4H), 1.96 (s, 3H) ppm; ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃); δ 207.2, 162.5, 159.2, 147.0, 137.9, 128.4, 127.8, 127.8, 115.7, 113.9, 73.3, 67.1, 43.6, 31.8, 29.9, 23.1 ppm, HRMS (EI): m/z Calcd. for C₁₉H₂₂O₄Na [M+Na]⁺: 337.1416., found: 337.1411. 6-(2-acetoxyethyl)-5-(3-oxobutyl)-2H-pyran-2-

one(4p).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1q (42 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 30 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. residue purified column The was by flash chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4p) as a light brown oil (24 mg, 0.09 mmol, Yield: 48%;R_f= 0.29 (petroleum ether/ethyl acetate = 7:3);FTIR

59 60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22 23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

2

56

57

58

59

60

(KBr neat) υ_{max} 1740, 1723, 1703, 1633 cm^{-1;1}H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 9.5 Hz, 1H), 6.19 (d, J = 9.5 Hz, 1H), 4.35 (t, J = 6.5 Hz, 2H), 2.88 (t, J = 6.6 Hz, 2H), 2.67 (t, J = 6.9 Hz, 2H), 2.59 (t, J = 7.1 Hz, 2H), 2.17 (s, 3H), 2.05 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.5, 170.7, 162.0, 157.8, 146.5, 115.5, 114.6, 61.2, 43.3, 30.4, 30.1, 22.8, 20.8 ppm; HRMS (EI): m/z Calcd. for C₁₃H₁₆O₅Na [M+Na]⁺: 275.0895, found: 275.0900.

5-(3-oxobutyl)-6-phenethyl-2H-pyran-2-one

(4q)Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1r (45 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 34 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The purified residue was by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4q)as a light green oil (25 mg, 0.09 mmol, Yield: 46%; $R_{f} = 0.41$ (petroleum ether/ethyl acetate = 7:3); FTIR (KBr neat) u_{max} 1725,1703, 1632, 1549, 1460 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.30-7.19 (m, 3H), 7.16-7.10 (m, 3H), 6.15 (d, J = 9.5 Hz, 1H), 3.00 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.35 (t, J = 7.3 Hz, 2H), 2.15 (t, J = 7.3 Hz, 2H), 2.03 (s, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ206.8, 162.5, 160.6, 146.7, 140.3, 128.6, 126.5, 114.8, 113.8, 43.1, 33.4, 32.9, 29.9, 22.7 ppm; HRMS (EI): m/z Calcd. for C₁₇H₁₉O₃ [M+H]⁺: 271.1334, found: 271.1334.

5-(3-oxobutyl)-6-(thiophen-2-yl)-2H-pyran-2-one (4r).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1s (41 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue purified flash was by column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4r)as a red oil (29 mg, 0.12 mmol, Yield: 58%);R_f= 0.46(petroleum ether/ethyl acetate = 7:3); FTIR (KBr neat) υ_{max} 3094, 1730, 1701, 1625cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 3.5 Hz, 1H), 7.52 (d, J = 5.0 Hz, 1H), 7.36 (d, J = 9.4 Hz, 1H), 7.16-7.14 (dd, J = 4.5, 4.3 Hz, 1H), 6.23 (d, J =9.4 Hz, 1H), 2.93 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 7.3 Hz, 2H),

pyran-2-one (4s).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes followed by the addition of 1t(51 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol 2a (43 mg, 0.6 mmol, 3.0 equiv.). The system was stirring at 30 °C for 36 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to isolate the pure product(4s)as a red oil (36 mg, 0.12 mmol, Yield: 61%;%);R_f= 0.41(petroleum ether/ethyl acetate = 7:3);FTIR (KBr neat) v_{max} 1727, 1706, 1627, 1550, 1101 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 1H), 7.43-7.37 (m, 2H), 7.36-7.30 (m, 1H), 7.19-7.14 (m, 1H), 6.70 (s, 1H), 6.33 (d, J = 9.5 Hz, 1H), 3.81 (s, 3H), 2.80 (t, J = 7.2 Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H), 2.12 (s, 3H) ppm; ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃) δ 206.6, 161.4, 151.3, 146.4, 138.2, 129.5, 126.8, 123.7, 121.5, 120.4, 118.2, 115.4, 109.9, 105.9, 43.4, 31.5, 30.0, 23.8 ppm; HRMS (EI): m/z Calcd. for C₁₈H₁₈NO₃ [M+H]⁺: 296.1287, found: 296.1291.

4-methyl-5-(3-oxobutyl)-6-phenyl-2H-pyran-2-one (5a).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1aa (43 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 32 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5a) as a white solid crystal (42 mg, 0.16 mmol, Yield: 82%;R_t= 0.46(petroleum ether/ethyl acetate = 7:3);mp 47-48°C; FTIR (KBr neat) v_{max} 1721, 1705, 1628, 1546 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.45 (s, 5H), 6.18 (s, 1H), 2.70 (t, J = 7.8 Hz, 2H), 2.50 (t, J = 7.8 Hz, 2H), 2.23 (s, 3H), 2.07 (s, 3H) ppm; ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃): δ 206.5, 161.8, 158.4, 156.7, 132.7, 130.0, 128.6, 128.6, 115.7, 113.8, 43.4, 29.8, 20.8, 20.2 ppm; HRMS (EI): m/z Calcd. for C₁₆H₁₇O₃ [M+H]+: 257.1178, found: 257.1180.

5-(3-oxobutyl)-6-phenyl-4-propyl-2*H*-pyran-2-one (**5b**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes**1ab** (48 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol**2a** (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 36 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(**5b**) as a white solid crystal (46 mg, 0.16 mmol, Yield: 81%);R_j= 0.47(petroleum ether/ethyl acetate = 7:3);mp 48-49°C; FTIR (KBr neat) $v_{max}1723$, 1706, 1628, 1547, 1370 cm⁻¹;'H NMR (400 MHz, CDCl₃): δ 7.45 (s, 5H), 6.17 (s, 1H), 2.70 (t, *J* = 7.8 Hz, 2H), 2.50-2.41 (m, 4H), 2.05 (s, 3H), 1.69-1.60 (m, 2H), 1.05 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.6, 162.2, 160.4, 158.5, 132.8, 130.0, 128.7, 128.6, 115.4, 112.4, 43.7, 34.5, 29.8, 21.8, 20.3, 13.9 ppm; HRMS (EI): m/z Calcd. for C₁₈H₂₁O₃ [M+H]⁺: 285.1491, found: 285.1490.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

53

54

55

56

57

58

59

60

6-butyl-4-methyl-5-(3-oxobutyl)-2H-pyran-2-one (5c).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1ac (39 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 36 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2) to afford the pure product(5c)as a light brown oil (34 mg, 0.14 mmol, Yield: 72%; R_f= 0.41(petroleum ether/ethyl acetate = 8:2); mp 53-54°C; FTIR (KBr neat) v_{max}1730, 1710, 1631, 1372, cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 6.01 (s, 1H), 2.64-2.54 (m, 4H), 2.49 (t, J = 7.6 Hz, 2H), 2.19 (s, 3H), 2.14 (s, 3H), 1.68-1.60 (m, 2H), 1.42-1.32 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H) ppm; $^{13}C{^{1}H}NMR$ (101 MHz, CDCl₃): δ 206.8, 162.6, 161.7, 156.6, 114.4, 112.3, 43.4, 30.7, 30.0, 29.8, 22.5, 20.2, 20.1, 13.8 ppm; HRMS (EI): m/z Calcd. for $C_{14}H_{21}O_3$ [M+H]⁺: 237.1491, found: 237.1493. 6-(4-chlorophenyl)-4-methyl-5-(3-oxobutyl)-2H-

6-(4-chlorophenyl)-4-methyl-5-(3-oxobutyl)-2Hpyran-2-one (5d).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%)

and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added 35 in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring 36 for 5 minutes1ad (50 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-37 2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added 38 to the mixture. The system was stirring at 30 °C for 45 h.The 39 reaction mixture was diluted with ethyl acetate washed with 40 water and brine. The organic layer was dried over Na₂SO₄. 41 filtered, concentrated in vacuo. The residue was purified by 42 flash column chromatography on silica gel using as eluent 43 petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure 44 product(5d) as a white solid (40.5 mg, 0.14 mmol, Yield: 70%;R_t= 0.44(petroleum ether/ethyl acetate = 7:3);mp 64-45 65°C; FTIR (KBr neat) v_{max} 1725, 1706, 1631, 1540, 1092 cm⁻ 46 ¹;¹H NMR (400 MHz, CDCl₃): δ 7.45-7.38 (m, 4H), 6.18 (s, 47 1H), 2.69 (t, J = 7.8 Hz, 2H), 2.50 (t, J = 7.9 Hz, 2H), 2.23 (s, 48 3H), 2.10 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 49 206.2, 161.5, 157.0, 156.6, 136.2, 131.0, 130.0, 129.0, 116.0, 50 114.1, 43.2, 29.9, 20.8, 20.2 ppm; HRMS (EI): m/z Calcd. for 51 C₁₆H₁₆ClO₃ [M+H]⁺: 291.0788, found: 291.0791. 52

6-(4-methoxyphenyl)-4-methyl-5-(3-oxobutyl)-2H-pyran-2-one (**5e**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes**1ae** (49 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol**2a** (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added

to the mixture. The system was stirring at 30 °C for 40 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5e)as a brown solid (42 mg, 0.15 mmol, Yield: 74%; R_f= 0.43(petroleum ether/ethyl acetate = 7:3); mp 68-69°C; FTIR (KBr neat) v_{max}1727, 1711, 1633, 1565, 1163 cm⁻ ¹;¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 8.3 Hz, 2H), 6.14 (s, 1H), 3.85 (s, 3H), 2.72 (t, J = 7.8Hz, 2H), 2.51 (t, J = 7.9 Hz, 2H), 2.22 (s, 3H), 2.09 (s, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 206.6, 162.0, 160.7, 158.3, 156.8, 130.1, 125.0, 115.2, 114.0, 113.3, 55.4, 43.4, 29.8, 20.9, 20.2 ppm; HRMS (EI): m/z Calcd. for C₁₇H₁₉O₄ [M+H]⁺: 287.1283. found: 287.1289.

6-(4-acetylphenyl)-4-methyl-5-(3-oxobutyl)-2Hpyran-2-one (5f).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1af (51 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 45 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5f)was obtained as a white solid (45 mg, 0.15 mmol, Yield: 75%); R = 0.40 (petroleum ether/ethyl acetate = 7:3);mp 77-78°C; FTIR (KBr neat) v_{max}1730, 1703, 1683, 1629, 1542 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 6.21 (s, 1H), 2.71 (t, J = 7.8 Hz, 2H), 2.65 (s, 3H), 2.52 (t, J = 7.8 Hz, 2H), 2.25 (s, 3H), 2.09 (s, 3H) ppm; ${}^{13}C{}^{1}H{}NMR$ (101 MHz, CDCl₃): δ 206.1, 197.2, 161.3, 156.9, 156.5, 137.9, 136.8, 129.0, 128.5, 116.5, 114.4, 43.2, 29.8, 26.7, 20.7, 20.1 ppm; HRMS (EI): m/z Calcd. for C₁₈H₁₉O₄ [M+H]⁺: 299.1283, found: 299.1291.

5-(3-oxobutyl)-4,6-diphenyl-2*H*-pyran-2-one (**5g**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes**1ag** (55 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol**2a** (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 46 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(**5g**)was obtained as a light brown solid (50 mg, 0.16 mmol, Yield: 78%);R_j= 0.43(petroleum ether/ethyl acetate =

7:3);mp 95-96°C; FTIR (KBr neat) v_{max}1722, 1705, 1613,

1523, 1485 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.56-7.52 (m, 2H), 7.49-7.44 (m, 6H), 7.37-7.33 (m, 2H), 6.22 (s, 1H),2.74 (t, J = 7.9 Hz, 2H), 2.09 (t, J = 8.0 Hz, 2H), 1.77 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.5, 161.7, 159.5, 159.2, 137.1, 132.7, 130.2, 129.2, 128.9, 128.8, 128.6, 127.4, 114.6, 114.5, 42.8, 29.4, 21.5 ppm; HRMS (EI): m/z Calcd. for C₂₁H₁₉O₃ [M+H]⁺: 319.1334, found: 319.1335.

6-butyl-5-(3-oxobutyl)-4-phenyl-2*H*-pyran-2-one (**5h**).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and

2

3

4

5

6

7

8

9

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

58

59

60

Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1ah (51 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 46 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5h)was obtained as a white solid (45 mg, 0.15 mmol, 10 Yield: 75%;R_f = 0.39(petroleum ether/ethyl acetate = 7:3);mp 11 88-89°C; FTIR (KBr neat) v_{max} 1725, 1707, 1626, 1540, 1363 12 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 3H), 7.26-7.23 (m, 2H), 6.05 (s, 1H), 2.61-2.55 (m, 4H), 2.20 (t, J = 7.913 Hz, 2H), 1.92 (s, 3H), 1.74-1.65 (m, 2H), 1.46-1.36 (m, 2H), 14 0.96 (t. J = 7.3 Hz, 3H) ppm: ${}^{13}C{}^{1}H{}NMR$ (101 MHz, 15 CDCl₃): 8 206.7, 162.7, 162.3, 159.5, 137.2, 129.0, 128.7, 16 127.3, 113.4, 113.2, 43.3, 31.1, 29.9, 29.7, 22.5, 20.7, 13.8 17 ppm; HRMS (EI): m/z Calcd. for C₁₉H₂₃O₃ [M+H]⁺: 299.1647, 18 found: 299.1647. 19

6-(4-chlorophenyl)-5-(3-oxobutyl)-4-phenyl-2H-

pyran-2-one (5i).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1ai (62 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 60 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄. filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5i)as a light green solid (39 mg, 0.11 mmol, Yield: 55%); $R_f = 0.38$ (petroleum ether/ethyl acetate = 7:3);mp 110-111°C; FTIR (KBr neat) v_{max}1721, 1706, 1620, 1540, 1532, 1489, 1100 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.51-7.44 (m, 7H), 7.36-7.33 (m, 2H), 6.23 (s, 1H), 2.73 (t, J = 8.0 Hz, 2H), 2.08 (t, J = 8.0 Hz, 2H), 1.79 (s, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 206.2, 161.4, 159.4, 157.9, 136.9, 136.4, 131.1, 130.3, 129.3, 129.0, 128.9, 127.4, 114.9, 114.8, 42.6, 29.5, 21.4 ppm; HRMS (EI): m/z Calcd. for $C_{21}H_{18}ClO_3$ [M+H]⁺: 353.0944, found: 353.0940.

6-(4-methoxyphenyl)-5-(3-oxobutyl)-4-phenyl-2H-40 pyran-2-one (5j).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and 41 Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in 42 cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring 43 for 5 minutes1aj (61 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-44 2-ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added 45 to the mixture. The system was stirring at 30 °C for 46 h.The 46 reaction mixture was diluted with ethyl acetate washed with 47 water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by 48 flash column chromatography on silica gel using as eluent 49 petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure 50 product(5j) as a white solid (55 mg, 0.16 mmol, Yield: 51 79%); $R_f = 0.36$ (petroleum ether/ethyl acetate = 7:3);mp 117-52 118°C; FTIR (KBr neat) v_{max}1729, 1706, 1624, 1572 1540, 53 1165 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.51-7.44 (m, 5H), 54 7.35 (d, J = 6.8 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.18 (s, 1H), 55 3.86 (s, 3H), 2.76 (t, J = 8.0 Hz, 2H), 2.10 (t, J = 8.0 Hz, 2H), 56 1.78 (s, 3H)ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 206.6, 57 161.9, 160.9, 159.7, 159.2, 137.2, 130.5, 129.1, 128.8, 127.4,

125.0, 114.0, 114.0, 55.4, 42.8, 29.4, 21.6 ppm; HRMS (EI): m/z Calcd. for C₂₂H₂₁O₄ [M+H]⁺: 349.1440, found: 349.1441. 6-(4-acetylphenyl)-5-(3-oxobutyl)-4-phenyl-2H-

pyran-2-one (5k).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for5 minutes1ak (64 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2ol2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 60 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 -7:3) to afford the pure product(5k)as a white solid (45 mg, 0.13 mmol, Yield: 63%; R_f= 0.31(petroleum ether/ethyl acetate = 7:3); mp 127-128°C; FTIR (KBr neat) v_{max}1723, 1708, 1684, 1603 1550, 1525 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.50-7.46 (m, 3H), 7.38-7.33 (m, 2H), 6.26 (s, 1H), 2.78-2.71 (m, 2H), 2.65 (s, 3H), 2.12-2.07 (m, 2H), 1.79 (s, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): 8 206.1, 197.2, 161.3, 159.3, 157.7, 138.0, 136.9, 136.8, 129.3, 129.3, 128.9, 128.5, 127.4, 115.3, 115.2, 42.5, 29.5, 26.8, 21.4 ppm; HRMS (EI): m/z Calcd. for C₂₃H₂₁O₄ [M+H]⁺: 361.1440, found: 361.1438.

4-(4-chlorophenyl)-5-(3-oxobutyl)-6-phenyl-2Hpyran-2-one (51).Cu(OAc)₂ (7.2 mg, 0.04 mmol, 20 mol%) and Pd(PhCN)₂Cl₂ (3.8 mg, 0.01 mmol, 5 mol%) were added in cyclohexanone (1.0 mL) under O₂ atmosphere. After stirring for 5 minutes1al (62 mg, 0.2 mmol, 1.0 equiv.) and 3-Buten-2ol 2a (43 mg, 0.6 mmol, 3.0 equiv.) were subsequently added to the mixture. The system was stirring at 30 °C for 60 h.The reaction mixture was diluted with ethyl acetate washed with water and brine. The organic layer was dried over Na₂SO₄ filtered, concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using as eluent petroleum ether/ethyl acetate (8:2 - 7:3) to afford the pure product(51) as a white solid (42.5 mg, 0.12 mmol, Yield: 60%;R= 0.38(petroleum ether/ethyl acetate = 7:3);mp 112-113°C; FTIR (KBr neat) v_{max}1723, 1705, 1622, 1550, 1530, 1085 cm⁻¹;¹H NMR (400 MHz, CDCl₃): δ 7.54-7.45 (m, 7H), 7.31 (d, J = 8.0 Hz, 2H), 6.19 (s, 1H), 2.73 (t, J = 8.0 Hz, 2H), 2.10 (t, J = 8.0 Hz, 2H), 1.82 (s, 3H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 206.2, 161.4, 159.5, 158.4, 135.5, 132.6, 130.3, 129.3, 128.9, 128.7, 114.7, 114.2, 42.7, 29.5, 21.3 ppm; HRMS (EI): m/z Calcd. for C₂₁H₁₈ClO₃ [M+H]⁺: 353.0944, found: 353.0949.

Supporting Information

Single crystaldata of 5a and spectral data for all novel compounds (¹H NMR, ¹³C NMR).

AUTHOR INFORMATION

Corresponding Author

xyh0709@ustc.edu.cn;teckpeng@ntu.edu.sg

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the funding support of Anhui Provincial Natural Science Foundation (1708085MB29), the National Natural Science Foundation of China (21672198) and the State Key Program of National Natural Science Foundation of China (21432009).T. Ahmad acknowledges the China Scholarship Council (CSC) for supporting him for the Ph.D. degree from University of Science and Technology of China in the category of 2015 CSC Fellowship Awardee (CSC No. 2015GXZQ17).

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

59

60

(1) (a) Kamano, Y.; Nogawa, T.; Yamashita, A.; Hayashi, M.; Inoue, M.; Drašar, P.; Pettit, G. R. Isolation and structure of a 20, 21-epoxybufenolide series from "Ch'an Su".*J. Nat. Prod.* 2002,65, 1001-1005.(b) McGlacken, G. P.; Fairlamb, I. 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. J.*Nat. Prod. Rep.* 2005,22, 369-385.(c) Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H.; Prinsep, M. R.Marine natural products.*Nat. Prod. Rep* 2013,30, 237-323.(d) Yokoe, H.; Mitsuhashi, C.; Matsuoka, Y.; Yoshimura, T.; Yoshida, M.; Shishido, K.Enantiocontrolled total syntheses of breviones A, B, and C.J. Am. Chem. Soc. 2011,133, 8854-8857.(e) Sunazuka, T.; Ōmura, S. Total synthesis of α-pyrone meroterpenoids, novel bioactive microbial metabolites.*Chem. Rev.* 2005,105, 4559-4580.

18 (2) (a) Gan, P.; Smith, M. W.; Braffman, N. R.; Snyder, S. 19 A.Pyrone Diels-Alder Routes to Indolines and Hydroindolines: Syntheses of Gracilamine, Mesembrine. and 20 Δ^7 -Mesembrenone. Angew. Chem. 2016, 128, 3689-3694.(b) Sun, 21 C. L.; Fürstner, A.Formal Ring-Opening/Cross-Coupling 22 Reactions of 2-Pyrones: Iron-Catalyzed Entry into Stereodefined 23 Dienyl Carboxylates. Angew. Chem. Int. Ed. 2013, 52, 13071-24 13075.(c) Požgan, F.; Kranjc, K.; Kepe, V.; Polanc, S.; Kočevar, 25 M.Synthesis of 2H-pyran-2-ones and fused pyran-2-ones as useful building blocks. Arkivoc.2007,2007, 97-111.(d) Posner, G. H.; 26 Nelson, T. D.; Kinter, C. M.; Johnson, N.Diels-Alder 27 cycloadditions using nucleophilic 3-(p-tolylthio)-2-pyrone. 28 Regiocontrolled and stereocontrolled synthesis of unsaturated, 29 bridged, bicyclic lactones. J. Org. Chem. 1992, 57, 4083-4088.(e) 30 Larsson, R.; Sterner, O.; Johansson, M.Biomimetic synthesis 31 toward the transtaganolides/basiliolides. Org. Lett. 2009,11, 657-32 660.(f) Vara Prasad, J.; Para, K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar Jr, J. B.; Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. 33 D.Novel series of achiral, low molecular weight, and potent HIV-34 1 protease inhibitors. J. Am. Chem. Soc. 1994,116, 6989-6990.(g) 35 Nelson, H. M.; Gordon, J. R.; Virgil, S. C.; Stoltz, B. M.Total 36 Syntheses of (-)-Transtaganolide A,(+)-Transtaganolide 37 B,(+)-Transtaganolide C, and (-)-Transtaganolide D and 38 Biosynthetic Implications. Angew. Chem. Int. Ed. 2013, 52, 6699-39 6703.

- 40 (3) (a) Lee, J. S. Recent Advances in the Synthesis of 2-Pyrones.*Marine drugs*.2015,13, 1581-1620.(b) Goel, A.; Ram, V. J.Natural and synthetic 2*H*-pyran-2-ones and their versatility in organic synthesis.*Tetrahedron*.2009,65, 7865-7913.
- 43 (4) (a) Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R.Selective
 44 synthesis of natural and unnatural 5, 6-disubstituted 2 (2*H*)45 pyranones via iodolactonization of 5-substituted (*Z*)-2-en-4-ynoic
 46 acids. *Tetrahedron*.2001,57, 2857-2870.(b) Biagetti, M.; Bellina,
 47 F.; Carpita, A.; Rossi, R.6-Chloro-2 (2*H*)-pyranone: a new 2
 48 (2*H*)-pyranone synthon.*Tetrahedron Lett.* 2003,44, 607-610.
- (5) (a) Yao, T.; Larock, R. C.Synthesis of isocoumarins and α-pyrones via iodocyclization. *Tetrahedron Lett.* 2002,43, 7401-7404.(b) Yao, T.; Larock, R. C.Synthesis of isocoumarins and α-pyrones via electrophilic cyclization.*J. Org. Chem.* 2003,68, 52 5936-5942.
- (6) Wang, Y.; Burton, D. J.A facile, general synthesis of 3, 4difluoro-6-substituted-2-pyrones. J. Org. Chem. 2006,71, 3859-3862.
 (7) (a) Lua T.; Dai M.; Zhang S. L.; Schraiber S. L. Syntheses of
- (7) (a)Luo, T.; Dai, M.; Zheng, S.-L.; Schreiber, S. L.Syntheses of α-Pyrones Using Gold-Catalyzed Coupling Reactions.*Org. Lett.*2011,13, 2834-2836.(b)Mochida, S.; Hirano, K.; Satoh, T.; Miura, 58

(8) Tian, P.-P.; Cai, S.-H.; Liang, Q.-J.; Zhou, X.-Y.; Xu, Y.-H.; Loh, T.-P.Palladium-Catalyzed Difunctionalization of Internal Alkynes via Highly Regioselective *6-Endo* Cyclization and Alkenylation of Enynoates: Synthesis of Multisubstituted Pyrones*Org. Lett.***2015**,*17*, 1636-1639.

(9) Pathare, R. S.; Sharma, S.; Gopal, K.; Sawant, D. M.; Pardasani, R. T.Palladium-catalyzed convenient one-pot synthesis of multi-substituted 2-pyrones via transesterification and alkenylation of enynoates. *Tetrahedron Lett.* **2017**,*58*, 1387-1389. (10) (a) Wang, H.; Han, X.; Lu, X.Palladium (II)-catalyzed tandem annulation reaction of o-alkynylbenzoates with methyl vinyl ketone for the synthesis of isocoumarins. *Tetrahedron*.**2013**,*69*, 8626-8631.(b) Negishi, E.-i.; Kotora, M.Regio-and stereoselective synthesis of γ -alkylidenebutenolides and related compounds.*Tetrahedron*.**1997**,*53*, 6707-6738.

(11) (a) Yoshikawa, T.; Shindo, M.Stereoselective Synthesis of (E)-2-En-4-ynoic Acids with Ynolates: Catalytic Conversion to Tetronic Acids and 2-Pyrones. Org. Lett. 2009,11, 5378-5381.(b) Rossi, R.; Bellina, F.; Biagetti, M.; Catanese, A.; Mannina, L.Palladium-catalyzed synthesis of stereodefined 3-[(1, 1unsymmetrically disubstituted) methylidene] isobenzofuran-1 (3H)-ones and stereodefined 5-[(1, 1-unsymmetrically disubstituted) methylidene] furan-2 (5H)-ones, Tetrahedron Lett. 2000,41, 5281-5286.(c) Liang, Y.; Xie, Y.-X.; Li, J.-H.Cv2NH. HX-promoted cyclizations of o-(alk-1-ynyl) benzoates and (Z)alk-2-en-4-ynoate with copper halides to synthesize isocoumarins and α-pyrone. Synthesis. 2007, 2007, 400-406.(d) Huang, J.; Li, L.; Chen, H.; Xiao, T.; He, Y.; Zhou, L.Synthesis of 3-Aryl-2pyrones by Palladium-Catalyzed Cross-Coupling of Aryl Iodides with Cyclic Vinyldiazo Ester.J. Org. Chem. 2017,82, 9204-9209. (12) (a) Pankajakshan, S.; Xu, Y. H.; Cheng, J. K.; Low, M. T.; Loh, T. P.Palladium-Catalyzed Direct C-H Arylation of Enamides with Simple Arene. Angew. Chem. Int. Ed. 2012,51, 5701-5705.(b) Feng. C.; Loh, T.-P.Copper-catalyzed olefinic of trifluoromethylation enamides room at temperature. Chem. Sci. 2012, 3, 3458-3462. (c) Xu, Y.-H.; Chok, Y. K.; Loh, T.-P.Synthesis and characterization of a cyclic vinylpalladium (II) complex: vinylpalladium species as the possible intermediate in the catalytic direct olefination reaction of enamide. Chem. Sci. 2011, 2, 1822-1825.(d) Xu, Y.-H.; He, T.; Zhang, Q.-C.; Loh, T.-P.Synthesis of multi-substituted pyrroles using enamides and alkynes catalyzed by Pd(OAc)₂ with molecular oxygen as an oxidant. Chem. Commun. 2014, 50, 2784-2786.(e) Zhang, X.; Wang, M.; Zhang, M.-X.; Xu, Y.-H.; Loh, T.-P.Synthesis of Dienyl Ketones via Palladium (II)-Catalyzed Direct Cross-Coupling Reactions between Simple Alkenes and Vinyl Ketones: Application to the Synthesis of Vitamin A1 and Bornelone. Org. Lett. 2013, 15, 5531-5533.(f) Zhou, H.; Chung, W.-J.; Xu, Y.-H.; Loh, T.-P.Direct arylation of cyclic enamides via Pd (II)-catalyzed C-H activation. Chem. Commun. 2009, 3472-3474.(g) Zhou, H.; Xu, Y. H.; Chung, W. J.; Loh, T. P.Palladium-Catalyzed Direct Arylation of Cyclic Enamides with Aryl Silanes by sp² C- H Activation. Angew. Chem. 2009,121, 5459-5461.(h) Shang, X.; Liu, Z.-Q. Transition metal-catalyzed C vinyl-C vinyl bond formation via double C vinyl-H bond activation.Chem. Soc. Rev. 2013,42, 3253-3260.(i) Li, Z.; Zhang,

58

59

60

Y.; Liu, Z.-Q.Pd-catalyzed olefination of perfluoroarenes with allyl esters. *Org. Lett.* **2011**, *14*, 74-77.

- (13) (a) Zheng, M.; Huang, L.; Tong, Q.; Wu, W.; Jiang, H.Oxypalladation Initiating the Oxidative Heck Reaction with Alkenyl Alcohols: Synthesis of Isocoumarin–Alkanones.*Eur. J. Org. Chem.* 2016,2016, 663-667.(b) Huang, W.-Y.; Nishikawa, T.; Nakazaki, A.Palladium-Catalyzed Cascade Wacker/Allylation Sequence with Allylic Alcohols Leading to Allylated Dihydropyrones.*ACS Omega*.2017,2, 487-495.
- (14) (a) Roggen, M.; Carreira, E. M.Enantioselective Allylic 8 Etherification: Selective Coupling of Two Unactivated 9 Alcohols. Angew. Chem. Int. Ed. 2011, 50, 5568-5571. (b) Roggen, 10 M.; Carreira, E. M.Enantioselektive Allylethersynthese: selektive 11 Kupplung von zwei Alkoholen. Angew. Chem. 2011,123, 5683-12 5686.(c) Banerjee, D.; Junge, K.; Beller, M.Cooperative catalysis 13 by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols. Angew. Chem. Int. Ed. 14 2014,53, 13049-13053.(d) Krautwald, S.; Schafroth, M. A.; 15 Sarlah, D.; Carreira, E. M.Stereodivergent α -allylation of linear 16 aldehydes with dual iridium and amine catalysis.J. Am. Chem. 17 Soc. 2014,136, 3020-3023.(e) Hamilton, J. Y.; Sarlah, D.; 18 Carreira, E. M.Iridium-catalyzed enantioselective allyl-alkene 19 coupling.J. Am. Chem. Soc. 2014,136, 3006-3009.
- (15) (a) Hoye, T. R.; Zhao, H.Some allylic substituent effects in 20 ring-closing metathesis reactions: Allylic alcohol activation.Org. 21 Lett. 1999,1, 1123-1125.(b) Colbon, P.; Ruan, J.; Purdie, M.; 22 Mulholland, K.; Xiao, J.Double arylation of allyl alcohol via a 23 one-pot Heck arylation-isomerization-acylation cascade. Org. Lett 24 2011,13, 5456-5459.(c) Ahlsten, N.; Bermejo Gómez, A.; 25 B.Iridium-Catalyzed Martín-Matute, 1, 3-Hydrogen 26 Shift/Chlorination of Allylic Alcohols. Angew. Chem. Int. Ed. 2013,52, 6273-6276.(d) Shibuya, G. M.; Kanady, J. S.; 27 Vanderwal, C. D.Stereoselective dichlorination of allylic alcohol 28 derivatives to access key stereochemical arrays of the 29 chlorosulfolipids.J. Am. Chem. Soc. 2008,130, 12514-12518. 30
- (16) (a) Vellakkaran, M.; Andappan, M. M.; Kommu, 31 N.Replacing a stoichiometric silver oxidant with air: ligated Pd 32 (II)-catalysis to β -aryl carbonyl derivatives with improved 33 chemoselectivity. Green Chem. 2014, 16, 2788-2797. (b) Bunescu, A.; Wang, Q.; Zhu, J.Copper-Catalyzed Cyanomethylation of 34 Allylic Alcohols with Concomitant 1, 2-Aryl Migration: Efficient 35 Synthesis of Functionalized Ketones Containing an α-Quaternary 36 Center. Angew. Chem. Int. Ed. 2015, 54, 3132-3135.(c) Werner, E. 37 W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S.Enantioselective 38 Heck arylations of acyclic alkenyl alcohols using a redox-relay 39 strategy.Science.2012,338, 1455-1458.
- (17) (a) Xia, Y.; Qu, S.; Xiao, Q.; Wang, Z.-X.; Qu, P.; Chen, L.; 40 Liu, Z.; Tian, L.; Huang, Z.; Zhang, Y.Palladium-Catalyzed 41 Carbene Migratory Insertion Using Conjugated Ene-Yne-42 Ketones as Carbene Precursors.J. Am. Chem. Soc. 2013,135, 43 13502-13511.(b) Cai, Z.-J.; Yang, C.; Wang, S.-Y.; Ji, S.-44 J.Palladium-catalyzed highly regioselective 6-exo-dig cyclization 45 and alkenylation of ortho-ethynylanilides: the synthesis of polyene-substituted benzo [d][1, 3].Chem. Commun. 2015,51, 46 14267-14270. 47
- (18) (a) Huang, L.; Wang, Q.; Qi, J.; Wu, X.; Huang, K.; Jiang, 48 H.Rh (III)-catalyzed ortho-oxidative alkylation of unactivated 49 arenes with allylic alcohols. Chem. Sci. 2013, 4, 2665-2669.(b) Qi, 50 J.; Huang, L.; Wang, Z.; Jiang, H.Ruthenium and rhodium-51 catalyzed oxidative alkylation of C-H bonds: efficient access to β-52 aryl ketones. Org. Biomol. Chem. 2013,11, 8009-8013.(c) Weiss, M.; Peters, R.Catalytic direct dehydrogenative cross-couplings of 53 C–H (Pro) nucleophiles and allylic alcohols without an additional 54 oxidant.ACS Catalysis.2014,5, 310-316.(d) Wen, Y.; Huang, L.; 55 Jiang, H.; Chen, H.Synthesis of δ -Bromo γ , δ -Unsaturated 56 Carbonyl Compounds via Palladium-Catalyzed Bromoalkylation 57 of Alkynoates.J. Org. Chem. 2012,77, 2029-2034.(e) Wang, Q.;

Huang, L.; Wu, X.; Jiang, H.Nucleopalladation Triggering the Oxidative Heck Reaction: A General Strategy to Diverse β -Indole Ketones. *Org. Lett.* **2013**,*15*, 5940-5943.

(19) (a) Liang, Q. J.; Yang, C.; Meng, F. F.; Jiang, B.; Xu, Y. H.; Loh, T. P.Chelation versus Non-Chelation Control in the Stereoselective Alkenyl sp2 C-H Bond Functionalization Reaction. Angew. Chem. 2017, 129, 5173-5177. (b) Zhang, D.; Liu, J.; Córdova, A.; Liao, W.-W.Recent Developments in Palladium-Catalvzed Oxidative Cascade Carbocyclization.ACS Catalvsis.2017,7, 7051-7063.(c)Zhang, Z.; Ouyang, L.; Wu, W.; Li, J.; Zhang, Z.; Jiang, H.Palladium-catalyzed intermolecular oxyvinylcyclization of alkenes with alkynes: An approach to 3methylene γ -lactones and tetrahydrofurans.J. Org. Chem. 2014,79, 10734-10742.(d)Yeung, C. S.; Dong, V. M.Catalytic dehydrogenative cross-coupling: forming carbon- carbon bonds by oxidizing two carbon- hydrogen bonds. Chem. Rev. 2011,111, 1215-1292.(e) Yu, H.; Jin, W.; Sun, C.; Chen, J.; Du, W.; He, S.; Yu, Z.Palladium-Catalyzed Cross-Coupling of Internal Alkenes with Terminal Alkenes to Functionalized 1, 3-Butadienes Using C-H Bond Activation: Efficient Synthesis of Bicyclic Pyridones. Angew. Chem. 2010, 122, 5928-5933.

(20) (a) Faizi, D. J.; Issaian, A.; Davis, A. J.; Blum, S. A.Catalyst-Free Synthesis of Borylated Lactones from Esters via Electrophilic Oxyboratio.*J. Am. Chem. Soc.* 2016,138, 2126-2129.(b) Huang, Q.; Larock, R. C.Synthesis of 4-(1-alkenyl) isoquinolines by palladium (II)-catalyzed cyclization/olefination.*J. Org. Chem.* 2003,68, 980-988.(c) Zhao, P.; Chen, D.; Song, G.; Han, K.; Li, X.Palladium-Catalyzed Cascade Cyclization–Oxidative Olefination of tert-Butyl 2-Alkynylbenozates*J. Org. Chem.* 2012,77, 1579-1584.

(21) Paterson, I.; Paquet, T. Total synthesis and configurational validation of (+)-phorbaside A. *Org. Lett.* **2010**, *12*, 2158-2161.

(22) (a) .Lin,H.; Liu, Y.; Wu. Z-L.Highly diastereo-and enantio-selective epoxidation of secondary allylic alcohols catalyzed by styrene monooxygenase. *Chem. Commun.* 2011, *47*, 2610-2612.
(b) Lehmann, J.; Lloyd-Jones, G. C. Regiocontrol and stereoselectivity in tungsten-bipyridine catalysed allylic alkylation *Tetrahedron.*1995, *51*, 8863-8874.